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Abstract: A practical application composite based on mixed chelate complexes [M(S-Ala)2(H2O)n]–
[M(S-Phe)2(H2O)n] (M = Cu(II), Zn(II); n = 0–1) as chiral selectors in enantioselective voltammetric
sensors was suggested. The structures of the resulting complexes were studied by XRD, ESI-MS,
and IR- and NMR-spectroscopy methods. It was determined that enantioselectivity depends on
the metal nature and on the structure of the mixed complex. The mixed complexes, which were
suggested to be chiral selectors, were stable under the experimental conditions and provided greater
enantioselectivity in the determination of chiral analytes, such as naproxen and propranolol, in
comparison with the amino acids they comprise. The best results shown by the mixed copper
complex [Cu(S-Ala)2]–[Cu(S-Phe)2] were: ipS/ipR = 1.27 and ∆Ep = 30 mV for Nap; and ipS/ipR = 1.37
and ∆Ep = 20 mV for Prp. The electrochemical and analytical characteristics of the sensors and
conditions of voltammogram recordings were studied by differential pulse voltammetry. Linear
relationships between the anodic current and the concentrations of Nap and Prp enantiomers were
achieved in the range of 2.5 × 10−5 to 1.0 × 10−3 mol L−1 for GCE/PEC-[Cu(S-Ala)2]–[Cu(S-Phe)2]
and 5.0 × 10−5 to 1.0 × 10−3 for GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)], with detection
limits (3 s/m) of 0.30–1.24 µM. The suggested sensor was used to analyze Nap and Prp enantiomers
in urine and plasma samples.

Keywords: voltammetry; enantioselective sensors; mixed chelate complexes of Cu(II) and Zn(II);
S-alanine; S-phenylalanine; naproxen enantiomers; propranolol enantiomers

1. Introduction

Enantioselective voltammetric sensors (EVS) significantly expand the capabilities
of electrochemical analysis and enable the analysis of optically active compounds [1–5],
which is very important in pharmaceutics and medicine [6,7]. Thus, the development of
enantioselective sensors makes it possible to create inexpensive and affordable portable
systems for the quality control of modern pharmaceuticals and dietary supplements without
preliminary sample preparation and to analyze the contents of active components of
pharmaceuticals in biological fluids.

The existing EVS can be separated into two large groups based on the production
method [2]. The first group includes sensors that transfer the surface chirality directly to the
sensor, for example, by molecular imprinting (MIP) [8–10]. Rather recently, by analogy with
MIP polymers, EVS based on chiral mesoporous metals obtained by electrodeposition of
Au, Ag, Pt, Pd, Ni, etc., on inert electrodes in the presence of chiral electroactive templates
were suggested [11–13]. The drawbacks of MIP sensors include the lack of versatility and
the difficulty of removing template molecules.

The second group includes sensors from achiral materials, while the chirality of
the sensor surface is achieved by introducing a chiral selector into the sensor [14–26]. A
composite sensors can have a “film” structure if a chiral selector is applied onto the working
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electrode surface or it can be a paste into which a chiral selector is incorporated in a required
amount [14–21].

Currently, chiral selectors are mainly made of optically active organic compounds.
Therefore, the majority of the known or synthesized chiral compounds is comprised of
organic molecules or organic polymers with very diverse structures. Undoubtedly, such a
variety of optically active organic compounds makes it possible to select a chiral selector
with the necessary parameters for almost any task. However, the difficulty of synthesizing
chiral compounds with a required optical purity considerably limits the range of available
composite sensors. Due to the peculiarities of the atomic and electronic structure, the
variety of optically active inorganic compounds is much smaller, and most of them are
not applicable for the replacement of organic chiral selectors. However, advances in the
chemistry of coordination compounds, transition metal complexes in particular, make it
possible to obtain readily available optically active complexes whose enantioselectivity
depends on the nature of the metal and on the structure of the complex and of the chiral
ligands. The use of available organic ligands of natural origin, for example, α-amino acids,
provides vast possibilities for making a wide range of chiral selectors [17,27,28] whose
enantioselectivity and other electrochemical parameters can be controlled by the structure
of the radical of the α-amino acid as the ligand. Of the chelate complexes of transition
metals used as chiral selectors, the complexes with phenyl-containing ligands that exhibit
efficient enantioselective properties [17,27] are of particular interest. Moreover, they are also
alternatives to antibiotics [29] and DNA binding agents [30]. In addition, the development
of composites based on mixtures of various chiral components, which make it possible to
increase the selectivity of chiral sensors, is also an urgent task.

In view of this, the purpose of our study was to design and synthesize mixed
chelate phenyl-containing compounds, namely, [Cu(S-Ala)2]–[Cu(S-Phe)2] (1) and [Zn(S-
Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] (2), and to study the possibility of using these composites
as chiral selectors in EVS.

