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Abstract: To develop the structural and functional modeling chemistry of [NiFe]-H2ases, we have
carried out a study regarding the synthesis, structural characterization and reactivity of a new se-
ries of [NiFe]-H2ase model complexes. Thus, treatment of diphosphine dppb-chelated Ni complex
(dppb)NiCl2 (dppb = 1,2-(Ph2P)2C6H4) with (dppv)Fe(CO)2(pdt) (dppv = 1,2-(Ph2P)2C2H2, pdt = 1,3-
propanedithiolate) and NaBF4 gave dicarbonyl complex [(dppb)Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([A](B-
F4)2). Further treatment of [A](BF4)2 with Me3NO and Bu4NCN or KSCN afforded t-cyanido and
t-isothiocyanato complexes [(dppb)Ni(pdt)Fe(CO)(t-R)(dppv)]BF4 ([1]BF4, R = CN; [2]BF4, R = NCS),
respectively. While azadiphosphine MeN(CH2PPh2)2-chelated t-hydride complex [MeN(CH2PP-
h2)2Ni(pdt)Fe(CO)(t-H)(dppv)]BF4 ([3]BF4) was prepared by treatment of dicarbonyl complex [MeN-
(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([B](BF4)2) with Me3NO and 1.5 MPa of H2, treatment of
dicarbonyl complex [B](BF4)2 with Me3NO (without H2) in pyridine resulted in formation of a novel
monocarbonyl complex [MeN(CH2PPh2)2Ni(SCHCH2CH2S)Fe(CO)(dppv)]BF4 ([4]BF4) via the unex-
pected sp3 C-H bond activation reaction. Furthermore, azadiphosphine PhN(CH2PPh2)2-chelated µ-
mercapto complex [PhN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-SH)(dppv)]BF4 ([5]BF4) was prepared by treat-
ment of dicarbonyl complex [PhN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([C](BF4)2) with Me3NO
and H2S gas, whereas treatment of azadiphosphine Ph2CHN(CH2PPh2)2-chelated dicarbonyl com-
plex [Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppe)](BF4)2 ([D](BF4)2, dppe = 1,2-(Ph2P)2C2H4) with
Me3NO·2H2O gave rise to µ-hydroxo complex [Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-OH)(dppe)]BF4

([6]BF4). All the possible pathways for formation of the new model complexes are briefly discussed,
and their structures were fully characterized by various spectroscopic techniques and for six of them
by X-ray crystallography.

Keywords: [NiFe]-hydrogenase; biomimetic models; dinuclear NiFe complexes; bioinorganic;
X-ray crystallography

1. Introduction

Hydrogenases (H2ases) are a class of biological enzymes that catalyze the reversible
interconversion of H2 
 2H+ + 2e− in various microorganisms such as bacteria, archaea,
and some eukaryotes [1–3]. According to the metal composition in their active site, H2ases
are generally divided into three main groups [NiFe]-H2ases [4–6], [FeFe]-H2ases [7–9] and
[Fe]-H2ase [10–12]. Among the three enzymes, [NiFe]-H2ases are the oldest and most
widely distributed in nature [13,14].

X-ray crystallographic study revealed that the active site of [NiFe]-H2ases consists of
two metal centers in which the Ni center is coordinated by two terminal cysteinate ligands,
the Fe center is coordinated by one terminal CO/two terminal CN− ligands, and the two
metal centers are combined together by two bridging cysteinate ligands [15–18]. To date, the
H2 activation function catalyzed by the [NiFe]-H2ase active site is known to involve several
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states, such as the Ni-SIa, Ni-R and Ni-C states [19–21]. While Ni-SIa, and Ni-R states all
contain a diamagnetic butterfly NiIIFeII(µ-S)2 core, the Ni-C state contains a paramagnetic
NiIIIFeII(µ-S)2 core. In addition, the Ni-R, and Ni-C states involve an additional µ-H ligand,
while the Ni-SIa state does not have any other bridging ligand except the two µ-S ligands
in its NiIIFeII(µ-S)2 core (Figure 1).
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The well-elucidated active site structure and the identified states of the active site
during H2 activation catalyzed by [NiFe]-H2ases have promoted researchers to synthesize
a wide variety of [NiFe]-H2ase models [22–45]. In recent years, we have prepared some
[NiFe]-H2ase model complexes and some of them were proved to be functional models of
[NiFe]-H2ases [35,37,38,42–45]. To develop the biomimetic chemistry of [NiFe]-H2ases and
to understand the reversible H2 activation catalyzed by [NiFe]-H2ases, we further designed
and synthesized a series of new dithiolato-bridged [NiFe]-H2ase biomimetics. In this article,
we report their synthetic procedures, structural characterization and chemical reactivity.

2. Results and Discussion
2.1. Synthesis and Characterization of Diphosphine dppb-Chelated Dicarbonyl
Complex[(dppb)Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([A](BF4)2) and Monocarbonyl Complexes
[(dppb)Ni(pdt)Fe(CO)(t-R)(dppv)]BF4 ([1]BF4, R = CN; [2]BF4, R = NCS)

We found that diphosphine dppb (dppb = 1,2-(Ph2P)2C6H4)-chelated dicarbonyl com-
plex [A](BF4)2 could be prepared by treatment of a CH2Cl2 solution of mononuclear Ni
complex (dppb)NiCl2 with one equimolar Fe complex (dppv)Fe(CO)2(pdt) (dppv = 1,2-
(PPh2)2C2H2, pdt = 1,3-propanedithiolate) and a large excess of NaBF4 in 80% yield
(Scheme 1). The formation of dicarbonyl complex [A](BF4)2 might be suggested to in-
volve two elementary reaction steps: (i) the doubly anionic Cl−/BF4

− exchange between
(dppb)NiCl2 and NaBF4 to give intermediate m1; and (ii) coordination of the two S atoms
in pdt ligand of (dppv)Fe(CO)2(pdt) to Ni atom of the resulting intermediate m1 to afford
the final product [45] (Scheme 1).
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Scheme 1. Synthesis of dicarbonyl complex [A](BF4)2.

