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Abstract: Uranyl ions, {UO2}n+ (n = 1, 2), display trans, strongly covalent, and chemically robust U-O
multiple bonds, where 6d, 5f, and 6p orbitals play important roles. The synthesis of isoelectronic
analogues of uranyl has been of interest for quite some time, mainly with the purpose of unveiling
covalence and 5f-orbital participation in bonding. Significant advances have occurred in the last two
decades, initially marked by the synthesis of uranium(VI) bis(imido) complexes, the first analogues
with a {RNUNR}2+ core, later followed by the synthesis of unique trans-{EUO}2+ (E = S, Se) complexes,
and recently highlighted by the synthesis of the first complexes featuring a linear {NUN} moiety.
This review covers the synthesis, structure, bonding, and reactivity of uranium complexes containing
a linear {EUE}n+ core (n = 0, 1, 2), isoelectronic to uranyl ions, {OUO}n+ (n = 1, 2), incorporating σ-
and π-donating ligands that can engage in uranium–ligand multiple bonding, where oxygen may be
replaced by heavier chalcogenido, imido, nitride, and carbene ligands, or by a transition metal. It
focuses on synthetic methods of well-defined molecular uranium species in the condensed phase but
also references gas-phase and low-temperature-matrix experiments, as well as computational studies
that may lead to valuable insights.

Keywords: uranyl analogues; uranium-ligand multiple bonding; covalency; structural parameters;
inverse trans influence

1. Introduction

Actinide coordination chemistry remains a topic of interest due to unprecedented
molecular structures and reactivity pathways [1–3]. Significant progress occurred in the
last decade with the development of methods for generating multiple bonds between 5f
and p-block elements [4–7]. From a fundamental point of view, the central drive behind
this research has been to understand factors that govern the bonding in metals with diffuse
and/or high energy valence orbitals, especially 5f and 6d orbitals, and the degree to which
covalency may be invoked when describing actinide–ligand bonding.

On the other hand, the influence of nuclear power on the energy portfolio of a number
of countries has also determined the evolution of this research. The initial focus was on the
preparation of volatile compounds for uranium isotopic separation, a necessary step in the
fabrication of materials for nuclear fuel and other applications. Later, and continuing to the
present, studies concentrated on fuel reprocessing and waste management, and ultimately,
on the elimination of waste from nuclear power plants and weapons dismantling, and
related environmental issues.

Of all the actinides, uranium has been the most studied, particularly uranyl(VI),
{UO2}2+, since it is the most stable form of uranium in the environment. The uranyl(VI) ion
is characterized by a strictly linear OUO arrangement, short and strong uranium–oxygen
bonds (∼1.78 Å), formally triple bonds, resultant from one σ- and two π-bonds between 2p
orbitals on the oxido ligands and 5f and 6d hybrid orbitals on uranium [8]. This results in
thermodynamically stable and, generally, kinetically inert U-O bonds, with a gas-phase
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average bond energy of 618 kJ mol−1 [9]. Ligands in the equatorial plane of {OUO}2+

complexes are bound to the uranium center through weaker bonds compared to the strong
U-O ones.

The disproportionation of the unstable uranyl(V) cation, {UO2}+, to uranyl(VI) and
uranium(IV) species is an important feature in uranium remediation by immobilization,
and significant advances have been made in the isolation and study of reduced uranyl
complexes [1,10–12]. Due to the lower stability of the +5 oxidation state, uranyl(V) species
are less common; however, {UO2}+ exhibits the same key characteristics of the hexavalent
analogue, such as short U-O bonds and the trans-{OUO}+ arrangement.

{UO2}n+ (n = 1, 2) species are a particular case of uranium complexes containing
multiply bonded ligands and have been the subject of many spectroscopic and theoretical
studies [8,13,14]. The robust linear {OUO}n+ fragment is challenging to disrupt, with
deviations from linearity found up to approximately 20◦, generally in the presence of
sterically demanding ancillary ligands [15] and contrasting with commonly encountered
transition metal cis-dioxido species. Computational and spectroscopic investigations have
suggested that two significant occurrences operate in the preference of trans-uranyl over
cis-uranyl, namely, the involvement of the valence 5f orbitals, and of the “pseudo-core”
U 6p orbitals in the U–O bonding framework, which result in an inverse trans influence
(ITI) [8,14,16]. The ITI phenomenon was termed by Denning as opposite to the trans effect
observed in transition metal complexes, where strongly bound anionic ligands weaken and
lengthen the bonds with ligands trans to their own position [13].

A good example of the ITI phenomenon is the pseudo-octahedral complex [UOCl5]− [17],
which exhibits a short axial U-O bond (1.76(1) Å) as in the {UO2}2+ fragment, and a U–Cltrans
distance of 2.433(4) Å that is approximately 0.1 Å shorter than the average U–Clcis bonds of
2.536(2) Å. ITI also explains why two strongly bound oxido ligands are arranged mutually
trans, as in the actinyl ions, with their inverse trans influence being cooperative.

The synthesis of uranyl, {UO2}n+, analogues, where one oxygen or both is replaced
by a p-block element, {E=U=E}n+ (E = O, S, Se, NR, N, PR, CR2), and the nearly linear ar-
rangement is maintained, has seen several advances lately, contributing to a comprehensive
understanding of bonding and covalency in uranium compounds.

This review covers experimental and computational studies on uranyl analogue molec-
ular compounds, including the identification of significant uranyl analogues in inert low-
temperature matrices or the gas phase. We note that this topic has been partly discussed
in several reviews of actinide-ligand multiple bond chemistry [4–6] and in more general
uranium coordination chemistry reviews [2,3]. Several new, interesting compounds were
reported afterwards, particularly the first complexes featuring a linear {N≡U≡N} core, iso-
electronic to the uranyl(VI) cation [18], and, therefore, it seems timely to have an up-to-date
examination of uranyl analogue complexes. This review provides an overview of synthetic
methods that have been used to prepare uranyl-analogue molecular compounds. It only
focuses on isoelectronic analogues of uranyl (V/VI); related complexes that may exhibit
structural features of uranyl analogues due to ITI are not discussed.

The review is divided into four main sections: (a) Uranium-heavy chalcogenido com-
plexes; (b) uranium pnictogenido complexes; (c) uranium carbene complexes; (d) uranium-
transition metal complexes. The structures of uranyl analogue complexes are discussed
with a specific focus on metric parameters for uranyl analogues {E=U=E}n+ (n = 1, 2), com-
bined, when possible, with data from computational studies. Reactivity studies of uranyl
analogue complexes are also addressed, as are synthetic challenges not yet accomplished,
such as those involving sulfido, phosphido, Schrock-carbene, or transition-metal ligands in
complexes that can be considered to have uranyl analogue cores.

2. Heavy Chalcogenido Complexes

The synthesis of condensed-phase isoelectronic analogues of uranyl, where oxygen is
replaced by another main-group element, is an ongoing subject of research. Despite the suc-
cesses in this area, is still striking to note the absence of experimentally characterized uranyl
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analogues, {UE2}2+, with heavier elements of the oxygen group (E = S, Se, Te). The only
reported analogous structurally characterized complexes are [Cp*2Co][U(O)(E)(NR2)3]
[ R = SiMe3; E = S, Se], which were produced by reacting [Cp*2Co][U(O)(NR2)3] with
S8 or elemental selenium in thf (Scheme 1) [19]. As expected for uranyl-like {OUE}2+

species, O−U−E bond angles (E = S: O−U−S 177.4(7)◦; E = Se: O−U−Se = 177.3(4)◦;
E = O: O1−U−O2 = 178.8(3)◦) are nearly linear and U−O bond lengths are shorter
(E = S: U−O 1.74(2) Å; E = Se: U−O 1.739(8) Å) than those in the analogous uranyl
[Cp*2Co][UO2{N(SiMe3)2}3] (1.811(5) Å and 1.788(5) Å), likely as a consequence of the
observed disorder [19]. U−S and U-Se bond distances, 2.390(8) Å and 2.533(1) Å, respec-
tively, are ∼0.1 Å shorter than the U−E bond distances in terminal chalcogenido U(IV)
complexes [U(E)(NR2)3]− (E = S: 2.4805(5) Å; E = Se: 2.6463(7) Å). This reduction is larger
than predicted based on the change in ionic radius from U4+ to U6+, which may be evidence
of the presence of an inverse trans influence in the {OUE}2+ complexes. The chalcogenido
ligands seem to be stabilized by the presence of the strongly donating silylamido ligands
and the negative charge of the complex, which stabilizes the 6+ charge on the uranium
center and precludes auto-oxidation of the chalcogenido ligand. DFT calculations revealed
considerable f-orbital contribution in the U–E interaction and suggested that U−E bonding
becomes less covalent as group 16 is descended.
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(adapted from ref. [19]).

In addition, the U(VI) trans-oxido-selenido complex, [U(O)(Se)(NR2)3]−, was char-
acterized by 77Se NMR and the chemical shift was located at 4905 ppm, the highest 77Se
NMR shift yet reported [20]. 77Se chemical shifts, in conjugation with natural bond anal-
ysis and QTAIM metrics, were identified as a probe of An–Se bond covalency within an
isoelectronic series, and supported significant 5f-orbital participation in U-Se bonding for
the uranium(VI) complex.

Based on the synthesis of {O=U=S}2+ and {O=U=Se}2+ complexes, it would seem
possible to synthesize compounds containing the {S=U=S}2+ and {Se=U=Se}2+ moieties;
however, this has not yet been the case and it remains a synthetic challenge concerning
uranyl analogues.

