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Abstract: This study explores the electronic properties of (C2H7N4O)2BiCl5 using the density func-
tional theory (DFT) method, which was compared with the experimental data. The band structure of
the compound indicated that it is a direct semiconductor with a band gap energy of 3.54 eV, which
was comparable with the value (3.20 eV) obtained experimentally from the UV–vis spectroscopy.
The density of state study showed that the conduction band was formed mainly by Bi 6p, C 2p, and
N 2p states, while the valence band was formed mainly by Cl 2p, O 2p, and N 2p states. Hirshfeld
surface analysis and enrichment ratio (E) were further used to investigate and quantify the inter-
molecular interactions within the compound. These studies established that the most important role
in the stability of the structure of this crystalline material was provided by hydrogen bonding and
π–π stacking interactions. The crystalline morphology of the compound was determined using BFDH
simulation, based on the single-crystal structure result. Furthermore, Fourier transform infrared
spectroscopy (FTIR) was used to study the vibrational modes of carbamoyl-ganidinium cations. The
charge transfer process within the anionic chains of [BiCl5]∝, studied using photoluminescence spec-
troscopy, resulted in a broad emission band with two positions of maxima centered at 336 and 358 nm.
This work offers a good understanding of the optical, structural, as well as the electrical properties of
(C2H7N4O)2BiCl5, which are necessary in its applications in areas such as multifunctional magnetic,
optoelectronic, and photonic systems.

Keywords: chlorobismuthate(III); Hirshfield surface analysis; BFDH simulation; spectroscopic stud-
ies; GGA-PBE; band structure; density of state; optical properties

1. Introduction

In recent years, organic–inorganic hybrid halometalate materials have aroused in-
creased research interest due to their unique structural properties and wide range of
potential applications [1–3]. The development of multifunctional magnetic, electronic,
and luminescent systems are examples of such applications [4–6]. Among these materials,
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halogenobismuthate(III), with the general formula AxBiyXz—where A is an organic amine
and X is a halogen (I, Br, Cl)—has emerged as a very important class of luminescent and
semiconducting materials that has gained attention across different disciplines [7–12]. The
anionic substructures of these compounds are made up of octahedral MX6 connected by
edges, corners, and faces. Due to the large number of connections, the structure ends
up with discrete (0D) or numerous polymeric (1D, 2D, 3D) units [13–15]. The physical
properties of the organic and inorganic components of this compound are improved by
low-dimensional (1D and 0D) substructures. While the inorganic components function as
semiconductors, the organic cations serve as a physical and electronic barrier. These hybrid
materials could be used to improve charge carrier mobility and facilitate charge/energy
transfer in high-efficiency optoelectronic and photonic devices such as solar cells, photode-
tection, and light-emitting diodes [16–18]. The templating effect of cations is a major factor
that causes the formation of various inorganic networks. Its size and hydrogen bonds
and/or van der Waals forces control the structure. Generally, non-bulky ligands with a
higher delocalized charge—such as primary ammonium and guanidinium groups—could
form H bonds with the terminal X atoms, and lead to anions with high X/M ratios, as
observed in 1D MIIIX5

2–. Another successful scheme is the inclusion of multifunctional
organic cations that are able to influence the bonding topographies within the inorganic
system, as well as increase orbital interaction across adjacent chains. In addition, increasing
the dimensionality of the inorganic architectures and decreasing the band gap are also criti-
cal factors. We have recently been investigating the properties of halobismuthates(III) and
have reported that (C13H28N2)BiCl5 prepared from an aqueous solution possessed 1D BiCl5
anions in its structure, with an optical band gap energy of Eg = 3.51 eV [19]. An attempt to
change the value of Eg by substituting chlorine with bromine and iodine in this compound
was made. Unfortunately, the crystallization of the prepared (H2TMDP) iodobismuthates
was yet to be achieved. The crystallization of the cation with water molecules was most
likely the leading cause of the failure.

This paper describes the experimental characterizations of (C2H7N4O)2BiCl5 and its
theoretical studies. The electronic band structure, total density of states (TDOS), and partial
density of states (PDOS) were discussed. Furthermore, the vibrational (infrared) and optical
(absorption-band gap, luminescence) properties of the compound were studied, and the
results were discussed.