2. Results and Discussion

The mixed chelate composites [Cu(S-Ala)2]–[Cu(S-Phe)2] (1) and [Zn(S-Ala)2(H2O)–
[Zn(S-Phe)2(H2O)] (2) were synthesized using S-phenylalanine, S-alanine as ligand [31,32],
and M(CH3COO)2 (M = Cu(II), Zn(II)) (Scheme 1). The components were used in a ratio
of 1:1:1. The yields of compounds [Cu(S-Ala)2]–[Cu(S-Phe)2] (1) and [Zn(S-Ala)2(H2O)]–
[Zn(S-Phe)2(H2O)] (2) were 48–51%. Complexes 1,2a,b were characterized by ESI-MS, XRD
and IR- spectroscopy methods. NMR-spectroscopy method was used to analysis of the
composite 2.
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Scheme 1. The synthesis of mixed chelate composites [Cu(S-Ala)2]–[Cu(S-Phe)2] (1) and [Zn(S-
Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] (2).
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It was shown that mixed-ligand complexes with the composition [M(S-Phe)(S-Ala)]
(H2O)n] (M = Cu(II), Zn(II); n = 0–1) were not formed in the reaction mixture under these
conditions. Composites 1,2 were analyzed by the ESI-MS method both in the positive
and negative ion modes. According to ESI-MS, mixtures of complexes [Cu(S-Ala)2] (1a),
[Cu(S-Phe)2] (1b), and [Zn(S-Ala)2(H2O)], (2a) [Zn(S-Phe)2(H2O)] (2b) in the ratio of 1:1
were formed (Scheme 1). This may have been due to the hydrophobicity of S-phenylalanine
and the different solubility and affinity of phenyl-containing complexes 1,2a,b. Thus,
according to ESI-MS, the fragments [Cu(Ala)2+H]+ (1a) 240 m/z (239) and [Cu2(Phe)2+H]+

were observed in the reaction mixture (1b), 456 m/z (455). The formation of [Cu2(Phe)2+H]+

particles can be caused by the tendency to form associates of bis-S-phenylalaninate with
an increase in the concentration in solution. This result indicated that complex copper
compounds with a coordination number of 4, which corresponded to the square planar
configuration of copper amino acid complexes and is consistent with the literature data,
were predominantly formed in the solution [31,32]. Therefore, the composition of composite
1 could be expressed by the formula [Cu(S-Ala)2]–[Cu(S-Phe)2].

In the reaction mixture of composite 2, the [Zn(Ala)2–H]− fragments (2a) 240 m/z
(241) were formed, as well as other particles, for example, [Zn(Ala)2(Ac)–H]− (2a) 299 m/z
(300) and [Zn(Phe)3–H]− (2b) 556 m/z (557) in the negative ion mode. At the same time, in
the positive ion mode, composite 2 produced the fragments [Zn(Ala)2+H]+ (2a) 242 m/z
(241) and [Zn(Phe)3+H]+ (2b) 558 m/z (557) (Supplementary Materials). Thus, in this case
Zn(II) exhibited a coordination number of 5 and had a pyramidal structure in accordance
with the literature [33,34] for complexes 2a,b. According to X-ray diffraction data [33–36]
and quantum chemical simulation of the complexes [Cu(S-Phe)2] (1a), [Cu(S-Ala)2] (1b),
[Zn(S-Phe)2(H2O)] (2a), and [Zn(S-Ala)2(H2O)] (2b), all the complexes were trans-isomers
in the ta-te [31,37] conformation (Supplementary Materials).

The 1H and 13C NMR spectral data confirmed the structure of complexes 2a,b in
composite 2. Thus, the protons of the methylene fragment of phenylalanine and the protons
at the chiral centers (2C) shifted to the field relative to the initial ligands, which indicates
the coordination of the ligands to the Zn(II) ion. In particular, for phenylalanine, protons
of the CHH group were observed at 3.11 and 3.27 ppm, and those of CH at 4.02 ppm.
For complex 2a, protons of the CHH group were observed at 3.02 and 3.23 ppm, and
those of CH at 3.79 ppm. At the same time, the protons of the phenyl fragments did not
undergo significant shifts and were in the region of 7.30–7.43 ppm for the ligand and
7.27–7.42 for complex 2a. The 13C spectra also showed changes in the chemical shifts in
complexes 2a,b compared to the starting phenylalanine. Thus, the values of 55.81 and 57.42
for 2C and 36.18 and 40.59 for 3C were found for the ligand and complex 2a, respectively
(Supplementary Materials).