Reactions of atomic uranium with different molecules in cryogenic matrices have
provided evidence for elusive species and bonding, such as linear uranyl-like NUN, in ad-
vance of more conventional syntheses [21]. Typically, the characterization of novel uranium
species was accomplished by infrared spectroscopy coupled with theoretical calculations.
Different uranium sulfide molecules were prepared by this methodology, namely [US3],
[OUS2], and [U(O)(S)F2] [22–24], from the reaction of laser-ablated U atoms with sulfur
vapor, SO2 or SOF2. These structures were identified on the basis of characteristic IR U-E
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stretching modes in conjugation with DFT calculations. The SUO2 molecule displays a
T-shaped geometry, retaining the trans-oxo configuration of uranyl, and a U-S bond length
of 2.502 Å [23], while the US3 molecule exhibits a C2v T-shaped geometry similar to its UO3
analogue, with bond lengths of 2.342 Å for the unique U-S bond and 2.333 Å for the other
two equal U-S bonds, and with the larger S-U-S angle being 150.8◦ [22]. In [U(O)(S)F2],
the {SUO}2+ moiety is stabilized by electron-withdrawing fluoride ligands. The optimized
structure holds a slightly bent SUO moiety with a bond angle of 162.01◦, close to the value
of 168.01◦ for the OUO moiety in the UO2F2 molecule computed at the same level of theory.
Bonding analysis revealed the presence of one σ and two π bonding orbitals in the U-S bond
of the S-U-O fragment [24]. A comparative computational study with [U(O)(S)(NR2)3]−

(R = SiMe3) [19], the only compound containing the {SUO}2+ moiety determined by X-ray
diffraction, showed that the U-O and U-S bond lengths in [U(O)(S)F2] are shorter and
exhibit higher vibrational frequencies, indicative of stronger U–O and U–S bonds. QTAIM
analysis indicated a decrease in covalency from U–O to U–S bonds in [U(O)(S)F2] and that
the U=E bonds in [U(O)(S)(NR2)3]− should be less covalent than those in [U(O)(S)F2] [24].

There is still no experimental evidence of a heavier chalcogenido analogue of the
uranyl ion, {E=U=E}2+. Indeed, the single report featuring the {US2}2+ ion is from a gas-
phase study, where U2+ ions produced by laser ionization of uranium metal reacted with
COS to produce several mono- and dipositive uranium sulfide species in a FTICR mass
spectrometer [25]. Sequential abstraction of two sulfur atoms from COS by U2+ resulted in
a {US2}2+ species; however, DFT calculations [25], later confirmed at the CASPT2 level [26],
indicated that, in contrast to uranyl, linear thiouranyl is some 171 kJ mol−1 higher in energy
than the ground-state, side-on η2-S2 triangular isomer [25,26].

It should be noted that the triangular US2 unit was also observed by Hayton and co-
workers in the solid-state structure of the U(IV) complex [K(18-crown-6][U(η2-S2)(NR2)3] [27].
This complex was possibly the result of an attempt to introduce a second terminal sulfido
ligand into the uranium(IV) monosulfide complex [K(18-crown-6][U(S)(NR2)3], by reacting
it with S8; instead, a {S2}2− ligand was generated. An analogous complex, [K(18-crown-
6][U(η2-(SSe)(NR2)3], was isolated when the reaction was performed with the U(IV) mono-
sulfido and elemental selenium [27]. For the bare {SUO}2+ moiety, the DFT ground-state
structure was concordant with a linear {OUS}2+ species [25], as observed by Hayton et al.
in [Cp*2Co][U(O)(S)(NR2)3] [19].

A computational investigation of linear {E=U=E}2+ (E = O, S, Se, Te) complexes indi-
cated an increased bond order and reduced charge separation on the descending group.
Bending of the S-U-S angle in [US2(H2O)5]2+ was also examined, suggesting an increased
stability of the cis structure [28]. The higher energy of the thiouranyl, linear isomer of
{US2}2+ is in agreement with Denning’s prediction that the uranyl-type moiety would be
limited to the first short period of elements, including only carbon, nitrogen, and oxygen [8].
The question remains: Is it possible to isolate isoelectronic {E=U=E}2+ uranyl analogues
with heavier chalcogenides if the appropriate ancillary ligands and experimental conditions
are chosen? Or can uranium bis(imido) complexes (see next section) be used as precursors,
for instance, in reactions with favorable S-donor COS?

3. Uranium Pnictogenido Complexes

The synthesis and reactivity of uranium terminal imido complexes, with the oxidation
state of the metal varying from +3 to +6, have been extensively studied for decades and
summarized in several reviews [4,5,7]. The imido ligand {NR}2− is isoelectronic with the
oxido ligand O2- and U-NR multiple bonds can serve as models for uranium-oxido multiple
bonds, particularly uranyl compounds. The softer character of the ligand in conjunction
with the alkyl or aryl substituents make imido {RN=U=E}2+ (E = NR, O) analogues of
uranyl more soluble in organic solvents, allowing the non-aqueous chemistry of these
compounds to be developed and significantly increasing the number of uranyl analogue
complexes (see below). Complexes with nitrido ligands, N3-, in a trans-E=U=E framework
are rare.
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Uranium-ligand multiple-bond complexes with heavy pnictogen elements are less
developed but they have emerged in the last 8 years, with the isolation of a few ura-
nium(IV) phosphinidene {PR}2−, phosphide P3−, arsinidene {AsR}2−, and arsenide As3−

compounds [6,29]. However, analogues with uranium in high oxidation states, including
complexes with cores isoelectronic to uranyl, have not yet been isolated. An attempt to
identify P=U=P in an argon matrix was inconclusive, and calculations on the identified
U(IV) molecule suggested a triplet ground state with a short U–P bond length [30]. Sim-
ilar to heavy chalcogenido complexes, {E=U=E}n+, the heavy pnictogenido analogues of
uranyl are attractive targets for studying the electronic structure and covalency of uranium
bonding to soft donors, and due to the recent advances, it seems a plausible goal.

3.1. Uranium Bis(imido) Complexes

The first example of a uranium(VI) bis(imido) complex was described in 1992 by
Burns and co-workers [31]. [Cp*2U(NPh)2] was prepared as an analogue of the stable
uranyl ion, {UO2}2+; however, this molecular compound displayed a nonlinear geometry
for the two organoimido groups (N-U-N 98.7 (4)◦), likely due to steric constraints imposed
by the Cp* ligands. Since then, several uranium(VI) cis-bis(imido) complexes have been
reported [7], but only in 2005 were the first examples of uranium(VI) bis(imido) complexes
with a linear {RN=U=NR}2+ bonding mode reported [32]. Hayton et al. demonstrated that
trans-[U(NR)2I2(thf)n] can be easily prepared by a one-step reaction from either uranium
metal or [UI3(thf)4] with iodine and alkyl- or arylamines (Scheme 2) [32,33]. Uranium(VI)
bis(imido) complexes [U(NR)2I2(thf)n] (n = 2, 3) exhibit well-defined octahedral or pen-
tagonal bipyramidal geometries about the uranium centers. Both geometries are common
for uranyl-containing complexes. The U=N bonds are shorter (1.840(4)-1.89(1) Å) when
compared to cis-bis(imido) uranium species (1.926(8)-1.975(3) Å) [6] and show an almost
linear RN=U=NR arrangement. U-N-C angles are close to 180◦, in agreement with a sp.
hybridization at nitrogen and the presence of a uranium-nitrogen triple bond. Largely, the
geometry and metrical parameters of the {NUN}2+ fragment in the uranium trans-bis(imido)
complexes resemble those of the uranyl ion. DFT calculations were used to analyze de
U-Nimido bond in these complexes, and in the case of [U(NtBu)2I2(thf)2], the compound
[U(NMe)2I2(thf)2] was used as the model [33]. Computations showed that six orbitals
are involved in the uranium-nitrogen bonding, indicating the presence of two uranium–
nitrogen triple bonds as in the {UO2}2+ moiety. The most relevant uranium atomic orbitals
involved in U-N bonding are 5fσ, 5fπ, 6dπ, and 6dσ, as in the case of the uranyl(VI) ion,
with significant contribution of 5f orbitals. For instance, the two highest-energy U–N π

bonding orbitals, HOMO-6 and HOMO-7, have 32% and 27% f character, respectively.
Remarkably, the bonding in the RN=U=NR fragment is more covalent. The cis isomer of
[U(NMe)2I2(thf)2] was also calculated and revealed to be 61.5 kJ mol−1 higher in energy
than the trans isomer. Structural parameters of reported uranium(VI) trans-bis(imido)
complexes are summarized in Table 1.

The thf ligands in [U(NR)2I2(thf)2] (R = tBu, Ph) are easily displaced by a variety of neutral
donors [33], including soft Lewis bases such as Pme3 and 1,2-bis(dimethylphosphano)ethane
(dmpe) [33,36]. This contrasts with the {UO2}2+ ion, which does not coordinate phosphane
donor ligands, demonstrating that uranyl is a harder Lewis acid. Similar to their thf adduct
parent compounds, the uranium(VI) bis(imido) complexes [U(NR)I2(L)n] (R = tBu, Ph;
n = 2, 1; L = PMe3, py, OPPh3, PhNH2, dmpe) revealed nearly linear N-U-N angles and
short U-N bond lengths (Table 1).

Later, Boncella and co-workers demonstrated that UCl4 is also a suitable precursor
for generating U(VI) trans-bis(imido) complexes when treated with alkali metal amide
salts and iodine or PhEEPh (E = S, Se, Te) in the presence of a neutral donor [37,44].
All of the routes to prepare the bis(imido) complexes of general formula [U(NR)2X2(L)n]
(Scheme 2) involved oxidation of in situ generated uranium amino/amido/imido com-
plexes. Variations in the R substituent include the use of alkyl and aryl groups with different
electron-donating/withdrawing abilities.
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Boncella and co-workers also demonstrated that the iodide ligands in trans-bis(imido)
complexes [U(NR)I2(L)n] can be efficiently replaced by anionic donors (OTf, Cp, Cp*, pyrrolide,
chalcogenates, dipyrrolylmethane), increasing the library of uranium(VI) bis(imido) com-
plexes [33,36,38,41]. However, depending on stereochemical properties of the anionic
ligand and the number of replaced iodides, the generated uranium(VI) species exhibit dif-
ferent N-U-N bending angles, varying from U(VI) trans-bis(imidos) to cis-bis(imidos) [41].
For example, the reaction of [U(NtBu)2I2(dmpe)] with 2 equiv. of NaCp generated the
bis(imido) [Cp2U(NtBu)2(dmpe)] with a N-U-N angle of 154.4(2)◦, somewhat away from
linearity, which may reduce U–N orbital overlap and consequently cause longer U–Nimido
bonds as observed [41].