2. Results and Discussion
2.1. Structural Summary

The details of the single-crystal X-ray diffraction measurements and structural analysis
of the compound (C2H7N4O)2BiCl5 have been reported in our previous study [20]. The
compound crystallizes as an organic-inorganic hybrid material with a space group of Pnma
and Z = 4, and it belongs to the orthorhombic crystal system. One carbamoyl-guanidinium
(C2H7N4O)+ cation, one bismuth atom, and four chlorine anions make up the asymmetric
unit of the compound (Figure 1a). Extended one-dimensional chains of [BiCl5]2- units run
along the a-axis, separated by isolated organic cations (C2H7N4O)+, to form the crystal
structure (Figure 1b). The 1-carbamoylguanidinium cations ((C2H7N4O)2)2+ are located
around the inorganic chains and form stacks that are oriented along the a-axis, and are
approximately parallel to each other (distanced by 3.574 (3)). The organic moieties are
linked by strong N-H···O hydrogen bonds and π–π stacking interactions. Strong N-H···Cl
hydrogen bonds between the organic and inorganic parts contribute to crystal cohesion.
The organic cations form an insulator barrier between the semi-conductor BiCl6 chains in
such a packing. This periodic framework can be considered as an organic and inorganic
self-organized quantum wire structure.
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The chains of corner-sharing BiCl6 octahedra form the inorganic parts. 

2.2. Crystal Morphology 
The morphology of the crystal was elucidated by the Bravais–Friedel–Donnay–

Harker (BFDH) law, which is based on a geometrical approach [21,22]. The growth rate of 
a particular plane is assumed to be inversely proportional to the interplanar distance in 
this approach (dhkl). As a result, growth in a grown crystal is faster in a direction with a 
lower ‘dhkl’ value. Figure 2 shows that the crystal habit was dominated by four faces—
(020), (011), (101), and (111)—as revealed by the BFDH morphological prediction. Table 1 
presents a summary of the results. According to the BFDH law, the larger the interplanar 
distance dhkl, the greater the morphological importance (MI) of the corresponding hkl face. 
The table shows that the dhkl of (020) face is the largest, with a facet area of 28.93% of total 
facet area, indicating that the (020) face has the greatest morphological importance (MI). 
The dhkl of the (011) face is slightly larger than that of the (101) face, while the dhkl of the 
(111) face is the smallest. 
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Figure 1. (a) Atoms numbering in (C2H7N4O)2BiCl5. (b) Atomic arrangement of (C2H7N4O)2BiCl5.
The chains of corner-sharing BiCl6 octahedra form the inorganic parts.

2.2. Crystal Morphology

The morphology of the crystal was elucidated by the Bravais–Friedel–Donnay–Harker
(BFDH) law, which is based on a geometrical approach [21,22]. The growth rate of a
particular plane is assumed to be inversely proportional to the interplanar distance in this
approach (dhkl). As a result, growth in a grown crystal is faster in a direction with a lower
‘dhkl’ value. Figure 2 shows that the crystal habit was dominated by four faces—(020), (011),
(101), and (111)—as revealed by the BFDH morphological prediction. Table 1 presents a
summary of the results. According to the BFDH law, the larger the interplanar distance
dhkl, the greater the morphological importance (MI) of the corresponding hkl face. The
table shows that the dhkl of (020) face is the largest, with a facet area of 28.93% of total facet
area, indicating that the (020) face has the greatest morphological importance (MI). The
dhkl of the (011) face is slightly larger than that of the (101) face, while the dhkl of the (111)
face is the smallest.
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Table 1. Calculated results of the (C2H7N4O)2BiCl5 crystal based on the BFDH law.

hkl Multiplicity dhkl Distance Total Facet Area % Total Facet Area

(020) 2 10.35 9.66 817.08 28.93
(011) 4 9.73 10.27 1.148620 × 103 40.67
(101) 4 6.13 16.30 481.35 17.05
(111) 8 5.88 17.00 377.30 13.36

2.3. Hirshfeld Surface Analysis, Two-Dimensional Fingerprint Plots, and Enrichment Ratios (E)

The dnorm, de, di, shape index, curvedness, and fragment patch surfaces of an asym-
metric unit of (C2H7N4O)2BiCl5 are shown in Figure 3. Hirshfeld surfaces have been drawn
over the dnorm 0.4629 to +1.2143 Å.
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nearest neighbor propensity in the surface property is indicated by the fragment patch 
(Figure 3f). 

  

Figure 3. 3D Hirshfeld surfaces of (C2H7N4O)2BiCl5 mapped with dnorm, shape index, curvedness,
de, di, and fragment patch; (a) dnorm; (b) shape index; (c) curvedness; (d) de; (e) di; (f) fragment patch.