Dicarbonyl complex [A](BF4)2 is an air-stable orange-red solid. The IR spectrum of
[A](BF4)2 shows one very strong absorption band at 1997 cm−1 for its terminal carbonyls.
The 31P{1H} NMR spectrum displays one singlet at 56.9 ppm for its two P atoms in the
Ni-bound dppb ligand and one singlet at 65.1 ppm for its two P atoms in the Fe-bound
dppv ligand, respectively. In addition, the 1H NMR and 13C{1H} NMR spectra are in good
agreement with its structure shown in Scheme 1.

The molecular structure of [A](BF4)2 was determined by X-ray crystallography. As
shown in Figure 2, this complex comprises one dication [(dppb)Ni(pdt)Fe(CO)2(dppv)]2+

and two BF4
− monoanions. In its dication, a dithiolato pdt ligand is bridged between the

NiFe centers to form a butterfly NiIIFeII(µ-S)2 core with a “hinge” angle 45.88◦ between
the two Ni1S1Fe1 and Ni1S2Fe1 planes. While the Ni center adopts a distorted square-
planar geometry, the Fe center adopts a pseudo-octahedral geometry. The Ni····Fe distance
(3.1875 Å) in [A](BF4)2 is much longer than that (2.57 Å) in D. Volgaris Miyazaki F. [NiFe]-
H2ase [19] and much longer than the sum (2.56 Å) of Ni and Fe atom covalent radii [46].
This implies that there isn′t any metal-metal bonding interaction between its NiFe centers.
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Figure 2. Molecular structure of [A](BF4)2 with thermal ellipsoids drawn at a 30% probability level.
All H atoms and two BF4

− anions are omitted for the sake of clarity. Selected bond lengths (Å) and
angles (◦): Ni····Fe 3.1875, Ni1-S1 2.2301(11), Ni1-S2 2.2314(12), Fe1-S1 2.3106(11), Fe1-S2 2.3235(11),
Fe1-P3 2.2330(12), Fe1-P4 2.2426(12), Ni1-P1 2.1585(12), Ni1-P2 2.1647(12); S1-Ni1-S2 84.03(4), P1-Ni1-
S1 175.93(5), P1-Ni1-P2 87.54(4), S1-Fe1-S2 80.24(4), P3-Fe1-S1 92.74(4), P3-Fe1-P4 87.34(4).
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After dicarbonyl complex [A](BF4)2 was prepared, we further prepared the diphos-
phine dppb-chelated monocarbonyl complexes [1]BF4 and [2]BF4. Thus, when complex
[A](BF4)2 was treated with one equiv of decarbonylation agent Me3NO in acetone followed
by treatment of the resulting mixture with one equiv of Bu4NCN or KSCN, the correspond-
ing t-cyanido and t-isothiocyanato complexes [1]BF4 and [2]BF4 were produced in 68% and
63% yields, respectively (Scheme 2).
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A possible pathway suggested for the formation of complexes [1]BF4 and [2]BF4 is
shown in Scheme 2, which involves the following two reaction steps. The first step involves
decarbonylation of dicarbonyl complex [A](BF4)2 under the action of decarbonylating agent
Me3NO to give 5-coordinate intemediate m2 with a vacant site trans to its pdt ligand [47].
The second step involves the nucleophilic attack of the negatively-charged C atom in CN
group of Bu4NCN or the neucleophic attack of the paired electrons on N atom in NCS group
of KSCN (note that the SCN group in KSCN is a well-known ambidentate ligand) [48] at
the positively-charged Fe atom followed by loss of one molecule of Bu4N(BF4) or KBF4 to
produce the final t-cyanido and t-isothiocyanato complexes.

Both [1]BF4 and [2]BF4 are air-stable orange-red solids. The IR spectra of the two
complexes show one very strong absorption band at 1956 and 1950 cm−1 for their terminal
carbonyls and one additional absorption band at 2067 cm−1 for the N=C=S ligand in
[2]BF4. In addition, the 13C{1H} NMR spectra of [1]BF4 and [2]BF4 exhibit one singlet at
214.4 and 215.5 ppm for their terminal carbonyl C atoms, respectively. The 31P{1H} NMR
spectra of the two complexes, similar to dicarbonyl complex [A](BF4)2, display one singlet
at 51.9/55.3 ppm for their two P atoms in the Ni-bound dppb ligands and one singlet
at 76.6/73.6 ppm for their two P atoms in the Fe-bound dppv ligands, respectively. The
assignment of the lower field singlets to the two P atoms in the dppv ligands is based on
the fact that the 31P{1H} NMR signal of (dppv)(CO)2Fe(pdt) determined under the same
conditions was found in the lower field at 79.3 ppm.

The molecular structures of [1]BF4 and [2]BF4 were confirmed by X-ray crystal diffrac-
tion analysis. As shown in Figures 3 and 4, the two complexes are isostructural. Both of
them consist of one monocation [(dppb)Ni(pdt)Fe(CO)(CN)(dppv)]+ or [(dppb)Ni(pdt)Fe-
(CO)(NCS)(dppv)]+ and one BF4

− monoanion. The NiFe centers of [1]BF4 and [2]BF4 are
bridged by a dithiolato pdt ligand to form a butterfly NiIIFeII(µ-S)2 core and the “hinge”
angles between their Ni1S1Fe1 and Ni1S2Fe1 planes are 45.97 and 47.16◦, respectively. The
C2≡N1 bond length in [1]BF4 is 1.144 Å, whereas the N1=C2 and C2=S3 bond lengths in
[2]BF4 are 1.145 Å and 1.626 Å, respectively. The Ni····Fe distances of [1]BF4 (3.2106 Å)



Inorganics 2022, 10, 90 5 of 17

and [2]BF4 (3.1570 Å) are very close to that of [A](BF4)2. Therefore, like [A](BF4)2, they
do not have any Ni····Fe metal-metal bonding interaction. Notably, complex [2]BF4 is
the first prepared and crystallographically characterized N=C=S ligand-containing [NiFe]-
H2ase model, although some CN ligand-containing [NiFe]-H2ase models were previously
reported by other groups [24,49].
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2.2. Reactions of MeN(CH2PPh2)2-Chelated Dicarbonyl Complex
[MeN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([B](BF4)2) Leading to Monocarbonyl Complexes
[MeN(CH2PPh2)2Ni(pdt)Fe(CO)(t-H)(dppv)]BF4 ([3]BF4) and
[MeN(CH2PPh2)2Ni(SCHCH2CH2S)Fe(CO)(dppv)]BF4 ([4]BF4)