Unexpectedly, iodide metathesis of [U(NtBu)2I2(tBu2bpy)] with NaCp* generated the
reduced U(V) compound [U(NtBu)2I(tBu2bpy)]2, the first example of a complex containing
the trans-{U(NR)2}+ ion [40]. The dimeric bis(imido) uranium(V) complex acts as a two-
electron reducing agent with I2/AgX (X = Cl, Br), PhEEPh (E = S, Se, Te), and chalcogen (O,
S, Se) atom transfer reagents [39]. Adding I2 and AgX was conducive to the formation of
uranium(VI) dihalide complexes with general formula [U(NtBu)2(I)(X)(tBu2bpy)] (X = I,
Cl, Br). The reductive cleavage of PhEEPh (E = Se, Te) by the U(V) complex suggested
that an equilibrium between the unsymmetrical complex [U(NtBu)2(I)(EPh)(tBu2bpy)] and
symmetrical complexes [U(NtBu)2(X)2(tBu2bpy)] and [U(NtBu)2(EPh)2(tBu2bpy)] seems to
exist in solution, indicating that both U-I and U-E bonds possess a labile nature in these
uranium(VI) trans-bis(imido) complexes.

Boncella and co-workers demonstrated that uranium(V) trans-bis(imidos) [U(NAriPr2)
X(L)n] (X = Cl, Br, I, n = 2, L = Me2bipy, tBu2bipy; n = 3, L = OPPh3), analogues of the
{UO2}+ species, can be directly prepared via in situ generation of uranium(IV) bis(imido)
compounds from UCl4, lithium anilide, and neutral Lewis bases, followed by halide
abstraction from methylene halides with metal oxidation (Scheme 3) [52]. Complex
[U(NAriPr2)2Cl(Me2bipy)2] can be alternatively synthesized from the reaction of the ura-
nium(IV) mono-imido [U(NAriPr2)Cl2(Me2bipy)2] with two equivalents of lithium 2,6-
diisopropylphenylamide and dichloromethane [37].
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Table 1. Structural parameters of trans-[U(NR)2]2+ complexes.

Compound Average U-N
Bond Lengths (Å)

N-U-N
Angle (Deg)

Average U-N-C
Angle (Deg) Ref.

[U(NtBu)2I2(thf)2] 1.844(8) 175.4(2) 168.3(9) [32,33]
[U(NtBu)2I2(thf)3] 1.855(2) 175.6(1) 166.3(2) [33]
[U(NtBu)2I2(py)2] 1.835(2) 180 174.5(2) [33]
[U(NPh)2I2(thf)3] 1.862(4) 177.4(9) 177.0(9) [32,33]

[U(AriPr2)2I2(THF)3] 1.887(4) 169.3(1) 175.6(16) [33]
[U(NarCF3)2I2(thf)3] 1.88(3) 176.8(4) 168.6(14) [33]

[U(NtBu)2I2(OPPh3)2] 1.840(4) 177.8(2) 170.9(8) [33]
[U(NtBu)(NPh)I2(OPPh3)2] 1.832(8) 177.4(4) 170.5(8) [34]

1.841(8) 172.9(9)
[U(Nmes)2I2(OPPh3)2] 1.867(5) 180.0(5) 175.4(3) [34]
[U(NtBu)2Cl2(OPPh3)2] 1.848(4) 180.0(2). 170.0(4) [35]
[U(NtBu)2Br2(OPPh3)2] 1.828(9) 180.0(3) 167.0(8) [35]

[U(NtBu)2{N(Me)(SO2Ar’)}2(Me2bpy)] 1.843(29) 167.0(3) 166.8(12) [35]
[U(NtBu)2(η1-Me2-C4H2N)2(OPPh3)2] 1.842(3) 171.4(2) 156.4(3) [36]

[U(NtBu)2(dpm)(thf)2] 1.856(6) 172.8(3) 162(5) [36]
[U(NtBu)2(dpmMes)(dmpe)] 1.856(18) 165.9(6) 170.0(85) [36]

[U(NtBu)2Br2(Me2bpy)] 1.838(5) 169.8(1) 171.6(36) [35]
[U(NtBu)2Cl(µ-Cl)(Me2bpy)]2 1.834(18) 172.3(3) 164.1(37) [35]

[U(Nmes)2I2(tBu2bpy)] 1.867(3) 173.7(2) 171.7(3) [37]
[U(NariPr2)2I2(tBu2bpy)] 1.868(4) 168.4(1) 176.4(23) [37]

[U(NtBu)2(O-2-tBuC6H4)2(OPPh3)2] 1.870(6) 180.0 180 [38]
[U(NtBu)2(SPh)2(OPPh3)2] 1.840(7) 180 170.3(6) [38]
[U(NtBu)2(SePh)2(OPPh3)2] 1.861(6) 180 169.4(4) [38]

[U(NtBu)2I2(Me2bpy)] 1.816(17) 171.2(5) 173(2) [38]
[U(NtBu)2(SPh)2(tBu2bpy)] 1.840(8) 178.2(4) 172.25(21) [38]
[U(NtBu)2(SePh)2(Me2bpy)] 1.844(5) 175.9(2) 174.6(31) [38]
[U(NtBu)2(TePh)2(tBu2bpy)] 1.828(12) 177.4(3) 173(5) [38]
[U(NtBu)2(Cl)(I)(tBu2bpy)] 1.822(6) 175.2(3) 171(7) [39]

[U(NtBu)2(SePh)(I)(tBu2bpy)] 1.823(12) 174.7(4) 174.7(16) [39]
[(U(NtBu)2(I)(tBu2bpy))2(µ-O)] 1.848(24) 165.6(6) 173(6) [39,40]

[U(NtBu)2(I)(tBu2bpy)]2(µ-η2:η2-Se4)] 1.833(8) 172.4(2) 173.9(43) [39]
[Ucp2(NtBu)2(dmpe)] 1.936(6) 154.4(2) 166.8(3) [41]
[Ucp(NtBu)2I(dmpe)] 1.886(8) 161.1(2) 166.1(26) [41]

[Li(thf)]2[U(NtBu)2(HNtBu)4] 1.915(5) 180 164.8(4) [42]
[U(NR)2Cl4][PPh4]2 (R = tBu, Ph) 1.816(8) 180.0(5) 163.9(7) [43]

Ph: 1.842(8) 180.0(1) 158.7(7)
[U(Nme)2Cl4][Net4]2 1.828(6) 180.0(5) 155.6(5) [43]
[U(NtBu)2Br4][Net4]2 1.825(4) 180.0 169.1(3) [43]
[U(NtBu)2(SPh)2(py)2] 1.862(2) 180.0 172.9(1) [43]

[U(NariPr2)2(SePh)2(py)2] 1.886(1) 180.0(1) 164.6(1) [44]
[U(NtBu)2(TePh)2(py)2] 1.858(3) 180.0(1) 174.4(2) [44]

[U2(Nad)4(OSi(OtBu)3)4] 1.89(5) (U-Nterm.) 171.4(27) 167.5(8) [45]
[U(Nad)2{CH2(Ph)N3(Ad)-κ2N1,3}] 1.907(14) 173.4(3) 162.6(8) [46]

[U(MesPDI)I(Nmes)3] 1.992(5) 166.6(2) 170.8(3) [47]
2.024(5) (eq) 180.0(1)

[Ucp*(Ntol)2(MesPDIMe)] 1.950(7) 155.9(3) 167.8(5) [48]
[Ucp*(Ntol)2(MesPDIMe)][SbF6] 1.927(5) 155.4(2) 173.1(14) [48]

[Ucp*(Ntol)2(tBu-MesPDIMe)] 1.942(10) 155.5(3) 168.8(8) [48]
[Ucp*(Ntol)2(tBu-MesPDIMe)][BPh4] 1.950(10) 153.1(2) 169.6(18) [48]
[U{(tBu2ArO)2Me2-cyclam}(NPh)2] 1.901(8) 172.95(8) 154.9(2) [49]

[U{(tBu2ArO)2Me2-cyclam}(NPh)(Ntol)] 1.909(6) 173.7(4) 152.9(7) [50]
1.911(7) 152.1(7)

[K-(crypt)][U{N(SiMe3)2}3(NPh)2] 1.932(11) 178.8(3) 163.8(1.8) [51]
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Scheme 3. Synthesis of U(V) trans-bis(imido) complexes [U(NAr)2X(L)n] (adapted from ref. [52]).

The uranium(V) bis(imido) complexes exhibit nearly linear N−U−N angles (166.02(16)-
174.9(2)◦) and the U−Nimido bond lengths are 0.15 Å longer than those of their U(VI) ana-
logues; however, larger than the ionic radius difference between U(VI) and U(V) (0.03 Å).
Solution-phase redox studies of [U(NAriPr2)2Cl(Me2bipy)2] revealed a quasi-reversible
oxidation feature at −1.06 V, which was assigned to the U(V)/U(VI) couple. This value
is much more negative than those observed for the uranyl ion {UO2}2+(aq.) (−0.35 V vs.
Fc/Fc+), suggesting that the uranium bis(imido) complexes are more electron rich than their
uranyl analogues, and confirming the strong π-donating character of the imido ligands in
this system [52]. Structural parameters of reported uranium(V) trans-bis(imido) complexes
are summarized in Table 2.