The powder diffraction patterns of composites 1,2 were recorded across 2θ = 5–60◦.
The XRD patterns of composites 1,2 showed well-defined crystalline peaks defined by their
crystalline nature (Figure 1). Thus, according to XRD data, the maxima of composite 1
were at 5.410 (100%) and 20.10 (73%) of [Cu(S-Ala)2]–[Cu(S-Phe)2] (1) (Figure 1a). For
composite 2, the maxima were at 20.28 (100%) and 22.10 (52%) (Figure 1b).

The IR spectra of 1,2 in the region of characteristic vibrations showed that the com-
pounds obtained were mixed chelate complexes without an admixture of the starting amino
acids (Figure 2).

In fact, comparison of the IR spectra of the starting amino acids (S-phenylalanine,
S-alanine) and the resulting mixed chelate composites ([Cu(S-Ala)2]–[Cu(S-Phe)2] (1) and
[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] (2)) showed that a shift of characteristic absorption
bands occurred upon complexation. A shift was observed in the long-wavelength region
for frequencies associated with symmetric and asymmetric absorption bands of the C–O
bond of the carboxylate ion vas,s(C–O) + δ(CH) and in the short-wavelength region for the
stretching vibrations of the carbonyl group vas,s(C=O) relative to the absorption bands of the
original amino acids (Figure 2). At the same time, an increase in the value of ∆v(COO) [38]
indicated that chelate complexes were formed.
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Figure 1. XRD pattern of composite [Cu(S-Ala)2]–[Cu(S-Phe)2] (1) (a) and composite [Zn(S-
Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] (2) (b).

In addition, the IR spectra of composites 1,2 contained no absorption bands responsible
for the bending vibrations of the protonated amino group δ(NH3

+), which is characteristic
of the “zwitterion” of the original amino acids (Figure 2).

Additionally, a quantum-chemical simulation of the monomer link for complexes 1a,b
and 2a,b was carried out using the M06/6-311+G(d) method [39]. The ta-te conformer of
complexes 1a,b and 2a,b was chosen as a model for the study as the most energetically
favorable one for the trans-isomer [31,32].

In this work we compared the enantioselectivity of voltammetric sensors using certain
α-amino acids (S-AlaH, S-PheH, [Cu(S-Ala)2], [Cu(S-Phe)2], [Zn(S-Ala)2(H2O)], [Zn(S-
Phe)2(H2O)]) or composites ([Cu(S-Ala)2]–[Cu(S-Phe)2] (1) and [Zn(S-Ala)2(H2O)]–[Zn(S-
Phe)2(H2O)] (2)) as the chiral selectors. The schemes of electrooxidation of analytes are
presented in Table 1. After recording the differential-pulse voltammograms (DPV) of R-
and S-naproxen (Nap) (Figure 3) and R- and S-propranolol (Prp) (Figure 4) enantiomers,
we compared the changes in the oxidation potentials of the enantiomers on the suggested
sensors and the enantioselectivity coefficients (ipS/ipR) (Table 2). The first oxidation peak
was considered as the Nap analytical signal, since the ip1S/ip1R selectivity coefficient is
larger than ip2S/ip2R.
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Table 2. Comparison of the enantioselectivity of unmodified and modified sensors based on a GCE.

Sensor Analyte * ∆Ep, mV ipS/ipR

GCE

Nap

0 1.00
GCE/PEC 0 1.06
GCE/PEC–(S-AlaH) 5 1.22
GCE/PEC–(S-PheH) 15 1.09
GCE/PEC–[Cu(S-PheH)2] 0 1.12
GCE/PEC–[Zn(S-Phe)2(H2O)] 0 1.10
GCE/PEC–[Cu(S-AlaH)2] 10 1.09
GCE/PEC–[Zn(S-AlaH)2(H2O)] 0 1.09
GCE/PEC GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2] 30 1.27
GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] 20 1.12

GCE

Prp

0 1.00
GCE/PEC 5 1.02
GCE/PEC–(S-AlaH) 10 1.04
GCE/PEC–(S-PheH) 10 1.17
GCE/PEC–[Cu(S-PheH)2] 15 1.11
GCE/PEC–[Zn(S-Phe)2(H2O)] 15 1.08
GCE/PEC–[Cu(S-AlaH)2] 10 1.05
GCE/PEC–[Zn(S-AlaH)2(H2O)] 5 1.04
GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2] 20 1.37
GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] 20 1.12

* 1mM solutions of enantiomers; phosphate buffer solution with pH 6.86 for Nap and 0.5 M sulfuric acid for Prp;
potential scanning rate 0.2 V/s.