In 2017, we reported the preparation of an azadiphosphine PhN(CH2PPh2)2-chelated
t-hydride [NiFe]-H2ase model [42]. In order to see if the azadiphosphine MeN(CH2PPh2)2-
chelated dicarbonyl complex [B](BF4)2 [45] (an analogue of the diphosphine dppb-chelated
dicarbonyl complex [A](BF4)2) could also activate H2 to give the corresponding MeN(CH2P-
Ph2)2-chelated t-hydride complex [3]BF4, we carried out the reaction of [B](BF4)2 with one
equiv of decarbonylating agent Me3NO and 1.5 MPa of H2; as a result, the expected t-
hydride complex [3]BF4 was produced in 78% yield, indicating that complex [B](BF4)2
possesses the H2 activation function (Scheme 3). Similar to the previously reported
PhN(CH2PPh2)2-chelated t-hydride complex [42], the formation of the MeN(CH2PPh2)2-
chelated t-hydride complex [3]BF4 might be suggested to involve two reaction steps. The
first step involves the formation of decarbonylating intermediate m3 with a vacant site cis
to its pdt ligand for H2 coordination. The second step involves heterolytic cleavage of the
coordinated H2 under the assistance of in situ generated proton acceptor Me3N to give the
final t-hydride product (Scheme 3). In addition, it should be noted that when t-hydride
complex [3]BF4 was treated with excess HBF4·Et2O and with bubbling CO gas, it could be
converted to dicarbonyl complex [B](BF4)2 in 81% yield (Scheme 3).
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More interestingly, except H2 activation, dicarbonyl complex [B](BF4)2 was further
found to have the sp3 C-H bond activation function [50]. Thus, when dicarbonyl complex
[B](BF4)2 was treated in pyridine with an equimolar Me3NO (without H2), a novel sp3

C-Fe bond-containing monocarbonyl complex [4]BF4 was produced via the intramolecular
sp3 C-H bond activation of [B](BF4)2 in 73% yield (Scheme 4). It is interesting to note that
complex [B](BF4)2 is the first [NiFe]-H2ase model to have the C-H bond activation function.
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As shown in Scheme 4, the formation of complex [4]BF4 might be suggested to include
three reaction steps. The first step involves the formation of 5-coordinate intermediate m3
as indicated in Scheme 3. The second step includes a transition state formed by interaction
of one sp3 C-H bond directly attached to S atom of the pdt ligand in intermediate m3 with
pyridine N atom and the positively-charged Fe atom. The final step affords product [4]BF4
accompanied by formation of the pyridinium salt [C5H5NH]BF4.

While t-hydride complex [3]BF4 is an air-stable deep-green solid, the sp3 C-Fe bond-
containing complex [4]BF4 is an air-stable grey-black solid. The IR spectra of the two
complexes show one very strong absorption band at 1912 and 1911 cm−1 for their terminal
carbonyls, respectively. The 31P{1H} NMR spectrum of [3]BF4 exhibits one singlet at
7.2 ppm for its two P atoms in the Ni-bound azadiphosphine ligand and another singlet
at 91.4 ppm for its two P atoms in the Fe-bound dppv ligand. In addition, [4]BF4 displays
two doublets at 3.9/11.4 ppm for its two P atoms in the Ni-bound azadiphosphine ligand
and two doublets at 93.2/94.7 ppm for its two P atoms in the Fe-bound dppv ligands since
it is an asymmetric molecule. The 1H NMR spectrum of [3]BF4 displays one singlet at
2.54 ppm for its CH3N group and one triplet at −4.19 ppm with J = 74 Hz for its terminal
hydride, which is very close to that (−4.27 ppm, J = 74 Hz) displayed by its azadiphosphine
PhN(CH2PPh2)2-chelated analogue [42].

Fortunately, the molecular structure of [4]BF4 was successfully determined by X-ray
crystallography (Figure 5). This molecule is composed of one monocation [MeN(CH2PPh2)2-
Ni(SCHCH2CH2S)Fe(CO)(dppv)]+ and one BF4

− monoanion. In its monocation there is
one sp3 C-Fe bond, namely the C27-Fe1 bond formed by interaction of one sp3 C-H bond
attached directly to S atom of the bridging pdt ligand with pyridine N atom and the
positively-charged Fe atom. The C27-Fe1 bond length is 2.067 Å, whereas the Ni····Fe
distance is 2.9751 Å. While the Ni atom adopts a distorted square-planar geometry, the
Fe atom has a pseudo-octahedral geometry. The “hinge” angle between its two Ni1S1Fe1
and NiS2Fe1 planes is 49.14◦, which is obviously larger than that (45.97◦) in monocarbonyl
complex [1]BF4 or that (47.16◦) in complex [2]BF4, presumably owing to formation of the
intramolecular C27-Fe1 bond in monocarbonyl complex [4]BF4.
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Figure 5. Molecular structure of [4]BF4 with thermal ellipsoids drawn at a 30% probability level. All
H atoms and one BF4

−anion are omitted for the sake of clarity. Selected bond lengths (Å) and angles
(◦): Ni····Fe 2.9751, Ni1-S1 2.1805(14), Ni1-S2 2.2103(14), Fe1-S1 2.3330(14), Fe1-S2 2.2755(14), Fe1-P1
2.1735(14), Fe1-P2 2.1969(13), Ni1-P3 2.2005(14), Ni1-P4 2.1718(14); S1-Ni1-S2 88.67(5), P3-Ni1-S1
89.95(5), P3-Ni1-P4 93.19(5), S1-Fe1-S2 83.48(5), P1-Fe1-S1 148.21(6), P1-Fe1-P2 86.71(5).