Surprisingly, Gaunt and co-workers reacted [NpCl4(dme)2] with only two equivalents
of LiNHAriPr2 and 1 equiv of tBu2bipy afforded the first Np(V) trans-bis(imido) complex
[U(NAriPr2)2(tBu2bipy)2Cl], as determined by X-ray crystallography [55]. These reaction condi-
tions and reagents stoichiometry only afford U(IV) mono(imido) products in uranium chemistry.
The higher stability of Np(V) compared to U(V) could be a reason for this observation.

Boncella and co-workers also demonstrated that uranium bis(imido) tetrahalide anions
[U(NR)2X4]2− (X = Cl, Br; R = tBu, Ph) can be prepared from the reaction of [U(NR)2I2(thf)n]
(n = 2 and R = tBu, Ph; n = 3 and R = Me) with an excess of PPh4Cl, NEt4Cl, or NEt4Br [43].
Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent
hybrid density functional theory (DFT and TDDFT) were used to probe U−Cl bonding
interactions in [PPh4]2[U(NtBu)2Cl4] and [PPh4]2[UO2Cl4]. The results indicated that the
total amount of Cl 3p character mixed with the U 5f orbitals was approximately 7−10% per
U−Cl bond for both compounds, showing that, moving from oxido to imido, the effect on
orbital mixing is reduced. Compared with the mixing character found for the U-Cl bonds
in [UOCl5]− (23.3%) [56], the value is smaller, which evidences that the oxido and imido
ligands enhance bonding in the axial positions and limit uranium-ligand orbital mixing in
the equatorial plane.

Following the impressive number of uranium trans-bis(imido) complexes reported by
Boncella and co-workers, other examples of U(VI) trans-bis(imido) complexes in different
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ligand environments have been prepared by other groups in the last 10 years, which
involved, in most of the cases, the reduction of organic azides or diazenes.

Mazzanti and co-workers reported that treating the uranium(III) dimer [U{OSi(OtBu)2}2{µ-
OSi(OtBu)3]2 with the electron-donating adamantyl azide (N3Ad) generated, among other species,
the dinuclear U(VI) bis(imido) complex [U2(NAd)4{OSi(OtBu)3}4] (Scheme 4), which comprises
nearly linear {U(NAd)2}2+ motifs (173.6(5)◦ and 169.2(5)◦) with short U=N bond distances [45].
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Scheme 4. Synthesis of U(VI) trans-bis(imido) complexes supported by siloxide ligands (adapted
with permission from ref. [45]. Copyright 2022 American Chemical Society).

By reacting the uranium(IV) complex [U(CH2Ph)4] with 4 equiv. of N3Ad, Bart and
co-workers obtained the U(VI) trans-bis(imido) complex [U(NAd)2{CH2(Ph)NNN(Ad)-
κ2-N1,3}2(thf)], along with formation of bibenzyl and release of N2 (Scheme 5) [46]. When
they performed the same reaction with 4 equiv. of mesityl azide (N3Mes), the result was
the insertion product tetrakis(triazenido)uranium(IV) complex [U{CH2(Ph)NNN(Mes)-κ2-
N1,2}{CH2(Ph)NNN(Mes)-κ2-N1,3}3].
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Scheme 5. Synthesis of a U(VI) trans-bis(imido) complex via reduction of organic azide by a U(IV)
complex (adapted from ref. [46]).

In 2015, Maria and co-workers reported the first uranium(VI) trans-bis(imido) com-
pound supported by a tetraazamacrocycle functionalized with two aryloxide arms [49]. The
reaction of 2 equiv. of the uranium(III) complex [U(κ6-{(tBu2ArO)2Me2-cyclam})I] with azoben-
zene was conducive to the four-electron reduction of the N=N bonds, affording the U(VI)
bis(imido) complex [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)2] and the U(IV) complex [U(κ6-
{(tBu2ArO)2Me2-cyclam})I]I (Scheme 6). The {(tBu2ArO)2Me2-cyclam}2- ligand flexibility and
the weak interactions of the amines with the metal center allow the non-coordination of
two nitrogen atoms and accommodation of the imido ligands in a trans configuration. The
geometrical parameters of the {RN=U=NR}2+ moiety (N-U-N 173.0 (1)◦; Av. U-Nimido 1.901(8)
Å) are close to those in the uranyl analogue complex [U(NPh)2I2(thf)3] [33]. A similar reaction
was made with 4-methylazobenzene (TolNNPh), which led to the asymmetric trans-bis(imido)
[U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)(NTol)], with identical geometrical parameters [50].
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The four-electron reductive cleavage of azobenzene was first achieved by Burns
and co-workers by using 2 equiv. of the U(III) complex [(Cp*)2UICl(NaCl)] to yield a
mixture of the U(VI) cis-bis(imido) [(Cp*)2U(NPh)2] and U(IV) species [57]. The pro-
posed mechanism involves 2-electron transfer processes and the comproportionation of
a U(V) intermediate, although the presence of a U(II) intermediate cannot be completely
ruled out. In fact, in 2021, an experimental work combined with computational stud-
ies performed by Mazzanti and co-workers [51] showed that the U(II) complex [K(2.2.2-
cryptand)][U{N(SiMe3)2}3], previously reported by the Evans group [58], was conducive
to the four-electron reduction of azobenzene, with the formation of a trans-bis(imido) an-
ionic complex [K(2.2.2-cryptand)][U(NPh)2{N(SiMe3)2}3] (Scheme 7) with an almost linear
N-U-N angle 178.8(3)◦. The U-N-C angles (av. 163.8(23)◦) deviate from linearity as found
in other U(VI) bis(imido) complexes, suggesting partial localization of the π lone pair on
the imido nitrogen, which was supported by bonding analysis. A similar reaction was
performed with the masked U(II) complex [K(2.2.2-cryptand)]2[(U{N(SiMe3)2}3)2(µ-O)] [51]
and azobenzene, which was conducive to the formation of the same U(VI) bis(imido)
complex. In both reactions, it was possible to isolate the intermediate uranium(IV) hy-
drazido [K(2.2.2-cryptand)][U(N2Ph2){N(SiMe3)2}3], in agreement with the DFT calculated
mechanism for the reactions [51].
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Table 2. Structural parameters of trans-[U(NR)2]+ complexes.

Compound Average U-N
Bond Lengths (Å)

N-U-N
Angle (Deg)

Average U-N-C Angle
(Deg) Ref.

[{U(µ-NtBu)(NtBu)I(tBu2bpy)}2] 1.898(5) 170.1(2) 168(2) [40]
2.072(5) 130.2(4)

[U(NAriPr2)2Cl(tBubpy)2] 1.978(6) 166.0(2) 168(4) [52]
[U(NAriPr2)2Br(tBubpy)2] 1.974(12) 165.9(2) 167(4) [52]
[U(NAriPr2)2I(tBubpy)2] 1.958(22) 174.9(2)◦ 165.9(8) [52]
[U(NAriPr2)2Cl(OPPh3)3] 1.972(8) 177.0(2) 178.2(8) [52]

[U(MesPDIMe)I(NMes)2(thf)] 2.012(16) 167.0(4) 175(4) [47]
[UCp*(MesPDIMe)(NPh)2] 2.015(16) 154.2(2) 169.3(14) [53]

[UCp*(MesPDIMe)](NPh)(NTol)] 2.012(8) 154.8(3) 168.4(7) [54]
2.005(7) 175.4(6)

As seen above, most of the uranium bis(imido) complexes were obtained by redox
processes involving the metal center and an oxidant. Bart and co-workers adopted the
strategy of using a redox-active ligand with the ability to store and release electrons. The
pyridine(diamine) ligand MesPDIMe (2,6-(2,4,6-Me3-C6H2-N=CMe)2C5H3N) in the structure of
[UCp*(MesPDIMe)(thf)] is consistent with a trianionic ligand {MesPDIMe}3−, and when the U(IV)
complex reacts with diazenes, the 4-electron reduction of the strong N=N bonds occurs, af-
fording the uranium(V) trans-bis(imido) complexes [UCp*(MesPDIMe)(NPh)(NR)] (R = Ph, Tol)
(Scheme 8) supported by a neutral {MesPDIMe}0 ligand [53,54]. The phenyl imido compound
can also be obtained by the reduction of phenyl azide [48]. The N-U-N angles (av. 154.5(5)◦)
are highly deviated from linearity, most likely due to steric pressure imposed by the Cp* ring.
In contrast, when the U(IV) complex [UCp*(MesPDIMe)(thf)] was treated with TolN=NTol, the
electronic structure changes and a U(VI) trans-bis(imido), [UCp*(MesPDIMe)(NTol)2], bearing
a monoanionic pyridine(diimine) radical ligand {MesPDIMe}•−, is generated [54]. A similar
reaction with the tertbutyl-substituted U(IV) analogue [UCp*(tBu-MesPDIMe)(thf)] also led
to a U(VI) trans-bis(imido) (Scheme 8). These U(VI) bis(imido) complexes display average
N-U-N angles of 155.7(5)◦, which are smaller than the O-U-O angle observed in uranyl(VI)
compounds [UCp*O2(R-MesPDIMe)] (R = H 168.3(2)◦, tBu 167.4(4)◦) [59].
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Oxidation of the metal center in [UCp*(MesPDIMe)(NPh)2] and of the radical lig-
and in the U(VI) complex [UCp*(R-MesPDIMe)(NTol)2] (R = H, tBu) with AgSbF6 gen-
erated the cationic U(VI) bis(imido) complexes [UCp*(MesPDIMe)(NPh)2][SbF6] and
[UCp*(R-MesPDIMe)(NTol)2][SbF6], respectively [48].

