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Abstract: Supramolecular dichloro-chlorostannate(IV) and -plumbate(IV) complexes (Me3NH)2{[MCl6]Cl2}
(M = Sn (1), Pb (2)) feature dichlorine units incorporated into a halometalate framework. Both compounds
were characterized by X-ray diffractometry and Raman spectroscopy.
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1. Introduction

Anionic halide complexes (halometalates) [1–9] are being intensively investigated for
years. Refs. [10–17] In the last decades, this research is strongly promoted by materials
science, especially by photovoltaics where iodometalates, especially iodoplumbates(II), are
widely used as light absorbers. Refs. [18–24] On the other hand, there are many works
focusing on ability of halometalates to build supramolecular associates with di- or polyhalo-
gens due to halogen bonding (XB), and a specific type of non-covalent interactions [25–29].
Although this feature was known for decades, [30–34] its systematic studies began rather
recently; Refs. [35,36] in our reports, [37] we demonstrated that such behavior is rather com-
mon for Bi(III), Te(IV) and Sb(V) halide complexes. Simultaneously, the works by Shevelkov
et al. demonstrated [38–41] that polyiodide-containing iodobismuthates commonly reveal
narrow optical band gaps and, sometimes, rather high thermal stability, making such
hybrids promising candidates for photovoltaic applications.

For dichlorine-containing halometalates, the very first report was published over
30 years ago. Ref. [42] It was shown that tetramethylammonium chloropalladate(IV) and
–stannate(IV) readily form complexes of the general formula (Me4N)2{[MCl6](Cl2)x}, where
X ≤ 1. Surprisingly, this work remained overlooked for years. Only very recently, we
demonstrated that such complexes can be formed: a) by other elements, including Te and
Pb, and b) in presence of other cations. Refs. [43,44] Continuing this work, we hereby
present two new dichlorine-chlorometalates—(Me3NH)2{[MCl6]Cl2} (M = Sn (1), Pb (2)).

2. Materials and Methods

All reagents were used as purchased. Caution: All experiments with Cl2 require
obligatory safety precautions—sufficient exhaust ventilation (fume hood must be used),
and obligatory eye (goggles) and skin (gloves) protection. Soluble Pb(II) salts are toxic.

2.1. Preparation of 1

50 mg (0.22 mmol) of SnCl2·2H2O and 42 mg (0.44 mmol) of Me3NHCl were dissolved
in 4 mL of concentrated HCl at 60 ◦C. Then gaseous Cl2 was bubbled through the solution
at the same temperature for 10 min. After that, the flask was closed and slowly cooled to
room temperature, resulting in the formation of transparent crystals of 1 within several
hours. The yield was 69%. The element analysis for C6H20N2SnCl6 is (see Discussion):
calculated, %: C, 16.00; H, 4.48; N, 6.23; found C, 15.94; H, 4.52; N, 6.29.
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2.2. Preparation of 2

111 mg (0.22 mmol) of PbO and 96 mg (1 mmol) of Me3NHCl were dissolved in 5 mL
of concentrated HCl at 60 ◦C. Then gaseous Cl2 was bubbled through the solution at the
same temperature for 10 min. After that, the flask was closed and slowly cooled to room
temperature, resulting in formation of transparent crystals of 1 within several hours. The
yield was 71%. The element analysis for C6H20N2PbCl6 is (see Discussion): calculated, %:
C, 13.38; H, 3.74; N, 5.20; found C, 13.33; H, 3.77; N, 5.27.