2.3. Reaction of Azadiphosphine PhN(CH2PPh2)2-Chelated Dicarbonyl Complex
[PhN(CH2PPh2)2Ni(pdt)Fe(CO)2)(dppv)](BF4)2 ([C](BF4)2) Leading to Monocarbonyl Complex
[PhN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-SH)(dppv)]BF4 ([5]BF4)

The azadiphosphine PhN(CH2PPh2)2-chelated µ-mercapto complex [5]BF4 was found
to be prepared by reaction of the corresponding dicarbonyl complex [PhN(CH2PPh2)2Ni(pd-
t)Fe(CO)2(dppv)](BF4)2 ([C](BF4)2) [42], an analogue of the diphosphine dppb-chelated
dicarbonyl complex [A](BF4)2, with one equiv of decarbonylating agent Me3NO in acetone
followed by treatment of the resulting mixture with bubbling H2S gas in nearly quantitative
yield (Scheme 5).
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A possible pathway for the formation of µ-mercapto complex [5]BF4 is shown in
Scheme 5. The first step in Scheme 5 is similar to that shown in Scheme 2 to involve the
formation of 5-coordinate intermediate m4. The second step involves coordination of one
molecule of H2S to the positively-charged Fe center of m4 to afford intermediate m5. The
final step involves deprotonation from µ-SH2 ligand with the aid of in situ generated proton
acceptor Me3N to produce [5]BF4.

µ-Mercapto complex [5]BF4 is an air-stable brown solid. The IR spectrum of [5]BF4
displays one very strong absorption band at 1938 cm−1 for its terminal carbonyl. The 1H
NMR spectrum exhibits one triplet at −2.89 ppm for its µ-SH ligand. The 31P{1H} NMR
spectrum exhibits two singlets at −1.3 and 73.6 ppm for two P atoms in its azadiphosphine
and dppv ligands, respectively.

The X-ray crystallographic study indicated that complex [5]BF4 contains one monoca-
tion [PhN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-SH)(dppv)]+ and one monoanion BF4

− (Figure 6).
While the Ni center adopts a distorted square-pyramidal geometry, the Fe center adopts a
pseudo-octahedral geometry. The most striking feature of [5]BF4 is to contain a bridging µ-
SH ligand, which is unsymmetrically bridged between its NiFe centers with the Ni1−S3 and
Fe1−S3 distances being 2.5968 and 2.3444 Å, respectively. It should be noted that complex
[5]BF4 is the first prepared and crystallographically characterized µ-SH ligand-containing
[NiFe]-H2ase model.
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S1-Ni1-S2 81.12(3), P1-Ni1-S1 159.20(4), P1-Ni1-P2 95.80(4), S1-Fe1-S2 79.76(3), P3-Fe1-S1 93.34(4),
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2.4. Synthesis and Characterization of Azadiphosphine Ph2CHN(CH2PPh2)2-Chelated Dicarbonyl
Complex [Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppe)](BF4)2 ([D](BF4)2) and Monocarbonyl
Complex [Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-OH)(dppe)]BF4 ([6]BF4)

Similar to the preparation of diphosphine dppb-chelated complex [A](BF4)2, the
azadiphosphine Ph2CHN(CH2PPh2)2-chelated complex [D](BF4)2 was found to be pre-
pared by treatment of a CH2Cl2 solution of mononuclear Ni complex [Ph2CHN(CH2PPh2)2]-
NiCl2 with 1 equiv of mononuclear Fe complex (dppe)Fe(CO)2(pdt) (dppe = 1,2-(Ph2P)2C2H4)
and a large excess of NaBF4 in 80% yield. Furthermore, we found that when complex
[D](BF4)2 was treated with 1 equiv of the hydrated trimethylamine oxide, an azadiphos-
phine Ph2CHN(CH2PPh2)2-chelated µ-hydroxo complex [6]BF4 was isolated in 65% yield
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(Scheme 6). Similar to the previously reported azadiphosphine PhN(CH2PPh2)2-chelated
µ-hydroxo analogue [42], the formation of µ-hydroxo complex [6]BF4 could be suggested
to include the following three reaction steps. The first step involves decarbonylation of
dicarbonyl complex [D](BF4)2 to give intermediate m6 with a vacant coordination site trans
to its pdt ligand [47]. The second step involves coordination of m6 with one molecule of
in situ liberated H2O from Me3NO·2H2O to afford µ-aqua intermediate m7. The third
step involves deprotonation of the µ-aqua intermediate m7 with the aid of Me3N to afford
µ-hydroxo complex [6]BF4 (Scheme 6).

Inorganics 2022, 10, x FOR PEER REVIEW 10 of 16 
 

 

 
Scheme 6. Synthesis of dicarbonyl complex [D](BF4)2 and µ-hydroxo complex [6]BF4. 

While dicarbonyl complex [D](BF4)2 is an air-stable orange-red solid, µ-hydroxo com-
plex [6]BF4 is an air-stable orange-red solid. The IR spectra of [D](BF4)2 and [6]BF4 display 
one very strong absorption band at 1983 and 1917 cm−1 for their terminal carbonyls, re-
spectively. The 31P{1H} NMR spectra of [D](BF4)2 and [6]BF4 exhibit one singlet at 4.9 and 
2.2 ppm for their two P atoms attached to the Ni-bound azadiphosphine ligand and one 
singlet at 56.8 and 65.8 ppm for their two P atoms attached to the Fe-bound dppe ligand, 
respectively. The 1H NMR spectra of [D](BF4)2 and [6]BF4 display one singlet at 4.93 and 
4.51 ppm for the methyne H atom in their CHPh2 groups, respectively. In addition, µ-
hydroxo complex [6]BF4 exhibits another singlet at −3.39 ppm for its bridging µ-hydroxo 
ligand, which is slightly downfield shifted relative to the −3.66 ppm displayed by the pre-
viously reported azadiphosphine PhN(CH2PPh2)2-chelated µ-hydroxo analogue [42].  

The molecular structure of [D](BF4)2 was unequivocally confirmed by X-ray crystal 
diffraction analysis (Figure 7). The structure of this molecule is very similar to that of di-
carbonyl complex [A](BF4)2. For example, it contains one dication 
Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppe)]2+ and two BF4− monoanion. The dithiolato pdt 
ligand is bridged between its NiFe centers to construct a butterfly NiIIFeII(µ-S)2 core. While 
the Ni center adopts a distorted square-planar geometry, the Fe center takes a pseudo-
octahedral geometry. The Ni⋅⋅⋅⋅Fe distance (3.2957 Å) in this molecule is very close to that 
(3.1875 Å) of [A](BF4)2.  