In 2014, the Bart group reported the synthesis of the first uranium(VI) tris(imido) com-
plexes also supported by the redox-active framework MesPDIMe [47]. The imido complexes,
[U(MesPDIMe)(NMes)3] and [U(MesPDIMe)(NAriPr2)3], were prepared by treating the ura-
nium(IV) dimer [U(MesPDIMe)(thf)]2, supported by MesPDIMe tetraanions, with 6 equiv. of
N3Mes or N3AriPr2, respectively (Scheme 9) [47,60]. During the electron transfer reactions,
the eight electrons stored in both {MesPDIMe}4- ligands and the four electrons stored in the
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uranium(IV) act as potent reductants for the organic azides. From the reaction of the U(IV)
dimer [U(MesPDIMe)I]2 and 4 equiv. of N3Mes, the U(V) bis(imido) [U(MesPDIMe)I(NMes)2]
supported by a {MesPDIMe}0 ligand was isolated [47]. The molecular structures of the U(VI)
tris(imido) complexes exhibit equatorial U-Nimido bond lengths slightly longer (av. 2.023(6)
Å) than the axial U–Nimido bonds (av. 1.975(20) Å). These observations were suggested
by the authors to result from ITI, which was supported by theoretical calculations. The
trans imidos have small N-U-N angles (167.0(4)◦, 168.8(4)◦) when compared with those in
[U(NtBu)2I2(thf)2] and [U(NPh)2I2(THF)3] (Table 1), and the bond lengths are longer than
those in the bis(imido) complexes, which can be explained by the equatorial imido ligand
competing for uranium orbitals with neighboring axial imidos. DFT calculations and NBO
analysis indicated a triple-bond character for the trans-U–Nimido bond, composed of two
covalent bonds of predominantly U 5f, U 6d, and N 2p orbitals. Computational studies
were also performed to compare the uranium tris(imidos) electronic structures and bonding
with the hypothetical tris(oxido) analogue [UO3(MesPDIMe)], revealing less covalent-bond
character in the U–N multiple bonds than in the U–oxido bonds in UO3, in contrast to that
observed in {UO2}2+ versus {U(NR)2}2+ complexes.
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from refs. [47,60]).

3.2. Uranium Oxido—Imido Complexes

Considering the thermodynamic and kinetic stability of U-O multiple bonds, Spencer
et al. expected that the reaction of the U(VI) trans-bis(imido) [U(NtBu)2I2(OPPh3)2] with aryl
isocyanates could involve U=O bond formation and yield oxido imido species. Instead, an
imido exchange reaction occurred between alkyl-imido and aryl-imido with the formation
of mixed bis(imido) complexes [U(NtBu)(NAr)I2(OPPh3)2] (Ar = Ph, Mes) (Scheme 10) [34].
A second equivalent of isocyanate led to the formation of [U(NtBu)(NAr)I2(OPPh3)2]. DFT
calculations and 15N-labelling studies showed that the reaction involves [2 + 2] cycloaddition
of the aryl isocyanate C=N bond across the U=N bond; for the formation of the oxido-
imido species [U(NtBu)(O)I2(OPPh3)2], the calculated [2 + 2] C=O cycloaddition involved
the formation of a higher-energy N,O-bound ureate intermediate. Oxido-imido complex
[U(NtBu)(O)I2(thf)2] can be prepared by selective hydrolysis of one of the imido ligands
in [U(NtBu)2I2(thf)2] with an equimolar quantity of B(C6F5)3·H2O (Scheme 10) [61]. The
triphenylphosphane oxide adduct [U(NtBu)(O)I2(OPPh3)2] was obtained by replacement of
the thf ligand in toluene. X-ray diffraction analysis complemented with DFT calculations
clearly showed that this complex is a uranyl analogue. The U-Ooxido and U-Nimido bond
lengths are 1.781(4) Å and 1.823(4) Å, respectively, and the Nimido-U-Ooxido angle is 178.6(2)◦.
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from refs. [34,61]).

Similar to U-O bonds in {UO2}2+ ion and U-N bonds in the U(VI) bis(imido) complex
[U(NMe)2I2(thf)2], DFT calculations were consistent with a total of four π bonds and two
σ bonds in the trans-{U(NR)(O)}2+ fragment [61]. In this complex, the uranium 6p orbital
was found to participate in one σ bond with a contribution of 6.5%. The two π bonding
orbitals involved in the U-O bond have a larger component of d character, while the U-N
bond showed larger uranium f orbital participation. Mulliken population analysis was
consistent with an effective total charge of +1.60 for uranium in [U(NtBu)(O)I2(OPPh3)2],
which is greater than the one calculated for [U(NMe)2I2(thf)2] (+1.50) [33], suggesting that
the U-ligand multiple bonding in {U(NR)(O)}2+ is less covalent than in the U(VI) bis(imido).

Maria and co-workers demonstrated that one of the imido ligands of the uranium(VI) trans-
bis(imido) complex [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)2] reacts with excess CO2 to generate
the uranium(VI) trans-oxido-imido complex [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)(O)], with the
release of phenyl isocyanate (Scheme 11) [50]. DFT studies indicated that the reaction proceeds
via endergonic formation of a [2 + 2] cycloaddition intermediate, with subsequent exergonic
extrusion of phenyl isocyanate and the formation of the U(VI) oxido-imido. Similarly, the
reaction of [U(κ4-{({(tBu2ArO)2Me2-cyclam})(NPh)(NTol)] with CO2 gave an equimolar mixture
of oxido-imido complexes, [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)(O)] and [U(κ4-{(tBu2ArO)2Me2-
cyclam})(NTol)(O)]. These are rare examples of activation and cleavage of CO2 mediated by
uranium(VI) imidos.

Inorganics 2022, 10, x FOR PEER REVIEW 13 of 27 
 

 

hydrolysis of one of the imido ligands in [U(NtBu)2I2(thf)2] with an equimolar quantity 

of B(C6F5)3∙H2O (Scheme 10) [61]. The triphenylphosphane oxide adduct 

[U(NtBu)(O)I2(OPPh3)2] was obtained by replacement of the thf ligand in toluene. X-ray 

diffraction analysis complemented with DFT calculations clearly showed that this com-

plex is a uranyl analogue. The U-Ooxido and U-Nimido bond lengths are 1.781(4) Å  and 

1.823(4) Å , respectively, and the Nimido-U-Ooxido angle is 178.6(2)°. 

 

Scheme 10. Reactivity of U-imido bonds of [U(NtBu)2]2+ with group transfer reagents (adapted 

from refs. [34,61]). 

Similar to U-O bonds in {UO2}2+ ion and U-N bonds in the U(VI) bis(imido) complex 

[U(NMe)2I2(thf)2], DFT calculations were consistent with a total of four π bonds and two 

σ bonds in the trans-{U(NR)(O)}2+ fragment [61]. In this complex, the uranium 6p orbital 

was found to participate in one σ bond with a contribution of 6.5%. The two π bonding 

orbitals involved in the U-O bond have a larger component of d character, while the U-

N bond showed larger uranium f orbital participation. Mulliken population analysis was 

consistent with an effective total charge of +1.60 for uranium in [U(NtBu)(O)I2(OPPh3)2], 

which is greater than the one calculated for [U(NMe)2I2(thf)2] (+1.50) [33], suggesting that 

the U-ligand multiple bonding in {U(NR)(O)}2+ is less covalent than in the U(VI) 

bis(imido). 

Maria and co-workers demonstrated that one of the imido ligands of the urani-

um(VI) trans-bis(imido) complex [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)2] reacts with excess 

CO2 to generate the uranium(VI) trans-oxido-imido complex [U(κ4-{(tBu2ArO)2Me2-

cyclam})(NPh)(O)], with the release of phenyl isocyanate (Scheme 11) [50]. DFT studies 

indicated that the reaction proceeds via endergonic formation of a [2 + 2] cycloaddition 

intermediate, with subsequent exergonic extrusion of phenyl isocyanate and the for-

mation of the U(VI) oxido-imido. Similarly, the reaction of [U(κ4-{({(tBu2ArO)2Me2-

cyclam})(NPh)(NTol)] with CO2 gave an equimolar mixture of oxido-imido complexes, 

[U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)(O)] and [U(κ4-{(tBu2ArO)2Me2-cyclam})(NTol)(O)]. 

These are rare examples of activation and cleavage of CO2 mediated by uranium(VI) im-

idos. 

 

Scheme 11. Reactivity of [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)2] with CO2 (adapted from ref. [50] 

with permission from the Royal Society of Chemistry). 
Scheme 11. Reactivity of [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)2] with CO2 (adapted from ref. [50]
with permission from the Royal Society of Chemistry).

This type of reaction was previously observed with U(V) and U(VI) mono-imido com-
plexes to generate uranium(IV/V) mono-oxido complexes [62]. The molecular structure de-
termined for [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)(O)] exhibits a nearly linear {PhN=U=O}2+

fragment (Ooxido–U–Nimido 176.4(3)◦) [50], which is comparable with the Ooxido-U-Ooxido bond
angle observed for the isoelectronic uranyl(VI) complex, [UO2(κ4-{(tBu2ArO)2Me2-cyclam})]
(177.6(3)◦) [61] and slightly less bent than the NR-U-NR angle in [U(κ4-{(tBu2ArO)2Me2-
cyclam})(NPh)2] (173.0(1)◦). The U(VI) oxido-imido complex displays a slightly shorter
U−Nimido bond distance (1.879(3) Å) than that of U(VI) trans-bis(imido) (av. 1.901(8) Å), and
also the linearity of U−N−Cipso (154.3(3)◦, 2: 156.9(3)◦) increased from the bis(imido) to the
oxo-imido complex, likely resulting from a more pronounced ITI in the oxido-imido complex.
The U-Ooxido bond length in the bis(phenolate) cyclam oxido-imido metal complex distance
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of 1.787(3) Å is 0.012 Å longer than the U-Ooxido bonds in the analogous uranyl complex
[U(κ4-{(tBu2ArO)2Me2-cyclam})(O)2] [63].