If only a polyelectrolyte complex (PEC), which is used as a substrate for fixing the
chiral selector, was applied onto glassy carbon electrode (GCE), insignificant differences
in the analytical signals of the Nap and Prp enantiomers were observed (Table 2), which
indicated that due to its functional groups, this complex exhibited small enantioselec-
tivity with respect to the enantiomers. The addition of amino acids S-AlaH or S-PheH
(Figures 3c,d and 4c,d) or individual complexes [M(S-Ala)2(H2O)n], [M(S-Phe)2(H2O)n]
(M = Cu(II), Zn(II); n = 0–1) (Figures 3e,f and 4e,f) to the PEC slightly increased the enan-
tioselectivity of the sensor (Table 2). In this case, enantioselectivity reached 15 mV for ∆Ep
and 1.22 for ipS/ipR, while the enantioselectivity growth by ipS/ipR did not exceed 15%.

A significant improvement of the sensor enantioselectivity could be obtained by
using a mixture of the complexes studied as the chiral modifiers (Table 2). The best
result was demonstrated by the GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2] sensor that used
a mixture of [Cu(S-Ala)2] and [Cu(S-Phe)2] (1) in a 1:1 ratio. This sensor demonstrated
an enantioselectivity coefficient of ipS/ipR = 1.27 and ∆Ep = 30 mV for Nap; ipS/ipR = 1.37
and ∆Ep = 20 mV for Prp. We note that a mixture of complexes provided an unexpectedly
high increase in the sensor enantioselectivity. The enantioselectivity coefficient ipS/ipR
increased up to 29% instead of the expected 15%. The increase in ∆Ep up to 30 mV was
also much larger than the value of 15 mV that was obtained for chiral modifiers based
on individual compounds. Obviously, in the case of a mixture of complexes, a synergetic
effect may be suggested. The nature of this effect is not clear yet, but we believe that an
important role is played by the presence of a compound with an alternate structure of
ligands at the optical center. As a result, interaction of a chiral analyte, Nap or Prp, with a
mixed-type chiral selector (M1 + M2) on the sensor surface assumes the formation of, at
least, mixed-type associates, e.g., S-Nap * (M1, M2)n, instead of unmixed-type associates
S-Nap * (M)n for an individual chiral selector. Such mixed-type associates contain more
differing optically active centers; therefore, the difference in the properties, including ∆Ep
and i, between S-Nap * (M1, M2)n and R-Nap * (M1, M2)n is more pronounced.

To estimate the sensitivity of the suggested sensors, measurements were performed in
solutions of Nap and Prp enantiomers with known concentrations. The DPV of Nap and
Prp enantiomers are shown in Figure 5, Figure 6, Figures 7 and 8, respectively, along with
the calibration plot (insets in Figures 5–8). Linear relationships between the anodic current
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and the concentration of analyte enantiomers were obtained in the range of 2.5 × 10−5

to 1.0 × 10−3 mol L−1 on the GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2] sensor and 5.0 × 10−5

to 1.0 × 10−3 on the GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] sensor (five mea-
surements for each enantiomer). The limit of detection (LOD) (3 s/m) and the limit of
quantification (LOQ) (10 s/m), where s is the standard deviation and m is the slope of
the calibration curves, were found to be 0.30 µM and 0.99 µM for S-Nap, 0.38 µM and
1.25 µM for R-Nap, 0.90 µM and 3.02 µM for S-Prp, and 1.24 µM and 4.15 µM for R-Prp µM,
respectively, on GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2]; 0.38 µM and 1.26 µM for S-Nap,
0.42 µM and 1.40 µM for R-Nap, 0.78 µM and 2.62 µM for S-Prp, and 0.87 µM and 2.91 µM
for R-Prp µM, respectively, on GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)]. These
results confirmed that the suggested composite sensors can be used in the chiral detection
of Nap and Prp enantiomers.
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Figure 5. DPV of (a) R-Nap and (b) S-Nap solutions of various concentrations on GCE/PEC–[Cu(S-
Ala)2]–[Cu(S-Phe)2]: 0.05 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), 0.5 (6), 0.6 (7), 0.7 (8), 0.8 (9), 0.9 (10),
1 (11) mM (phosphate buffer solution with pH 6.86, potential scanning rate 0.2 V/s). Insets: the
corresponding calibration curves.
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Figure 6. DPV of (a) R-Nap and (b) S-Nap solutions of various concentrations on GCE/PEC–[Zn(S-
Ala)2(H2O)]–[Zn(S-Phe)2(H2O)]: 0.025 (1), 0.05 (2), 0.1 (3), 0.2 (4), 0.3 (5), 0.4 (6), 0.5 (7), 0.6 (8), 0.7 (9),
0.8 (10), 0.9 (11), 1 (12) mM (phosphate buffer solution with pH 6.86, potential scanning rate 0.2 V/s).
Insets: the corresponding calibration curves.
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Ala)2(H2O)]–[Zn(S-Phe)2(H2O)]: 0.05 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), 0.5 (6), 0.6 (7), 0.7 (8), 0.8 (9),
0.9 (10), 1 (11) mM (0.05 M sulfuric acid, potential scanning rate 0.2 V/s). Insets: the corresponding
calibration curves.