 
Figure 7. Molecular structure of [D](BF4)2 with thermal ellipsoids drawn at a 30% probability level. 
All H atoms and two BF4− anions are omitted for the sake of clarity. Selected bond lengths (Å) and 
angles (°): Ni⋅⋅⋅⋅Fe 3.2957, Ni1-S1 2.2409(9), Ni1-S2 2.2329(9), Fe1-S1 2.3456(9), Fe1-S2 2.3013(9), Fe1-

Scheme 6. Synthesis of dicarbonyl complex [D](BF4)2 and µ-hydroxo complex [6]BF4.

While dicarbonyl complex [D](BF4)2 is an air-stable orange-red solid, µ-hydroxo
complex [6]BF4 is an air-stable orange-red solid. The IR spectra of [D](BF4)2 and [6]BF4
display one very strong absorption band at 1983 and 1917 cm−1 for their terminal carbonyls,
respectively. The 31P{1H} NMR spectra of [D](BF4)2 and [6]BF4 exhibit one singlet at
4.9 and 2.2 ppm for their two P atoms attached to the Ni-bound azadiphosphine ligand
and one singlet at 56.8 and 65.8 ppm for their two P atoms attached to the Fe-bound dppe
ligand, respectively. The 1H NMR spectra of [D](BF4)2 and [6]BF4 display one singlet at
4.93 and 4.51 ppm for the methyne H atom in their CHPh2 groups, respectively. In addition,
µ-hydroxo complex [6]BF4 exhibits another singlet at−3.39 ppm for its bridging µ-hydroxo
ligand, which is slightly downfield shifted relative to the −3.66 ppm displayed by the
previously reported azadiphosphine PhN(CH2PPh2)2-chelated µ-hydroxo analogue [42].

The molecular structure of [D](BF4)2 was unequivocally confirmed by X-ray crystal
diffraction analysis (Figure 7). The structure of this molecule is very similar to that of dicar-
bonyl complex [A](BF4)2. For example, it contains one dication Ph2CHN(CH2PPh2)2Ni(pdt)-
Fe(CO)2(dppe)]2+ and two BF4

− monoanion. The dithiolato pdt ligand is bridged between
its NiFe centers to construct a butterfly NiIIFeII(µ-S)2 core. While the Ni center adopts a
distorted square-planar geometry, the Fe center takes a pseudo-octahedral geometry. The
Ni····Fe distance (3.2957 Å) in this molecule is very close to that (3.1875 Å) of [A](BF4)2.
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Figure 7. Molecular structure of [D](BF4)2 with thermal ellipsoids drawn at a 30% probability level.
All H atoms and two BF4

− anions are omitted for the sake of clarity. Selected bond lengths (Å) and
angles (◦): Ni····Fe 3.2957, Ni1-S1 2.2409(9), Ni1-S2 2.2329(9), Fe1-S1 2.3456(9), Fe1-S2 2.3013(9), Fe1-
P1 2.2498(10), Fe1-P2 2.2667(10), Ni1-P3 2.1921(10), Ni1-P4 2.2063(9); S1-Ni1-S2 81.86(3), P3-Ni1-S1
170.33(4), P3-Ni1-P4 93.97(3), S1-Fe1-S2 78.21(3), P1-Fe1-S1 99.26(4), P1-Fe1-P2 87.87(4).

3. Experimental
3.1. General Comments

All reactions were performed using standard Schlenk and vacuum-line techniques
under an atmosphere of highly purified N2 or argon. While CH2Cl2 was distilled un-
der argon from CaH2, acetone was distilled from anhydrous K2CO3. Pyridine, NaBF4,
Me3NO, Me3NO·2H2O, Bu4NCN, KSCN, HBF4·Et2O (50−55% in Et2O) and other reagents
were available commercially and used as received. H2S gas was produced from reaction
of NaHS and H3PO4. (dppb)NiCl2 (dppb = 1,2-(Ph2P)2C6H4) [51], (dppv)Fe(CO)2(pdt)
(dppv = 1,2-(Ph2P)2C2H2, pdt = 1,3-propanedithiolate) [52], (dppe)Fe(CO)2(pdt) (dppe = 1,2-
(Ph2P)2C2H4) [52], [MeN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([B](BF4)2) [45] and
[PhN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([C](BF4)2) [42] were prepared according
to the published procedures. 1H, 13C{1H} and 31P{1H} NMR spectra were obtained on a
Bruker Avance 400 NMR spectrometer. IR spectra were recorded on a Bruker tensor 27
infrared spectrophotometer. Elemental analyses were performed on an Elementar Vario EL
analyzer. Melting points were determined on a SGW X-4 melting point apparatus with a
microscope and were uncorrected.