Natural bond orbital (NBO) analysis was used to evaluate covalency in {O=U=O}2+

and {E=U=NR}2+ (E = O and NR) fragments of the U(VI) bis(aryloxide) cyclam complexes,
through the NBO coefficient λ, which is defined by the ratio of the energetic stabilization
(H2

UX), which is directly proportional to the overlap integral, and the energy separation of
the interacting natural hybrid orbitals (NHOs):

λ =
H2

UX
εU − εX

The mixing parameter λ values indicated greater orbital overlap for U−Ooxido
versus U−Nimido bonds and more U=NR covalency in the trans-oxido-imido complex
[U(κ4-{(tBu2ArO)2Me2-cyclam})(O)(NPh)] versus trans-bis(imido) [U(κ4-{(tBu2ArO)2Me2-
cyclam})(NPh)2] [63]. However, the U−Nimido covalency in the {PhN=U=O}2+ complex
seems to be driven primarily by quasi-degeneracy of the orbitals involved, whereas
that in {PhN=U=NPh}2+ reflects enhanced orbital overlap. The NBO analysis identified
for each axial ligand one σ and two π interactions, suggesting a triple-bond character
for the U−Nimido and U−Ooxido bonds. The σ NBO and π NBO compositions of the
uranium−nitrogen bonds in terms of 5f and 6d contribution are almost identical in both
U(VI) imido complexes. The most striking difference is that the U-N σ bonds in the
{PhN=U=NPh}2+ complex, composed of 20% uranium, have 6% more of a 5f orbital
contribution than in the {PhN=U=O}2+ complex.

The synthesis of 15N labeled U(VI) bis(imido) and oxido-imido complexes allowed
researchers to, in addition, characterize [U(κ4-{(tBu2ArO)2Me2-cyclam})(NPh)2] and [U(κ4-
{(tBu2ArO)2Me2-cyclam})(NPh)(O)] by 15N NMR spectroscopy [63]. The 15N chemical
shifts observed of 302.4 and 256.7 ppm (ref. CH3NO2) for the uranium bis(imido) and
oxido-imido complex, respectively, are substantially shifted downfield. The calculated and
experimental 15N chemical shifts were in good agreement, displaying the same trend of δN
(δN (15N-bis(imido)) > δN (15N-oxido-imido), which is consistent with the slightly higher
participation of 5f orbitals and greater orbital overlap in the U(VI) bis(imido) complex.
15N NMR spectroscopy was previously demonstrated by Hayton [64] and Liddle [65] to
be a powerful experimental probe of chemical bonding and covalency in An-N bonds
since the nitrogen nuclei was revealed to be highly sensitive to interactions with actinide
ions. Hayton found a 15N chemical shift of 298.8 ppm for the bridging thorium(IV) ni-
tride [(NR2)3Th(µ-15N)Th(NR2)3]− (R = SiMe3) [64] and Liddle found the most downfield
deshielded δiso value to date, 972.6 ppm, for the uranium(VI)-nitride triple bond complex
[U(15N)(TrenTIPS)] [65]. As expected, the nitrogen of the imido groups in the uranium
bis(imido) and oxido-imido complexes are more shielded than the nitrogen in the U≡N
triple bond of the terminal nitride complex. Combining DFT calculations and 15N spec-
troscopy, Hayton correlated the magnitude of the downfield shift with the amount of 5f
covalency within the Th-N bonding. As expected, and emphasizing the highly covalent
nature, there is a higher dominance of 5f U and 2p N orbitals in the U≡N bonding of U(VI)
nitrito complex.

Liddle and co-workers combined their results with already-reported data to confirm
correlated linear relationships between 15N δiso and the M-N bond order. Plotting experi-
mental 15N NMR chemical shifts together with the actinide data of Hayton and Liddle and
correlating with Mayer Bond Order (MBO) of U-N bonds, as proposed by Liddle [65], a fair
linear relationship is obtained as depicted in Figure 1.
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Figure 1. Correlation of experimental 15N NMR chemical shifts with computed Mayer bond orders.
Linear regression: MBO = 0.002 × δ(15

N) + 0.8567, R2 = 0.98.

Reactions of lower valence uranium complexes with oxygen transfer reagents were also
conducive to the formation of {OUNR}2+ molecular compounds. Schelter and co-workers
synthesized the uranium(VI) trans-oxido-imido complex [Ph4P][U(O)(NSiMe3)[N(SiMe3)2]3]
directly by a one-electron reduction of nitrite with the uranium(V) mono-imido complex
[U(NSiMe3)[N(SiMe3)2]3] (Scheme 12) [66]. This reaction was proposed to proceed through
a κ1-(ONO)− intermediate [67]. The oxido-imido complex exhibits short U-O and U-
Nimido lengths, 1.805(2) and 1.980(3) Å, respectively, and nearly linear O-U-N (179.8(1)◦)
and U-N-Si angles (176.2(2)◦), consistent with an isoelectronic {UO2}2+ analogue moiety.
Voltammetry studies were in accordance with U(VI)/U(V) irreversible reduction at −2.34 V
(vs. Fe+/Fe◦), showing a strong stabilization of the +6 oxidation state, which is reminiscent
of {UO2}2+.complexes.
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Scheme 12. Synthesis of a trans-{OUNR}2+ complex supported by silylamido ligands (adapted
from ref. [66]).

The authors performed a systematic computational study with the model complexes
cis/trans [UOn(NSiMe3)2−n{N(SiH3)2}3]− to probe the ability of the trimethylsilylimido
ligand to stabilize the trans-axial geometry [66]. The trans-UO2 geometry was calculated to
be 131.4 kJ mol−1 more stable than the cis-UO2 configuration, while when one of the oxido
ligands was replaced by an imido group, the trans-{UO(NSiMe3)}2+ structure was only
75.3 kJ mol−1 more stable than the cis-{UO(NSiMe3)}2+ isomer. Expanding the analysis to
[UO(NR){N(SiH3)2}3]− complexes (R = SiMe3, Ph, CF3), the following trend, 75.3 kJ mol−1,
56.5 kJ mol−1, and 63.2 kJ mol−1, was obtained for trans/cis isomerization, showing the
strongest stabilization of the trans geometry with the trimethylsilylimido. The U(IV) mono-
imido complexes [U(NAriPr2)Cl2(L)n] (L = tBu2bpy, n = 1; L = OPPh3, n = 2), when reacted
with the oxygen atom transfer reagent methylmorpholine-N-oxide, led to the formation of
U(VI) trans-oxido-imido complexes [U(NAriPr2)(O)Cl2(L)n] [37].
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By treating the uranium(IV) carbene imido complex [{U(BIPMTMS)(µ-NMes)}2]
with tetramethylamine-N-oxide (TEMPO), Liddle and co-workers were able to effec-
tively oxidize the U(IV) complex and afford the dimeric U(VI) carbine-imido-oxido
complex [{U(BIPMTMS)(NMes)(µ-O)2}2] [68]. The addition of dimethylamine pyri-
dine (dmap) to this complex resulted in the monomeric carbine-imido-oxido complex
[U(BIPMTMS)(NMes)(O)(dmap)]. This complex can also be prepared by the one-pot
reaction of the U(IV) precursor with TEMPO and dmap (Scheme 13). In the monomeric
complex, the oxido and imido ligands adopt axial positions in a T-shaped motif with
respect to the carbene. It is worth noting that the imido rather the carbene is trans
to the oxido ligand, which can be postulated as a result of an ITI, since the imido
ligand can donate electron density most strongly and compensate for the 6p orbital
hole [13,69]. The U-O and U-Nimido bond lengths, 1.814(2) Å and 1.921(2) Å, respec-
tively, are short but longer than the analogous distances in [U(NtBu)(O)I2(OPPh3)2]
and [U(NAriPr2)(O)I2(OPPh3)2] [37,61]. The U-N-Cipso is nearly linear (174.2(2)◦); how-
ever, the N-U-O angle is slightly distorted from linearity (167.14(9)◦), possibly due
to the constraints imposed by the pincer carbene ligand (U-Ccarbene 2.400(3) Å). DFT
calculations were performed for this complex, suggesting that the uranium center
mainly involves 5f rather than 6d orbitals in the multiple bonds to the carbene, imido,
and oxido groups, as in other uranium–ligand multiple bond complexes. The frontier
orbitals are extensively delocalized across the uranium–carbene, -imido, and -oxido
interactions, excluding an assessment of ITI. This is in contrast to the calculations
performed for the uranyl complex [U(BIPMTMS)(O)2(dmap)2] where the orbitals are
more localized as discrete U=C or {O=U=O}2+, suggesting that the formulation of the
U(VI) carbene trans-oxido-imido as a uranyl analogue is not adequate.
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In 2001, in an effort to prepare a cis-uranyl complex, Burns and co-workers reacted
[UO2(µ-Cl)4{K(18-crown-6)}2] with {N(CH2CH2NSiMe2But)3}3- (TrenDMBS) and verified
that the loss of one tBuMe2Si and one oxido group per Tren/uranyl occurred, with the
reduction and formation of the mixed-valent uranium(V/VI) oxido−imido dimer [{UO(µ-
NCH2CH2N(CH2CH2NSiMe2But)2)}2][K(18-crown-6)(Oet2)] as major product [70]. This
reaction involved the cleavage of a N−Si bond of the triamidoamine ligand and the
activation of one of the usually robust U=O bonds of the uranyl(VI) fragment. One of the
uranyl oxido groups is retained as a terminal ligand trans to the imido nitrogen, while the
two amido ligands and the other imido donor occupy equatorial coordination positions of
the trigonal bipyramid. The bond lengths U-O and U-Nimido are 1.838(5) Å and 2.097(6)
Å, respectively, and the axial O−U−Nimido angle is significantly deviated from linearity
(161.2(2)◦).