Intense red regions indicate that close contact interactions are apparent around the
chlorine, nitrogen, and oxygen atoms participating in N-H···Cl and N-H···O hydrogen
bonds (Table 2) [20]. The small degree of white region in dnorm surfaces suggests the pres-
ence of weaker and farther contact between molecules, rather than hydrogen bonds. The
shape-index (Figure 3b) and curvedness (Figure 3c) provide further chemical understand-
ing of the molecular arrangement. A surface with low curvedness designates a flat region
and may be indicative of π–π stacking in the crystal. The donor and the acceptors of π–π
stacking are depicted as blue and red regions around the participating atoms on the surfaces
that are mapped over shape-index properties corresponding to H···H contacts. The nearest
neighbor propensity in the surface property is indicated by the fragment patch (Figure 3f).
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Table 2. Hydrogen-bond geometry for (C2H7N4O)2BiCl5.

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (◦)

N1-H1A···Cl1 ii 0.86 2.607 3.271 (8) 135
N1-H1B···Cl2 iv 0.86 2.499 3.329 (7) 162
N2-H2···Cl4i v 0.86 2.702 3.524 (7) 160
N3-H3A···O v 0.86 2.21 3.053 (8) 167
N3-H3B··· O 0.86 2.08 2.734 (8) 132

N4-H4A···Cl1 vi 0.86 2.525 3.347 (7) 160
N4-H4B···Cl4 iv 0.86 2.594 3.421 (7) 162

Symmetry codes: (ii) x − 1/2, y, −z + 3/2; (iv) x − 1, y, z; (v) −x + 1, −y + 1, −z + 1; (vi) x − 1/2, y, −z + 1/2.

The overall fingerprint plot was calculated, including all intermolecular contacts, as
well as the decomposed fingerprint plots, which focus on specific interactions. The 2D
fingerprint plot for (C2H7N4O)2BiCl5 is shown in Figure 4 with the relative percentage
contributions to the overall Hirshfeld surface, and those defined into Cl···H (28.7%) and
H···H (25.3%) as the most abundant interactions, followed by N···H (14%) and O-H (12%) as
the second abundant and least abundant interactions, respectively. The relative percentage
contributions to the overall Hirshfeld surface are presented in the Figure 5.
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Figure 5. Histogram of different intermolecular contacts to the Hirshfeld surface area in
(C2H7N4O)2BiCl5.

The H· · ·Cl, O···Cl, N···H, O···O, C···H, N···O, and O···H contacts—as well as H· · ·O
contacts—are highly favored in the structure since the corresponding enrichment ratios
EHCl, EOCl, EHN, EOO, ECH, ENO, and EOH are larger than unity (1.47–1) (Table 3). Contrarily,
the H· · ·H contacts on the surface are less favored (EHH = 0.81). This is due to a relatively
higher amount of random contact RHH, despite the molecule being characterized by a high
amount of SH. Interestingly, the C· · ·O contacts in the structure are remarkably enriched
(ECO = 1.36). This could be ascribed to the significantly higher amount of C· · ·O contacts
on the molecular surface, together with a lower number of random contacts (RCO) (Table 3).

Table 3. Percentage contributions of interactions, surface contacts (SX), random contacts (RXX/RXY),
and enrichment ratios (EXX/EXY) for (C2H7N4O)2BiCl5.

Atoms H C N O Cl

H 25.3 - - - -
C 6.3 / - - -
N 14 1 1.1 - -
O 12 1.5 2.6 1.3 -
Cl 28.7 1.4 2.1 2.8 0

Surface % 55.8 5.1 10.95 10.75 17.5

Random Contacts (RXX and RXY)

H 31.14 - - - -
C 5.69 0.26 - - -
N 12.22 1.12 1.20 - -
O 12 1.10 2.35 1.16 -
Cl 19.53 1.79 3.83 3.76 3.06

Enrichment Ratio E

H 0.81 - - - -
C 1.11 / - - -
N 1.15 0.89 0.91 - -
O 1 1.36 1.11 1.12 -
Cl 1.47 0.78 0.55 0.74 /
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2.4. Vibrational Properties