Table 3 compares the sensors we developed with other reported electrochemical chiral
sensors developed for the enantio-differentiation of Nap and Prp. The suggested sensors
enable the discrimination of Nap and Prp enantiomers with a wider linear range compared
to many sensors reported in literature. The values of LOD obtained with the present
sensors were comparable, or in some cases lower than those obtained with other fabricated
electrochemical sensors [41–52].
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Table 3. Comparison of various modified electrodes for recognition of Prp and Nap enantiomers.

Sensor
Electro-

Chemical
Technique

Linear Range,
Mol L−1

LOD,
µmol L−1 Reference

Nap enantiomers

GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2] DPV 2.5 × 10−5–1.0 × 10−3 0.30 for S-Nap
0.38 for R-Nap this work

GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] DPV 5.0 × 10−5–1.0 × 10−3 0.38 for S-Nap
0.42 for R-Nap this work

Au@BSA DPV 1.0 × 10−5–5.0 × 10−3 3.3 [41]
β-CD/EG/GCEMB@β-CD/EG/GCE DPV 4.0 × 10−7–6.0 × 10−6 0.07 [42]

L-Cys/RGO/GCE CV 5.0 × 10−6–1.3 × 10−4 0.35 for S-Nap
2.5 for R-Nap [43]

L-CYS/AuNPs/Au CV 2.0 × 10−6–2.0 × 10−5 0.67 [44]
BSA/TBO@rGO/GCE CV 5.0 × 10−4–5.0 × 10−3 0.33 [45]

Prp enantiomers

GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2] DPV 2.5 × 10−5–1.0 × 10−3 0.90 for S-Prp
1.24 for R-Prp this work

GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] DPV 5.0 × 10−5–1.0 × 10−3 0.78 for S-Prp
0.87 for R-Prp this work

CNT–silicone–rubber–CPE DPV 5.0 × 10−7–7.0 × 10−6 0.12 [46]
PDMS-CPE DPV 1.0 × 10−5–6.0 × 10−5 3 [47]
GCE/PAP/α-CD GCE/PAP/β-CD
GCE/PAP/MAGCE/PAP/CA DPV 2.1 × 10−5–6.75 × 10−4 5.46 ÷ 8.37 [48]

MIP/rGO/GCE DPV 5.0 × 10−5–1.0 × 10−3 - [49]
CuNPs- GO-CB-PEDOT:PSS/GCE SWV 5.0 × 10−7–2.9 × 10−6 0.18 [50]
AgNP-IL-FG/GCE SWV 1.0 × 10−7–2.9 × 10−6 0.017 [51]
ctDNA/nanoAu–MB–MWNTs/GCE CV 1.0 × 10−5–5.0 × 10−3 3.3 [52]

The validity of results of determination of Nap and Prp enantiomers by the suggested
composite sensors was estimated by the “added–found” method (Table 4). It was found
that the sensors made it possible to determine the content of Nap and Prp enantiomers
with high accuracy in a wide concentration range. The relative standard deviation did not
exceed 2.2% in the determination of Nap enantiomers and 1.9% for Prp enantiomers in
model solutions. The developed enantioselective sensors were used to determine Nap and
Prp enantiomers in biological fluids. Statistical assessment of results of determination by
the “added–found” method indicated the absence of systematic error. The relative standard
deviation in the determination of enantiomers in biological fluids ranged within 1.9–4.7%.
Thus, the suggested sensors are suitable for highly reproducible determination of Nap and
Prp enantiomers in biological fluids.

Table 4. DPV determination of R- and S-Nap (phosphate buffer solution with pH 6.86) and R-
and S-Prp (0.05 M sulfuric acid) in model solutions on GCE modified by PEC composites [M(S-
Ala)2(H2O)n]–[M(S-Phe)2(H2O)n] (M = Cu(II), Zn(II); n = 0–1) (potential scanning rate 0.2 Vs−1, n = 5,
p = 0.95).

Sensor
Added, µM Found, µM Recovery, % RSD, %
R S R S R S R S

Solutions of Nap enantiomers

GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2]
75 75 74 ± 2 75 ± 2 98.7 100.0 1.8 2.1
250 250 249 ± 7 249 ± 6 99.6 99.6 2.2 2.1
750 750 747 ± 9 752 ± 8 99.6 100.3 1.0 0.9

GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)]
75 75 74 ± 2 75 ± 3 98.7 100.0 1.9 1.8
250 250 249 ± 3 251 ± 3 99.6 100.4 1.9 1.6
750 750 751 ± 6 751 ± 5 100.1 100.1 1.1 0.9
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Table 4. Cont.