More recently, Liddle and co-workers explored the same reaction with the related Tren-
ligand {N(CH2CH2NSiPri3)3}3− (TrenTIPS) (Scheme 14), which is more sterically demanding
than TrenDMBS [71]. The result was very similar to the previous reaction: The loss of a silyl
and of oxido group with the generation of a dimeric uranium imido–oxido complex. We
note that the uranium oxidation state remained +6, as did the starting material. The X-ray
diffraction structure of the dimeric complex [{UO(µ-NCH2CH2N-(CH2CH2NSiPri

3)2)}2]
exhibits shorter U-N bond distances (2.052(15)-2.057(14) Å) for the imido nitrogen trans
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to a uranium−oxido bond, reflecting the presence of an ITI, albeit a weaker one than in
uranyl(VI) complexes. The oxido-imido complex suggested a structure-dictating RN=U=O
core as in the uranyl ion, {O=U=O}2+, despite the O=U=Nimido bond angles (av. 161.1(6)◦)
being significantly more bent than the linear geometry reported for other {RNUO}2+ com-
pounds (Table 3). This can be attributed to the conformational constrain imposed by the
Tren ligand. DFT calculations found a σ > π orbital energy ordering for the U=N and U=O
bonds, which is uranyl-like in nature. Moreover, the oxido, imido, and amido ligands
average charges (−0.77, −1.83, and −1.55) and the Mayer bond orders (U=O 1.95, U=N
1.21, U-Nimido 0.57, and U-Namido 0.88) suggest that the terminal uranium−oxido bonds
are likely more covalent in nature than the bridging imido to uranium bonds, consistent
with the presence of a “RN=U=O” core.
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3.3. Uranium Nitrido Complexes

Until 2010, linear nitrido-substituted isoelectronic analogues of uranyl(V/IV), [NUN],
[NUO], [NUO]+, and [NUNH] had only been prepared in reactions of laser-ablated uranium
metal with N2 or NO in argon or neon matrices and characterized by infrared spectroscopy
coupled with computational studies [21,73–75]. [NUO]+ was also detected in the gas phase
by mass spectrometry, produced through sequential ion/molecule reactions starting from
U+ and N2O, followed by the reaction of the primary product UN+ with O2, CO2, SO2, or
COS [76]. Collision-induced dissociation (CID) experiments and ligand-exchange reactions
conducted on the [NUO]+ species confirmed it to have N-U-O connectivity.

CID of the uranyl anionic complex [UO2(NCO)Cl2]− in a quadrupole ion trap mass
spectrometer resulted in the [NUOCl2]− complex containing the {NUO}2+ fragment [77].
The formation of the nitrido-oxido complex resulted from an endothermic activation of one
uranyl oxido bond with the elimination of CO2. The reaction proved to be reversible as the
addition of CO2 to isolated [NUOCl2]− led to the exothermic formation of the uranyl anion
[UO2(NCO)Cl2]− [78].

Theoretical calculations performed by Schwarz [76] and co-workers and, previously, by
Pyykkö [79], predicted similarities between linear {NUO}+ and the uranyl cation {OUO}2+

from the point of view of their electronic states and the relativistic effects on the U-O and
U-N bond lengths. Kaltsoyannis conducted computational studies using quasi-relativistic
gradient-corrected DFT in the naked [NUN] and [NUO]+ species, isoelectronic of the
uranyl(VI) cation, inferring that the U-N bonding in [NUN] and [NUO]+ is significantly
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more covalent than the U-O bonding exhibited in [UO2]2+ and {NUO}+ moieties [80]. The
author proposed that the greater covalency of the U-N bond may be responsible for the
U-N bond distance (1.659 Å) being shorter than the U-O (1.751 Å) in the {NUO}+ species.

The structure and bonding of [NUO]+ was later discussed in other theoretical stud-
ies [81,82], and, in 2022, combined with a new gas-phase study [83]. In this work, [NUO]+

and its complexes with equatorial N2 ligands, [NUO(N2)n]+ (n = 1–7), were synthesized
and examined by mass-selected infrared photo-dissociation spectroscopy and quantum-
chemical calculations. The results showed that the [NUO(N2)5]+ species is a sterically
fully coordinated cation with C5v structure, linear [NUO]+ core, and singlet ground state.
The short N-U bond distances and high stretching modes, with slightly elongated U-O
bond distances and lowered stretching modes, are rationalized as being due to cooperative
covalent and dative [N≡U≡O]+ triple bonds.

In 2010, Hayton and co-workers synthesized the uranium(IV) bridged-nitrido complex
[Na(dme)2(tmeda)][(NR2)2U(µ-N)(CH2SiMe2NR)U(NR2)2] (R = SiMe3) from the reaction of
the uranium(III) complex [U{N(SiMe3)2}3] with sodium azide [84]. The subsequent reaction
with the oxygen transfer reagent trimethylamine N-oxide yielded the U(VI/IV) dimer
complex [Na(dme)2][(NR2)2(O)U(µ-N)(CH2SiMe2NR)U(NR2)2] (Scheme 15), characterized
in the solid state. The molecular structure of this U(VI/VI) complex comprises a sodium-
capped oxido ligand bonded trans to the nitrido ligand (O-U-N 167.6(3)◦), and short
U-Nnitrido (1.818(9) Å) and U-Ooxido (1.797(7) Å) bond lengths, consistent with a {NUO}+

fragment, which comes close to the geometrical parameters of the uranyl(VI) ion.
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Remarkably, in 2020, Rudel et al. prepared three molecular compounds containing
linear [N≡U≡N] moieties (Scheme 16) from the reaction of uranium pentahalides, UCl5
or Ubr5, with anhydrous liquid ammonia. U(VI) nitrites are generated as metastable
intermediates in the disproportionation and ammonolysis of the uranium pentahalides [18].

In the crystal structures, the linear {UN2} fragments are contained in the center
of trinuclear cations [U3(µ-N)2(NH3)21]8+ (I), [U3Br(µ-N)2(NH3)20]7+ (II), and [U3Cl2(µ-
N)2(NH3)19]6+ (III), and the central uranium atoms are additionally coordinated by five
NH3 ligands, four NH3 ligands, and one bromide, or three NH3 ligands and two chlorides,
respectively, resulting in pentagonal bipyramidal coordination geometries. In addition,
in the three cations, the {N≡U≡N} moiety is coordinated through its lone pairs to two
Lewis-acidic uranium(IV) amine cations, [U(NH3)8]4+, forming nearly linear trinuclear
cationic complexes. In cation I, the Ucent-Nnitrido bond lengths (1.853(3) and 1.854(3) Å) are
longer than those calculated at the CASPT2 level for molecular [N≡U≡N] (1.73 Å) [85],
but closer to the terminal U(VI)≡N triple bond reported by Liddle and co-workers for
[U(N)(N(CH2CH2NSii-Pr3)3)] (1.799(7) Å) [86]. The Uter-Nnitrido bond lengths of 2.304(3)
and 2.300(3) Å are longer than in single-bonded U(IV) nitrido complexes [(Cp*U(µ-I)2)]3(N)



Inorganics 2022, 10, 121 19 of 27

(2.138(3) to 2.157(3) Å) [87], consistent with less donation of the nitrido ligand to the ter-
minal uranium atoms. The N=Ucent=N angle is nearly linear (179.1(1)◦) and Ucen-N-Uter
angles are close to 180◦ (177.98(14)◦ and 178.44(17)◦). The Ucen-Nnitrido bond distances
of compounds II and III are comparable with those of I (II, av. 1.83(4); III, av. 1.84(1) Å),
and the {NUN} fragments, as in cation I, are essentially linear with angles of 178.8(5)◦ and
177.9(2)◦, while the Uter-N-Ucent angles are slightly deviated from linearity, possibly due
to the steric demand of Br and Cl. The Raman spectrum of the 15N labeled compound
[U3Br(µ-N)2(NH3)20]7+ (II) allowed researchers to assign the band at 906 cm−1 to the U=N
stretch vibration of the {N=U=N} unit, which shifted to 883 cm−1 upon 15N labelling.
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Hybrid DFT calculations of the uranium nitride cations using intrinsic bond orbitals
(IBOs) was consistent with two σ- and four π-bonds for the Ucent-Nnitrido, which led the
authors to consider the chemical bonds in the {NUN} fragment as U≡N triple bonds, as the
U≡O bonds in the isoelectronic uranyl(VI) cation, {OUO}2+. Chemical bonding analysis
also demonstrated that the ionic character of the U≡E triple bonds (E = N, O) increases
from [UN2(NH3)5] over cations I, II, and III to free {UO2}2+ and [UO2(NH3)5]2+, as the
contribution of the U atom to the σ- and π-orbitals decreases in this order [18]. The IBO
analysis also indicated a Uter–Nnitrido interaction, similar to the U–NH3 interaction.

The synthesis of the first uranium(VI) trans-bis(nitrido) complexes showed that the
uranium-nitrido orbital interactions allow for the isolation of a trans-{NUN} core in molec-
ular compounds, being an inspiration for the design and synthesis of new uranium
bis(nitrido) complexes with other ligand environments.