3.2. Synthesis of Model Complexes

[(dppb)Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([A](BF4)2): A 100 mL three-necked flask fitted
with a magnetic stir-bar, two serum caps, and a nitrogen inlet tube was charged with
(dppb)NiCl2 (0.288 g, 0.50 mmol), (dppv)Fe(CO)2(pdt) (0.307, 0.50 mmol), NaBF4 (0.550 g,
5.0 mmol) and CH2Cl2 (30 mL). The mixture was stirred at 0 ◦C for 5 h. Solvent was
removed at reduced pressure and the residue was subjected to column chromatography
(silica gel). Elution with CH2Cl2/acetone (v/v = 12:1) developed a major orange-red band,
from which [A](BF4)2 (0.517 g, 80%) was obtained as an orange-red solid, mp 177 ◦C (dec).
Anal. calcd for C61H52B2F8FeNiO2P4S2: C, 56.65; H, 4.05. Found: C, 56.39; H, 4.54. IR (KBr
disk): νC≡O 1997 (vs) cm−1. 1H NMR (400 MHz, acetone-d6): δ 2.16–2.20, 2.60–2.69 (2m, 6H,
CH2CH2CH2), 7.28–7.85 (m, 44H, C6H4, 8C6H5), 8.68–8.84 (m, 2H, CH=CH) ppm. 13C{1H}
NMR (100 MHz, acetone-d6): δ 33.3, 34.8, 37.8 (3s, CH2CH2CH2), 130.7–135.8 (m, C6H4,
C6H5), 139.7–151.2 (m, CH=CH), 207.9, 208.3 (2s, C≡O) ppm. 31P{1H} NMR (162 MHz,
acetone-d6): δ 56.9 (s, NiP2), 65.1 (s, FeP2) ppm.
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[(dppb)Ni(pdt)Fe(CO)(t-CN)(dppv)]BF4 ([1]BF4): A 50 mL three-necked flask fitted
with a magnetic stir-bar, two serum caps, and a nitrogen inlet tube was charged with
[A](BF4)2 (0.129 g, 0.10 mmol), Me3NO (7.5 mg, 0.10 mmol) and acetone (10 mL). The
mixture was stirred at 0 ◦C for 15 min and then a CH2Cl2 (5 mL) solution of Bu4NCN
(0.027 mg, 0.10 mmol) was added. After the new mixture was stirred at 0 ◦C for 1 h. solvent
was removed at reduced pressure to leave a residue, which was subjected to silica gel
column chromatography. Elution with CH2Cl2/acetone (v/v = 15:1) developed a major
orange-red band, from which [1]BF4 (0.082 g, 68%) was obtained as an orange-red solid, mp
180–182 ◦C. Anal. calcd for C61H52BF4FeNNiOP4S2: C, 60.83; H, 4.35; N, 1.16. Found: C,
60.59; H, 4.54; N, 1.07. IR (KBr disk): νC≡O 1956 (vs) cm−1. 1H NMR (400 MHz, acetone-d6):
δ 2.21, 2.82 (2s, 6H, CH2CH2CH2), 7.16–8.46 (m, 46H, C6H4, 8C6H5, CH=CH) ppm. 13C{1H}
NMR (100 MHz, acetone-d6): δ 24.4, 32.3, 37.8 (3s, CH2CH2CH2), 128.5–136.8 (m, C6H4,
C6H5), 141.7–150.7 (m, CH=CH), 214.4 (s, C≡O) ppm. 31P{1H} NMR (162 MHz, acetone-d6):
δ 51.9 (s, NiP2), 76.6 (s, FeP2) ppm.

[(dppb)Ni(pdt)Fe(CO)(t-SCN)(dppv)]BF4 ([2]BF4): The same procedure as that for
preparation of [1]BF4 was followed, except that Bu4NCN was replaced by KSCN (9.7 mg,
0.10 mmol). [2]BF4 (0.078 g, 63%) was obtained as an orange-red solid, mp 155 ◦C (dec).
Anal. calcd for C61H52BF4FeNNiOP4S3: C, 59.25; H, 4.24; N, 1.13. Found: C, 59.45; H,
4.17; N, 1.07. IR (KBr disk): νN=C=S 2067 (s); νC≡O 1950 (vs) cm−1. 1H NMR (400 MHz,
CDCl3): δ 2.06–2.65 (m, 6H, CH2CH2CH2), 7.14–8.03 (m, 46H, C6H4, 8C6H5, CH=CH) ppm.
13C{1H} NMR (100 MHz, CDCl3): δ 30.2, 37.1 (2s, CH2CH2CH2), 127.0–134.4 (m, C6H4,
C6H5), 140.3–149.0 (m, CH=CH), 215.5 (s, C≡O) ppm. 31P{1H} NMR (162 MHz, acetone-d6):
δ 55.3 (s, NiP2), 73.6 (s, FeP2) ppm.

[MeN(CH2PPh2)2Ni(pdt)Fe(CO)(t-H)(dppv)]BF4 ([3]BF4): In an argon-filled glove
box, a mixture of [MeN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([B](BF4)2) (0.128 g,
0.10 mmol), Me3NO (7.5 mg, 0.10 mmol), and acetone (3 mL) was added to a 30 mL
autoclave’s inner sleeve (made of PTFE) containing a magnetic stir-bar. The reaction mix-
ture was stirred at 0 ◦C for 10 min and then it was frozen by inserting the sleeve into liquid
nitrogen. After the autoclave was sealed, the head space of the sleeve was evacuated and
was refilled with 1.5 MPa of H2. The frozen reaction mixture was thawed and then the
reaction mixture was stirred at room temperature for 4 h. Solvent was removed at reduced
pressure to give a residue, which was subjected to column chromatography (silica gel
G). Elution with CH2Cl2/acetone (v/v = 8:1) developed a deep-green band, from which
[3]BF4 (0.090 g, 78%) was obtained as a deep-green solid, mp 119 ◦C (dec). Anal. calcd for
C57H56BF4FeNNiOP4S2: C, 59.00; H, 4.86; N, 1.21. Found: C, 58.84; H, 5.15; N, 1.34. IR
(KBr disk): νC≡O 1912 (vs) cm−1. 1H NMR (400 MHz, acetone-d6): δ −4.19 (t, J = 74 Hz, 1H,
Fe-H), 1.31–1.95 (m, 6H, CH2CH2CH2), 2.54 (s, 3H, CH3N), 3.43–3.79 (m, 4H, CH2NCH2),
7.24–7.95 (m, 42H, 8C6H5, CH=CH) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 28.7, 31.9,
34.8 (3s, CH2CH2CH2), 49.8 (s, CH3N), 55.5–55.9 (m, CH2NCH2), 127.0–134.4 (m, C6H5),
148.4–149.1 (m, CH=CH), 215.4 (s, C≡O) ppm. 31P{1H} NMR (162 MHz, CDCl3): δ 7.2 (s,
NiP2), 91.4 (s, FeP2) ppm.