Sensor
Added, µM Found, µM Recovery, % RSD, %
R S R S R S R S

Nap enantiomers in human blood plasma

GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2]
75 75 72 ± 3 73 ± 3 96.0 97.3 3.8 2.9
250 250 245 ± 9 245 ± 8 98.0 98.0 3.0 2.6
750 750 745 ± 9 749 ± 7 99.3 99.9 2.9 2.4

GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)]
75 75 72 ± 4 72 ± 4 96.0 96.0 4.7 4.5
250 250 245 ± 5 248 ± 7 98.0 99.2 2.6 2.2
750 750 747 ± 8 747 ± 5 99.6 99.6 2.9 2.5

Nap enantiomers in urine

GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2]
75 75 73 ± 5 74 ± 4 97.3 98.7 3.8 3.6
250 250 246 ± 8 248 ± 7 98.4 99.2 2.9 2.5
750 750 746 ± 4 751 ± 9 99.5 100.1 2.7 2.3

GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)]
75 75 72 ± 3 73 ± 3 96.0 97.3 3.0 3.1
250 250 247 ± 4 249 ± 8 98.8 99.6 2.7 2.3
750 750 749 ± 6 749 ± 4 99.9 99.9 2.4 2.0

Solutions of Prp enantiomers

GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2]
75 75 74 ± 2 75 ± 2 98.7 100.0 1.9 1.8
250 250 248 ± 5 251 ± 4 99.2 99.2 1.6 1.3
750 750 747 ± 5 752 ± 4 99.6 100.3 0.9 0.7

GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)]
75 75 74 ± 2 76 ± 2 98.7 101.3 1.8 1.7

250 250 248 ± 3 248 ± 4 99.2 99.2 0.9 1.2
750 750 745 ± 7 751 ± 5 99.3 100.1 0.7 0.5

Prp enantiomers in human blood plasma

GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2]
75 75 72 ± 4 73 ± 2 96.0 97.3 3.6 2.2

250 250 245 ± 9 245 ± 8 98.0 98.0 3.0 2.7
750 750 745 ± 9 748 ± 7 99.3 99.7 2.5 2.4

GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)]
75 75 72 ± 4 73 ± 4 96.0 97.3 3.7 3.5

250 250 247 ± 7 247 ± 7 98.8 98.8 2.1 2.3
750 750 746 ± 6 748 ± 4 99.5 99.7 2.0 2.1

Prp enantiomers in urine

GCE/PEC–[Cu(S-Ala)2]–[Cu(S-Phe)2]
75 75 73 ± 2 74 ± 2 97.3 98.7 2.3 2.2

250 250 246 ± 8 247 ± 4 98.4 98.8 2.6 2.4
750 750 746 ± 5 752 ± 7 99.5 100.3 2.1 2.0

GCE/PEC–[Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)]
75 75 73 ± 3 74 ± 1 97.3 98.7 3.0 2.5

250 250 248 ± 5 249 ± 2 99.2 99.6 2.2 2.0
750 750 749 ± 8 749 ± 5 99.9 99.9 2.0 1.9

3. Materials and Methods

All the reagents and chemicals were purchased from commercial sources (PanReac
AppliChem; Sigma Aldrich) and were used as received without further purification. All the
solutions were prepared by standard methods. XRD analysis was performed with a Bruker
D8 Advance X-ray diffractometer. Cu Kα radiation with Bragg–Brentano focusing was
used. Solid samples of complexes 1 and 2 (about 30 mg of the powder) were ground with a
pestle in a porcelain mortar. FTIR spectra were recorded on an FTIR-8400 S spectrometer
(Shimadzu, Tokyo, Japan) (4000–400 cm−1, 2 cm−1 resolution, 20 scans) at 25 ◦C. 1H and
13C NMR spectra were recorded on a Bruker Avance-III 500 MHz spectrometer (500.13 MHz
(1H), 125.75 MHz (13C)). The samples were prepared in standard tubes 5 mm in diameter.
One and two-dimensional NMR spectra ({1H, 1H} COSY, {1H, 13C} HSQC, {1H, 13C} HMBC)
were measured using standard pulse sequences. The ESI-MS spectrum was recorded on an
LCMS-2010EV HPLC mass-spectrometer (Shimadzu, Tokyo, Japan).