2.3. X-Ray Diffractometry

X-ray diffraction data for oligocrystalline samples of (Me3NH)2{[MCl6]Cl2} (M = Sn
(1), Pb (2)) were collected on a Bruker D8 Venture diffractometer (PHOTON III CMOS
detector, Mo IµS3.0 X-ray source, Montel mirror focused MoKα radiation λ = 0.71073 Å,
N2-flow cryostat) via 0.5◦ ω- and ϕ-scan techniques. The experimental data reductions
were performed using the APEX3 suite (Bruker APEX3 Software Suite (APEX3 v.2019.1-
0, SADABS v.2016/2, TWINABS v.2012/2, SAINT v.8.40a), Bruker Nonius (2003–2004),
Bruker AXS (2005–2018), Bruker Nano (2019): Madison, WI, USA). The only one major
crystal domain of 1 and both major domains of 2 were used for the intensity integration via
SAINT. Scaling and absorption corrections of the experimental intensities were performed
empirically in the medium absorber (3 odd/6 even orders for spherical harmonics, spherical
correction µ·r = 0.2) and strong absorber models (7 odd/8 even OSH, µ·r = 1.2) using
SADABS and TWINABS programs for 1 and 2, respectively. The structures were solved by
SHELXT [45] and refined using the full-matrix least-squares by SHELXL [46] assisted with
Olex2 GUI [47].

Non-H atoms for all structures were located from the electron density map and refined
in the anisotropic approximation. H atoms were located from the electron difference maps
and refined in a riding model with the constrained Uiso. Site occupation factors of Cl atoms
of guest Cl2 molecules, located around special positions (Wyckoff positions 6a, 32 point
symmetry) were fixed as 1/3 (i.e., the guest positions are singly occupied by Cl2 molecules).
The crystallographic characteristics, experimental data, and structure refinement indicators
are shown in Table 1. The crystallographic data and experimental details were deposited in
the Cambridge Crystallographic Data Centre under the deposition codes CCDC 2154812 (1)
and 2167558 (2) and can be obtained at https://www.ccdc.cam.ac.uk/structures (accessed
on 10 November 2022).

Table 1. Details of the XRD experiments for 1 and 2.

1 2

Empirical formula C6H20Cl8N2Sn C6H20Cl8N2Pb

Formula weight 522.53 611.03

Temperature, K 150(2) 250(2)

Crystal system Trigonal trigonal

Space group R–3c R–3c

a, Å/α, ◦ 9.4097(6)/90 9.5183(2)/90

b, Å/β, ◦ 9.4097(6)/90 9.5183(2)/90

c, Å/γ, ◦ 36.738(3)/120 37.3034(8)/120

Volume, Å3 2817.1(4) 2926.83(14)

Z 6 6

ρcalc, g/cm3 1.848 2.080

µ, mm−1 2.482 9.726

F(000) 1536.0 1728.0

Crystal size, mm3 0.13 × 0.08 × 0.05 0.15 × 0.15 × 0.15

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073)

https://www.ccdc.cam.ac.uk/structures


Inorganics 2023, 11, 25 3 of 8

Table 1. Cont.

1 2

2θ range for data collection, ◦ 5.47/62.95 6.55/63.03

Index ranges
–13 ≤ h ≤ 13,
–12 ≤ k ≤ 13,
–53 ≤ l ≤ 53

–12 ≤ h ≤ 0,
0 ≤ k ≤ 13,
0 ≤ l ≤ 54 *

Reflections collected/independent 12026/1019 25228 **/1082

Rint/Rσ 0.0438/0.0196 0.0371/0.0106

Data/restraints/parameters 1019/0/34 1082/0/34

Goodness-of-fit on F2 1.116 1.112

R1/wR2 for I ≥ 2σ(I) 0.0179/0.0388 0.0206/0.0376

for all data 0.0197/0.0394 0.0282/0.0401

Largest diff. peak/hole/e Å−3 0.23/–0.36 0.41/–0.47

2.4. Raman Spectroscopy

Raman spectra were collected using a LabRAM HR Evolution (Horiba) spectrometer
with the excitation by the 633 nm line of the He-Ne laser. The spectra at room temperatures
were obtained in the backscattering geometry with a Raman microscope. The laser beam was
focused to a diameter of 2 µm using a LMPlan FL 50×/0.50 Olympus objective. The spectral
resolution was 0.7 cm−1. The laser power on the sample surface was about 0.03 mW.