[MeN(CH2PPh2)2Ni(SCHCH2CH2S)Fe(CO)(dppv)]BF4 ([4]BF4): A 100 mL three-
necked flask fitted with a magnetic stir-bar, two serum caps, and a nitrogen inlet tube
was charged with [B](BF4)2 (0.127 g, 0.10 mmol), Me3NO (7.5 mg, 0.10 mmol) and pyridine
(50 mL). The mixture was stirred at room temperature for 3 h and then hexane (250 mL)
was added to give a precipitate, which was subjected to column chromatography (silica
gel). Elution with CH2Cl2/acetone (v/v = 20:1) developed one black band, from which
[4]BF4 (0.085 g, 73%) was obtained as a grey-black solid, mp 158–159◦. Anal. calcd for
C57H54BF4FeNNiOP4S2: C, 59.10; H, 4.70; N, 1.21. Found: C, 58.83; H, 4.71; N, 1.13. IR (KBr
disk): νC≡O 1911(vs) cm−1. 1H NMR (400 MHz, CDCl3): δ 2.31–2.77, 3.34–3.74 (2m, 12H,
CHCH2CH2, CH3N, CH2NCH2), 6.60–7.89 (m, 42H, 8C6H5, CH=CH) ppm. 13C{1H} NMR
(100 MHz, CD2Cl2): δ 28.9–31.1 (m, SCH2CH2, CH3N), 49.6, 50.5 (2s, CH2NCH2), 60.7 (s,
SCHFe), 122.4–138.8 (m, C6H5), 146.9–153.1 (m, CH=CH), 214.6 (s, C≡O) ppm. 31P{1H}
NMR (162 MHz, acetone-d6): δ 3.9, 11.4 (2d, NiP2), 93.2, 94.7 (2d, FeP2) ppm.
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[PhN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-SH)(dppv)]BF4 ([5]BF4): A 50 mL three-necked
flask fitted with a magnetic stir-bar, two serum caps, and a nitrogen inlet tube was charged
with [C](BF4)2 (0.134 g, 0.10 mmol), Me3NO (7.5 mg, 0.10 mmol) and acetone (10 mL). The
mixture was stirred for 15 min at 0 ◦C and then dry H2S gas was bubbled into the mixture
for 1 h. Solvent was removed at reduced pressure and the residue was subjected to column
chromatography (silica gel). Elution with CH2Cl2/acetone (v/v = 12:1) developed a major
brown band, from which [5]BF4 (0.123 g, 98%) was obtained as a brown solid, mp 180 ◦C
(dec). Anal. calcd for C62H58BF4FeNNiOP4S3: C, 59.36; H, 4.66; N, 1.12. Found: C, 59.20; H,
4.90; N, 1.21. IR (KBr disk): νC≡O 1938 (vs) cm−1. 1H NMR (400 MHz, acetone-d6): δ −2.89
(t, J = 8.0 Hz, 1H, SH), 1.77–2.83 (m, 6H, CH2CH2CH2), 3.97–4.30 (m, 4H, CH2NCH2),
6.52–7.82 (m, 45H, 9C6H5), 8.05–8.19 (m, 2H, CH=CH) ppm. 13C{1H} NMR (100 MHz,
acetone-d6): δ 26.2, 29.2, 33.8 (3s, CH2CH2CH2), 51.9, 52.1 (2s, CH2NCH2), 116.9–134.2 (m,
C6H5), 148.3–150.8 (m, CH=CH), 214.2 (s, C≡O) ppm. 31P{1H} NMR (162 MHz, acetone-d6):
δ −1.3 (s, NiP2), 73.6 (FeP2) ppm.

[Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppe)](BF4)2 ([D](BF4)2):
(i) Ph2CHN(CH2PPh2)2: A 100 mL three-necked flask fitted with a magnetic stir-bar,

two serum caps, and a reflux condenser topped with a nitrogen inlet tube was charged
with polyformaldehyde (0.213 g, 7.10 mmol) and toluene (30 mL). After the mixture was
stirred and slowly warmed to 70 ◦C, Ph2CHNH2 (0.646 g, 3.53 mmol) and Ph2PH (1.35 mL,
7.75 mmol) were added. The new mixture was stirred at 70 ◦C for 7 h and then solvent
was removed at reduced pressure to leave a residue. The residue was dissolved in EtOH
(50 mL). After the solution was cooled in a refrigerator for over 1 h, the white precipitate
was filtered out and washed sequentially with EtOH and Et2O to give Ph2CHN(CH2PPh2)2
(1.636 g, 80%) as a white solid. Anal. calcd for C39H35NP2: C, 80.81; H, 6.09; N, 2.42. Found:
C, 80.95; H, 5.95; N, 2.19. IR (KBr disk): νP-N-P 871 (m) cm−1. 1H NMR (400 MHz, CDCl3):
δ 3.84 (s, 4H, CH2NCH2), 5.48 (s, CHPh2), 7.18–7.46 (m, 30H, 6C6H5) ppm. 13C{1H} NMR
(100 MHz, CDCl3): δ 55.2 (s, CH2NCH2), 72.5 (s, CHPh2), 126.9–141.5 (m, C6H5) ppm.
31P{1H} NMR (162 MHz, CDCl3): δ −29.3 (s, PPh) ppm.

(ii) [Ph2CHN(CH2PPh2)2]NiCl2: A 100 mL three-necked flask fitted with a magnetic
stir-bar, two serum caps, and a nitrogen inlet tube was charged with NiCl2·6H2O (1.188 g,
5.00 mmol) and EtOH (20 mL). To this stirred solution was slowly added a CH2Cl2 (10 mL)
solution of Ph2CHN(CH2PPh2)2 (2.898 g, 5.00 mmol). After the new mixture was stirred
at room temperature for 6 h, solvent was removed at reduced pressure to leave a residue,
which was washed sequentially with EtOH and Et2O to give [Ph2CHN(CH2PPh2)2]NiCl2
(2.802 g, 79%) as an orange-red solid, mp 207 ◦C (dec). Anal. calcd for C39H35Cl2NNiP2: C,
66.05; H, 4.97; N, 1.97. Found: C, 66.10; H, 4.75; N, 1.71. IR (KBr disk): νP-N-P 871 (m) cm−1.
1H NMR (400 MHz, CD2Cl2): δ 3.26 (s, 4H, CH2NCH2), 4.32 (s, CHPh2), 6.84–7.94 (m,
30H, 6C6H5) ppm. 13C{1H} NMR (100 MHz, acetone-d6): δ 53.1–54.8 (m, CH2NCH2),
78.8 (s, CHPh2), 127.7–139.4 (m, C6H5) ppm. 31P{1H} NMR (162 MHz, acetone-d6): δ 5.9 (s,
PPh2) ppm.