The quantum chemical simulation of the complexes [Cu(S-Ala)2], [Cu(S-Phe)2] (1a,b)
and [Zn(S-Ala)2(H2O)], [Zn(S-Phe)2(H2O)] (2a,b) was performed using density functional
theory. The M06 functionals [39] were used in combination with the triple-valence split
polarization basis set augmented with the set of sp-diffuse functions 6–311+G(d) [53–57].
The quantum chemical calculations were performed on a cluster supercomputer of the Ufa
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Institute of Chemistry of the RAS using Gaussian 09 [58]. Visualization was performed
using the ChemCraft program [59].

Voltammetric measurements were carried out on an Autolab PGSTAT 204 potentiostat–
galvanostat (MetrohmAutolab Ins., Utrecht, The Netherlands) with NOVA software in a
standard three-electrode cell with a working GCE 3 mm in diameter, an auxiliary electrode
made of a platinum plate, and a silver chloride reference electrode. Differential pulse
voltammograms were recorded in the potential range from 0 to 1.6 in the case of Prp or
from 0 to 1.8 V in the case of Nap using an amplitude of 25 mV, a time interval of 0.5 s, a
modulation time of 0.05 s, and a potential scan rate of 20 mV/s. An electrochemical cell
thermally controlled at 25 ± 0.1 ◦C was filled with 20 mL of an analyte, and the current–
voltage curves were recorded. The data set for each sample consisted of five parallel
measurements, which was sufficient to obtain reproducible results. Before recording the
voltammograms, the indicator electrode was kept for 5 s in the test solution.

R- and S-Prp (≥99%) (Sigma Aldrich) and R- and S-Nap (≥98%) (Sigma Aldrich) were
used as the analytes. Solutions of Nap enantiomers (1 mM) were prepared by dissolving a
sample of the substance in 100 mL of a phosphate buffer solution (Na2HPO4 and KH2PO4)
with pH 6.86. Solutions of Prp enantiomers (1 mM) were prepared by dissolving a sample
of the compound in 100 mL of sulfuric acid (0.05 M).

The [Cu(S-Ala)2], [Cu(S-Phe)2], [Zn(S-Ala)2(H2O)], [Zn(S-Phe)2(H2O)], [Cu(S-Ala)2]–
[Cu(S-Phe)2] (1), and [Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] (2) composites, and S-alanine
(S-AlaH) or S-phenylalanine (S-PheH in “zwitterionic” form) with the PEC were used to
modify the GCE.

Samples of chitosan and 99% sodium salt of N-succinylchitosan were purchased from
CJSC Bioprogress. The procedure for obtaining the PEC based on chitosan hydrochloride
(with a molecular weight of 30 kDa and a deacetylation degree of 75%) and the sodium salt
of N-succinylchitosan (with a molecular weight of 200 kDa obtained from chitosan with a
deacetylation degree of 82%) is described elsewhere [17]. To obtain a composite, a weighed
portion (0.002 g) of the complex or an amino acid was dissolved in 2 mL of the PEC and
kept for 6 min in an ultrasonic bath, followed by filtration on a white ribbon filter. The
GCE was modified by placing 10 µL of a solution of the chitosan PEC with a chiral selector
introduced into it onto a carefully polished GCE surface, followed by evaporation of the
solvent under an IR lamp at a temperature of 80 ◦C.

Complexes 1a and 1b were obtained according to the published methods [31,32]. In a
100 mL flask equipped with a magnetic stirrer, a solution of 0.2 g S-PheH or 0.107 g S-AlaH
(1.2 mmol) in distilled water (7 mL) was prepared. An 1 M solution of NaOH (1.2 mmol)
was added to an aqueous solution of S-pheH or S-AlaH, and the mixture was stirred for
30 min. Then an aqueous solution of CuCl2 (0.1 g, 0.6 mmol CuCl2·2H2O in 5 mL) was
added to the deprotonated form of the amino acid. The reaction mixture was stirred at
room temperature for 3 h to give a violet powder. The complex 1a [32] or 1b obtained
in this way was analyzed by FTIR spectroscopy (br. broad; vs. very strong; s. strong; m.
medium; w. weak).

FTIR (KBr, cm−1) [Cu(S-Ala)2] (1b): 3273–2939 m. (vas,s(–NH2)+vas,s(CH, CH2)); 1628
vs. (vas,s(C=O)); 1396 s., 1373 m. (vas,s(C–O) + δ(CH)); 1159 m., 1119 m., 1105 m., 1063 m.
(v(C–N) + δ(NH2) + δ(CH)).

Complexes 2a and 2b were obtained using the published methods [17,27]. In a 100 mL
flask equipped with a magnetic stirrer, a solution of 0.2 g L-PheH or 0.107 g L-AlaH
(1.2 mmol) in distilled water (7 mL) was prepared. A solution of Zn(CH3COO)2 (0.111 g,
0.6 mmol Zn(CH3COO)2.2H2O in 5 mL) was added to a solution of amino acid L-pheH or
L-AlaH. The reaction mixture was stirred at 30–35 ◦C for 24 h to give a white powder. The
complex 2a [32] or 2b obtained in this way was analyzed by FTIR spectroscopy (br. broad;
vs. very strong; s. strong; m. medium; w. weak).