4. Uranium Carbene Complexes

Transition metal carbene (Fischer carbene) and alkylidene (Schrock carbene) com-
plexes are well established for d-transition metals [88–90], but in contrast, the only isolable
carbene complexes of uranium are heteroatom stabilized [91], and the formation of uranium
alkylidenes and alkylidynes, without the benefit of heteroatom stabilization, is limited to
molecules identified in inert gas matrices at low temperatures, such as X3U≡CH (X = F,
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Cl, Br) and H2U=CH2 [92–94], or to the [OUCH]+ ion, produced in the gas phase in a
linear ion trap mass spectrometer by two-stage CID of [UO2(O2C-C≡CH)]+ yielding the
decarboxylation and subsequent elimination of CO [95]. DFT calculations suggested that
the generated [OUCH]+ complex is a linear uranium-methylidyne species with a U≡C
triple bond (1.801 Å), composed of one σ-bond with contributions from U 6d 5f and C sp
hybrid orbitals, and two π-bonds with contributions from U 6d 5f and C p orbitals. The
[OUCH]+ species is converted into [UO2]+ by the reaction with both H2O and O2 [96] and
also reacts with CH3CN and CS2 to form [OUN]+ and [OUS]+, respectively [96,97].

The uranyl analogues CUO and CUC have also been observed in matrix isolation
experiments [98,99]. CASPT2 calculations suggested C≡U≡C to have a triplet ground state
with a linear geometry, U–C bond lengths of 1.84 Å, and molecular orbital occupancies for
an effective bond order of 2.83 [99]. DFT calculations predicted that CUO is preferentially a
linear singlet molecule with a U-C triple bond with significant U 5f character [98,100,101].
Though the terminal carbides CUC and CUO are both U(VI) molecules, the U-C in the
neutral CUO molecule is slightly shorter (1.764 Å) [98]. This may result, in part, from the
slightly higher positive charge on uranium in CUO than in CUC. The bonding in CUO was
reexamined by other computational groups [102–104]. Hu et al. theoretical calculations
suggested that the U–C bond in CUO has possibly some quadruple bond character, which
results from two σ interactions and the expected two π bonds [104].

The shortest U–C distance in an isolated U(VI) complex was found in the uranium(VI)-
carbene-oxido complex [U(BIPMTMS)(O)(Cl)2] (2.184(3) Å) [105]. It was generated by two-
electron oxidation of the uranium(IV)-carbene [U(BIPMTMS)Cl3Li(thf)2] with 4-morpholine-
N-oxide (Scheme 17).
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The molecular structure contains a nearly linear CUO linkage (175.5(12)◦) with the
oxido group trans to the carbene and a U-O bond length of 1.841(4) Å, which is consistent
with the presence of an ITI. These values, combined with a DFT study, confirmed that the
uranium oxido-carbene moiety exhibits a uranyl-like electronic structure {R2C=U=O}2+.
NBO analysis indicated that both the σ-and π components of the U=C double bond are
well-defined, with the uranium contribution dominated by 5f character, while in the U−O
triple bond, only the π-components are well-defined.

Preliminary reactivity studies of the U(VI) oxido-carbene with benzaldehyde resulted
in [UO2Cl2] and (Me3SiNPPh2)2C=CHPh, via a formal double bond metathesis. Similar
‘metallo-Wittig’ reactivity has been observed for other uranium carbenes [106].

To date, the carbene analogue of uranyl, trans-{H2CUCH2}2+, has synthetically not
been achieved but a comparative analysis of electron densities calculated at the DFT and
CASSCF levels of theory with bare {UO2}2+ and {U(NH)}2+ species, in order to evaluate the
ITI, were performed by Fryer-Kanssen and Kerridge [107]. The study showed that the effect
of ITI on the electronic structure is most pronounced in uranyl, as expected, consistent with
the strong polarizing ability of the oxido ligands comparatively with imido and carbene
ligands. The key role of the 6pσ interactions in the ITI previously suggested by Denning is
supported by this study.
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5. Uranium-Transition Metal Complexes

Gagliardi and Pyykkö predicted theoretically stable 5d metal-uranium-nitrido species,
[NUOs]−, [NUIr], [NUPt]+, and [NUAu]2+, as well the oxido species [IrUO]+, and consid-
ered them isoelectronic analogues to uranyl(VI) [108]. In accordance with the concept of
“autogenic isolobality” [109,110], Au can behave as a pseudohalogen, Pt as a pseudochalco-
gen, and Ir as a pseudopnictogen. Considering this, [IrUO]+ can be formally represented as
[Ir≡U=O]+, which is nominally isoelectronic with {N≡U=O}+ and, therefore, isoelectronic
of {O=U=O}2+. Later, Marçalo, Gibson and co-workers were able to generate [IrUO]+ by
direct laser ionization of a U/Ir alloy and oxidation of the formed UIr+ ions with N2O or
C2H4O [111]. UPt+ ions obtained using the same method also reacted with N2O to give
[OUPt]+ that could be considered isoelectronic of {OUS}+ and an analogue of uranyl(V),
{OUO}+. In 2021, Peterson and co-workers computed Pt-actinide bond dissociation energies
in {Pt-AnO}n+ (n = 1+, 2+; An = U, Np, Pu) using a composite coupled cluster approach
and determined a value of 534.13 kJ mol−1 for the [PtUO]+ species previously isolated in
the gas phase [112].

In 2001, the cationic species [OUFe(CO)3]+ was generated in the gas phase in a FTICR
mass spectrometer, by reacting the uranium oxide cation UO+ with Fe(CO)5 [113]. Recently,
Zhou and co-workers used a laser-vaporization supersonic ion source to produce the
anions [UFe(CO)5]- and [OUFe(CO)3]− in the gas phase, characterized by infrared photo
dissociation spectroscopy [114]. Quantum chemical studies were consistent with a uranium–
iron triple bond, one covalent σ bond and two Fe-to-U dative π bonds, and a formal charge
of 2- for iron. Based on these recent results, it is plausible that the [OUFe(CO)3]+ cation
previously identified is formally “{O=U=Fe(CO)3}+”, an analogue of {UO2}+; however,
theoretical calculations on this species are needed for confirmation.

The preparation of U-metal bonds is not only important for improving the understand-
ing of bonding between uranium and transition metal cations, but also for increasing the
applications of uranium in catalysis using the synergetic effect of two metals [115]. The
5f orbitals have a suitable spatial extension but not yet a predictability of participation in
bonding, making the d–f heterobimetallic bond a particularly attractive target to improve
our understanding of the relative involvement of f- orbitals. Compared to uranium-oxygen,
-nitrogen, and -carbon multiple bonds, the use of metal-based fragments as ligands under
conventional experimental conditions is underdeveloped, and isolable uranyl analogues
are yet to be prepared [115,116].

6. Conclusions and Outlook

Uranyl analogue complexes are a particular class of uranium-ligand multiple-bond
molecular compounds and there has been significant progress in isolating and charac-
terizing them. The majority of complexes reported containing a linear {E=U=E}n+ core
isoelectronic to {OUO}n+ are those with imido ligands, {RN}2−, in the axial positions. How-
ever, among many of the results described in this review are also the few but remarkable
molecular compounds comprising trans-{OUNR}2+, trans-{NUO}+, trans-{R2CUO}2+ moi-
eties, and the heavy chalcogenido-substituted analogues of uranyl, trans-{OUE}2+ (E = S,
Se). Another significant result is the isolation in 2020 of the first trans-{NUN} nitrido
compounds that had only been prepared in noble gas matrices.

A variety of supporting ligands have been used to stabilize the linear trans-{E=U=E}n+

moiety; however, it should be noted that the classic, bulky silylamido ligand {N(SiMe3)2}−

is, to date, the one that allowed for isolating a uranyl complex and the diversity of its
analogues, namely U(VI) oxido-imido, bis(imido), oxido-nitrido, and mono-chalcogenido-
substituted analogues of uranyl. The reactions to access these compounds have mainly
been electron-transfer reactions starting from low-valence uranium.

Diverse computational studies have been performed on many of these classes of
compounds, with general findings being that uranium 5f and 6d orbitals participate highly
in the {EUE} fragment bonding and that the U–E bonds have a triple-bond character but
are rarely true triple bonds that could be implied by their structures. Moreover, as in
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uranyl complexes, the inverse trans influence (ITI) is manifested in uranyl analogues, and
theoretical calculations suggest that the pseudocore 6p shell plays a role in this effect and
consequently in the preference for a trans-{EUE}n+ conformation.

In light of the isolated complexes identified to date, it seems plausible that bis(chalcogenido)
complexes in a trans-{E=U=E}n+ framework may be isolable. The lack of these uranium
derivatives can be traced to the sensitivity of these multiple-bond molecular compounds to
steric effects imposed by the ligand environment at the metal atom, which makes the choice
of supporting ligands fundamental. For instance, some uranium bis(imido) complexes
mentioned in this review could be considered as candidate precursors for {S=U=S}2+

molecular species in reactions with favorable S-donor COS.
Similar to heavy chalcogenido complexes, the heavy pnictogenido analogues of uranyl

are attractive targets for studying uranium bonding to soft donors, and due to the recent
advances in U-P multiple bonds, it also seems a plausible goal.
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Abbreviations

Ad. adamantyl
ArCF3 3,5-Bis(trifluoromethyl)phenyl
AriPr2 2,6-diisopropylphenyl
bpy 2,2′-bipyridine
{BIPMTMS}2− bis-iminophosphoranomethanediide
dmap 4-dimethylaminopyridine
dme 1,2-dimethoxy-ethane
dmpe 1,2-Bis(dimethylphosphino)ethane
dpm 5,5′-dimethylpyrrolylmethane
dpmMes 2,2′-bis(mesityl)-5,5-dimethyldipyrrolylmethane
Cp cyclopentadienyl
Cp* pentamethylcyclopentadienyl
Me2-C4H2N 2,5-dimethylpyrrolyl
Me methyl
Mes 2,4,6-trimethylphenyl
Me2bpy 4,4′-dimethyl-2,2′-bipyridine
py pyridine
{N(Me)(SO2Ar’)} N,4-dimethylbenzenesulfonamido
OPPh3 triphenylphosphane oxide
tBubpy 4,4′-di-tert-butyl-2,2′-bipyridine
TEMPO tetramethylamine-N-oxide
thf tetrahydrofuran
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