(iii) [Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppe)](BF4)2 ([D](BF4)2): A 100 mL three-
necked flask fitted with a magnetic stir-bar, two serum caps, and a nitrogen inlet tube
was charged with [Ph2CHN(CH2PPh2)2]NiCl2 (0.355 g, 0.50 mmol), (dppe)Fe(CO)2(pdt)
(0.308, 0.50 mmol), NaBF4 (0.550 g, 5.0 mmol) and CH2Cl2 (30 mL). After the mixture was
stirred at 0 ◦C for 3 h, solvent was removed at reduced pressure and then the residue was
subjected to column chromatography (silica gel). Elution with CH2Cl2/acetone (v/v = 2:1)
developed an orange-red band, from which [D](BF4)2 (0.571 g, 80%) was obtained as an
orange-red solid, mp 170 ◦C (dec). Anal. calcd for C70H65B2F8FeNNiO2P4S2: C, 58.86; H,
4.59; N, 0.98. Found: C, 58.83; H, 4.71; N, 1.13. IR (KBr disk): νC≡O 1983 (vs) cm−1. 1H
NMR (400 MHz, acetone-d6): δ 2.38–3.99 (m, 14H, CH2CH2CH2, PCH2CH2P, CH2NCH2),
4.93 (s, 1H, CHPh2), 6.88–8.00 (m, 50H, 10C6H5) ppm. 13C{1H} NMR (100 MHz, acetone-d6):
δ 23.3–37.7 (m, CH2CH2CH2, PCH2CH2P), 53.0 (s, CH2NCH2), 78.1 (CHPh2), 126.8–139.8
(m, C6H5), 209.4, 210.3 (2s, C≡O) ppm. 31P{1H} NMR (162 MHz, acetone-d6): δ 4.9 (s, NiP2),
56.8 (s, FeP2) ppm.
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[Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-OH)(dppe)]BF4 ([6]BF4): A 50 mL three-necked
flask fitted with a magnetic stir-bar, two serum caps, and a nitrogen inlet tube was charged
with [D](BF4)2 (0.143 g, 0.10 mmol), Me3NO·2H2O (0.011 g, 0.10 mmol) and acetone
(20 mL) under nidrogen. The mixture was stirred at 0 ◦C for 4 h. Solvent was removed
at reduced pressure and the residue was subjected to column chromatography (silica gel).
Elution with CH2Cl2/acetone (v/v = 10:1) developed an orange-red band, from which
[6]BF4 (0.087 g, 65%) was obtained as an orange-red solid, mp 183–185 ◦C. Anal. calcd for
C69H66BF4FeNNiO2P4S2: C, 62.28; H, 5.00; N, 1.05. Found: C, 62.11; H, 5.03; N, 1.06. IR (KBr
disk): νC≡O 1917 (vs) cm−1. 1H NMR (400 MHz, acetone-d6): δ −3.39 (s 1H, OH), 2.20–3.99
(m, 14H, CH2CH2CH2, PCH2CH2P, CH2NCH2), 4.51 (s, 1H, CHPh2), 6.66–8.33 (m, 50H,
10C6H5) ppm. 13C{1H} NMR (100 MHz, acetone-d6): δ 27.8, 32.3, 37.9 (3s, CH2CH2CH2,
PCH2CH2P), 55.2 (s, CH2NCH2), 78.9 (CHPh2), 127.9–140.9 (m, C6H5), 217.3 (s, C≡O) ppm.
31P{1H} NMR (162 MHz, acetone-d6): δ 2.2 (s, NiP2), 65.8 (s, FeP2) ppm.

3.3. Crystal Structure Determinations of Models [A](BF4)2, [1]BF4, [2]BF4, [4]BF4, [5]BF4 and
[D](BF4)2

While single crystals of [A](BF4)2, [1]BF4, [2]BF4 and [D](BF4)2 for X-ray diffraction
analysis were grown by slow diffusion of n-hexane into their CH2Cl2 solutions at room
temperature, those of [4]BF4 and [5]BF4 were grown by slow diffusion of n-hexane into their
acetone solutions at room temperature. A single crystal of [A](BF4)2, [1]BF4, [2]BF4, [4]BF4
or [5]BF4 was mounted on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer, and data
were collected using a confocal monochromator with Cu Kα radiation (λ = 1.54184 Å) in the
ω scanning mode at the temperature of 137 K, 151.6 K, 152 K, 100 K and 293 K, respectively.
A single crystal of [D](BF4)2 was mounted on a Rigaku Pilatus 200K diffractometer, and data
were collected using a confocal monochromator with Mo Kα radiation (λ = 0.71073 Å) in the
ω scanning mode at the temperature of 113 K. Data collection, reduction, and absorption
correction were performed by the CRYSTALCLEAR program [53]. the structures were
solved by direct methods using the SHELXT program [54–56] and refined by full-matrix
least-squares techniques (SHELXL) [56] on F2. Hydrogen atoms were located by using the
geometric method. Details of the crystal data, data collections, and structure refinements
are summarized in Tables S1–S3 of the Supporting Information.

4. Conclusions

Based on the preparation of diphosphine or azadiphosphine-chelated dicarbonyl
[NiFe]-H2ase models [A](BF4)2−[D](BF4)2, we have further synthesized the corresponding
monocarbonyl [NiFe]-H2ase models [1]BF4−[6]BF4 via CO transformation reactions of
dicarbonyl complexes [A](BF4)2−[D](BF4)2. All the new models [A](BF4)2, [D](BF4)2 and
[1]BF4−[6]BF4 have been fully characterized by various spectroscopic methods, and partic-
ularly for some of them by X-ray crystallography. Of particular interest are (i) dicarbonyl
complex [B](BF4)2 not only possesses the H2 activation function to give t-hydride complex
[3]BF4, but also possesses the sp3 C-H bond activation function to afford the novel sp3 C-Fe
bond-containing complex [4]BF4; and (ii) monocarbonyl complexes [2]BF4 and [5]BF4 are
the first prepared and crystallographically characterized t-isothiocyanato and µ-mercapto
ligand-containing [NiFe]-H2ase models. We believe that the studied results reported here
will promote further development of the structural and functional modeling chemistry of
[NiFe]-H2ases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10070090/s1, IR, 1H NMR, 13C{1H} NMR and 31P{1H}
NMR spectra of all the model complexes (Figures S1–S32); crystal data and structure refinement for
[A](BF4)2, [1]BF4, [2]BF4, [4]BF4, [5]BF4 and [D](BF4)2) (Tables S1–S3).
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