FTIR (KBr, cm−1) [Zn(S-Ala)2(H2O)] (2b): 3406–2837 m. (vas,s(–NH2) + vas,s(CH, CH2));
1601 vs. (vas,s(C=O)); 1425 m, 1396 s., 1364 m. (vas,s(C–O) + δ(CH)); 1144 m., 1119 m., 1053 m.
(v(C–N) + δ(NH2) + δ(CH)).
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Composites 1 and 2 were obtained by mixing the components in a ratio of 1:1:1. S-
PheH 0.15 g (0.9 mmol) and S-AlaH 0.08 g (0.9 mmol) were dissolved in distilled water
(10 mL) in a flask (V = 50 mL) on a magnetic stirrer and stirred for 30 min. A solution (5 mL)
containing 0.181 g (0.9 mmol) Cu(CH3COO)2

.H2O or 0.166 g (0.9 mmol) Zn(CH3COO)2
.2

H2O was added to the resulting mixture that was then stirred for 24 h at room temperature
until a suspension formed. The reaction solution of complex 2 was additionally heated to
30–35 ◦C. After the formation of a precipitate, the resulting complexes were washed twice
with water on a filter and dried at room temperature in a desiccator over CaCl2.

Light-violet fine crystalline powders of composite 1 were obtained in 48% yield, and
white powders of complex 2 were obtained in 51% yield.

FTIR (KBr, cm−1) [Cu(S-Ala)2]–[Cu(S-Phe)2] (1): 3086–2928 m. (vas,s(-NH2) + vas,s(CH,
CH2)); 1620 vs. (vas,s(C=O)); 1396 s., 1381 m. (vas,s(C-O) + δ(CH)); 1136 m., 1121 m., 1107 m.,
1076 m. (v(C-N) + δ(NH2) + δ(CH)).

FTIR (KBr, cm−1) [Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] (2): 3475 m., 3414 m. (v(OH));
3258–2854 m. (vas,s(-NH2) + vas,s(CH, CH2)); 1620 vs. (vas,s(C=O)); 1410 s., 1391 m. (vas,s(C-
O) + δ(CH)); 1088 m. (v(C-N) + δ(NH2) + δ(CH)). [Zn(S-Phe)2(H2O)] (2a): 1H NMR (D2O,
298 K), δ, ppm: 7.31–7.42 (m, 5H, Ph), 3.79 (dd, 1H, CH2CH, 3J= 7.7 Hz), 3.23 (dd, 1H,
CHH 2J = 14.4 Hz, 3J = 4.8 Hz), 3.02 (dd, 1H, CHH, 2J = 14.1 Hz, 3J = 7.8 Hz). 13C NMR
(D2O, 298 K) δ 40.59 (CH2), 57.47 (C2), 129.94 (C7), 131.56 (C5, C5’), 132.11 (C6, C6’), 139.18
(C4), 183.88 (C1). [Zn(S-Ala)2(H2O)] (2b) 1H NMR (D2O, 298 K), δ, ppm: 3.62 (dd, 1H,
CH3CH, 2J = 13.6 Hz, 3J = 6.9 Hz), 1.40 (d, 3H, CH3CH). 13C NMR (D2O, 298 K) δ 20.52
(CH3), 52.35 (C2), 182.53 (C1).

4. Conclusions

The composites based on chelate complexes of transition metals Cu(S-Ala)2]–[Cu(S-
Phe)2] and [Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] studied in this work and used in the
EVS as chiral selectors are stable under experimental conditions and provide greater
enantioselectivity compared to amino acids and complexes 1,2a,b in the determination of
chiral analytes such as Nap and Prp.

It has been shown that enantioselectivity depends on the complex-forming metal and
on the composite structure. The best results are observed with copper complexes that have
nearly planar structures. In general, it can be noted that sensors modified with various
amino acid complexes of transition metals possess cross sensitivity [27] to enantiomers of
biologically active compounds and can be used for constructing novel chiral multi-sensor
platforms [14–16] in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics10080117/s1. ESI-MS, QM for composite [Cu(S-Ala)2]–
[Cu(S-Phe)2] (1) and [Zn(S-Ala)2(H2O)]–[Zn(S-Phe)2(H2O)] (2) and the structure data for complexes
[Cu(S-Phe)2] (1a), [Zn(S-Phe)2(H2O)] (2a), [Cu(S-Ala)2] (1b), [Zn(S-Ala)2(H2O)] (2b).
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