3. Results and Discussion

Both complexes were prepared via bubbling of Cl2 through HCl solution of correspond-
ing chlorometalate(IV) (in the case of Pb, it is generated in situ during dissolution of oxide
in HCl) with trimethylammonium chloride, resulting in crystals suitable for XRD. Both com-
pounds are isostructural. There are mononuclear [MCl6]2− anions (M-Cl = 2.425–2.427 and
2.504–2.507 Å for Sn and Pb, respectively). Similar to (Me4N)2{[MCl6](Cl2)} (M = Sn, Pb)
described earlier [43], the dichlorine units (the Cl-Cl bond lengths are 1.994 in 1 and 1.996 in
2, respectively) are disordered over three positions with equal occupancies so the system of
Cl···Cl non-covalent interactions (Figure 1) is three-dimensional (Cl···Cl = 2.900 and 2.892 Å,
M-Cl-Cl = 159.1 and 160.0◦, respectively). The proximity of the measured intramolecular Cl-Cl
distances to “canonical” values as well as the low anisotropy of the atomic displacements
indicates the absence of significant librations of the guest molecules. The crystal packing in
1 and 2 are shown on Figure 2. Details of cation···anion interactions (figures demonstrating
minor differences in NH···Cl distances) are given in Supplementary Materials.
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Both complexes demonstrate poor stability while kept outside the Cl2-containing
mother liquor, and lose Cl2, transforming into (Me3NH)2[MCl6], as follows from element
analysis of residues (see Experimental part). The PXRD data (Figures 3 and 4) confirm that
after 1 h the samples of 1 and 2 contain up to 33% of “dichlorine-free” salts (for comparison
of the structural data, we used the XRD information for (Me3NH)2[SnCl6] which was
described earlier [48]; the (Me3NH)2[PbCl6] salt was found to be isostructural).
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It is worth mentioning that supramolecular complexes with halide···dichlorine non-
covalent interactions are yet very rare. Apart from polychlorides extensively studied in last
decade by Riedel et al. [49–51], the number of such examples is very limited.

Hirshfeld surface analysis of the structures of 1 and 2 is given in Supplementary
Materials. The stability of compounds did not allow performance of TGA experiments;
however, we succeeded in recording of Raman spectra (Figures 5 and 6). The bands
corresponding to the {Cl2} unit vibrations (518–531 and 508–520 cm−1, respectively) are
shifted to the lower wavelengths; this is a common feature for the compound of this
family [43] (for gaseous Cl2, the bands were detected at 539, 547 and 554 cm−1 [52]). There
are also bands at 312, 242, 165 cm−1 for 1 and 278, 218, 143 cm−1 for 2 corresponding to ν1,
ν2 (stretching) and ν5 (deformation) vibrations in {MCl6} octahedral units [53].
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4. Conclusions

To conclude, the series of Sn and Pb dichlorine-contanining supramolecular com-
pounds featuring Type I Cl···Cl interactions (according to the classification proposed by
Metrangolo et al. [54]) was expanded by adding two new complexes. It is noteworthy that,
unlike tetramethylammonium-containing relatives, 1 and 2 demonstrate poor stability. This
observation confirms the crucial role of multiple cation···anion hydrogen bonds in overall
stabilization of the compounds of this type. While all complexes of this family reported
contained dichlorine units, we, as stated previously [43], cannot exclude the existence of
compounds where other, more sophisticated polychlorine fragments would be stabilized
(the overall progress in research of polychlorides [49,50,55] encourages this hypothesis).
The corresponding experiments are underway in our group.

Supplementary Materials: The following supporting information can be download at: https://www.
mdpi.com/article/10.3390/inorganics11010025/s1, Hirshfeld surface analysis for 1 and 2.
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P.A.A., V.Y.K. and S.A.A.; writing—original draft preparation, M.N.S. and S.A.A.; writing—review and
editing, M.N.S.; visualization, N.A.K., A.N.U., M.N.S. and S.A.A.; supervision, A.N.U. and M.N.S.;
project administration, S.A.A.; funding acquisition, S.A.A. All authors have read and agreed to the
published version of the manuscript.
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