All assignments were derived from the spectra of the carbamoyl-guanidinium (+1)
cation reported in previous studies [23–25]. The results arepresented in Figure 6 and
summarized in Table 4.
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In the high wavenumber region of the IR spectrum (2500–3500 cm−1), the strong inten-
sity peak corresponds to the stretching vibrations of NH2 and NH groups (3407, 3320, 3226,
and 3199 cm−1). The strong hydrogen-bond interactions involving the amino groups (with
lengths ranging from 2.734 to 3.524) are indicated by the broad nature of this band. At 1736
and 1584 cm−1, the -NH2 bending modes were identified. The amino groups relating to the
guanidinium ion fragment, (NH2) guanidine, have a higher frequency than the primary
amine, (NH2) belonging to the ureic group, which has a lower frequency [23]. The band
identified at 1689 cm−1 was attributed to the stretching vibrations of the carbonyl group,
υ(CO). The two amino groups show two distinct bands ascribed to the rocking vibrations at
1112 and 1083 cm−1, which are associated with the amino groups of the guanidine moiety
and the primary amino group of the amide, respectively. Furthermore, as shown in the
similar spectrum of guanidine, the band at 1339 cm−1 has been assigned to the bending
vibration of the amine, δ(NH) [26]. Stretching ν(CN) of the amide group, a characteristic
band for primary amides in this spectral region, has been assigned to the band at 1467 cm−1.
The vibrational bands located at 1638, 1522, and 923 cm−1 have been attributed to the char-
acteristic vibrations of guanidine skeletal modes, which agree with the previously reported
spectra [23–26]. The bands recorded at 490, 505, 584, 713, and 764 cm−1 were assigned to the
mixed ρ(NCN), υCN, andω(NH2) vibrations of carbamoylguanidinium cations [24–27].
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Table 4. Observed infrared positions (cm−1) of (C2H7N4O)2BiCl5.

Observed Wavenumbers (cm−1) Guanylurea Hydrochloride [27] Assignments

3407
3320

3408
3320 υas(NH2), υs(NH2)

3220
3199

3230
3152 υ(NH)

1736 1736 δ(NH2)Guanidine
1689 1672 υ(CO)Amide
1638 1638 υ(C=N)
1584 1583 δ(NH2) Amide
1522 1523 υa(NCN)
1467 1460 υ(CN)Amide
1339 1341 δ(NH)
1112
1083

1117
1057 ρ(NH2)

923 932 υs(NCN)
764–713 756–716 ω(NCN)/δ(NCN)
558–505 535 ω(NH2)

490 448
428 ρ(NCN)

Abbreviations and symbols: υ: stretching; δ: deformation; ρ: rocking; ω: wagging; τ: torsion; s: symmetric;
as: antisymmetric.

2.5. UV–Visible Spectum

In the room-temperature UV–visible absorption spectrum, three distinct absorption
bands centered at 225, 324, and 364 nm can be observed (Figure 7a). These bands are
assigned typically to either metal-centered (MC) transitions [28–30] or to ligand-to-metal
charge transfer transitions [31,32]. On the other hand, the planar conjugated carbamoyl-
guanidinium cations always show a n-π* absorption band around 225 nm as reported by
other studies [33,34]. In the current study, the first band at 225 nm was assigned to the n-π*
transition within the carbamoyl-guanidinium cation.
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The bands centered at around 324 and 364 nm were generated by the metal-centered
(MC) transition and ligand-to-metal charge transfer (LMCT) transition.

The optical band gap of (C2H7N4O)2BiCl5 was determined by measuring the UV–
visible diffuse reflectance spectrum at room temperature. The absorbance as a function of
reflectance presented by Kubelka–Munk is given in Equation (1):

F(R) = α = (1 − R)/(2R) (1)
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Extrapolation of the linear portion of the absorption edges (Figure 7b) yielded an
energy band gap of 3.20 eV, indicating that the title compound is a semiconductor.

2.6. Photoluminscence Spectrum

Solid-state room temperature photoluminescence spectrum of (C2H7N4O)2BiCl5 was
recorded at an excitation wavelength of 275 nm. As shown in Figure 8, (C2H7N4O)2BiCl5
shows a broad violet emission in the range of 300–400 nm with peaks centered at 336
and 358 nm. These peaks could be assigned to electronic transition within the inor-
ganic part of chlorobismuthate(III) [35–37]. In general, the photoluminescence emis-
sion of the bismuth(III) is dependent on the s2 electron. The chloride 2p in octahe-
dral bismuth chloride centers is excited to the bismuth 6p/chloride 3s, resulting in a
HOMO–LUMO transition [37].
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2.7. Electronic Structure

The density of states (partial and total) of a material or compound, along with its band
structure, is a suitable tool in the prediction of its physical properties such as electrical
resistivity and optical absorption, as well as understanding the physics of the materials in
solid-state devices. Using the GGA approximation with norm-conserving pseudopotential
in reciprocal space, the band structure, partial density, and total density of states were
explored. Figure 9 shows the simulated band gap structure of (C2H7N4O)2BiCl5. The
calculated energy gap was Eg = 3.543 eV. This result demonstrates the accuracy of the
current calculations and shows that the GGA-PBE method is in good agreement with the
experimental value. It is evident from Figure 9b that the maximum of the valence band
and the minimum of the conduction band are in the same direction X, indicating that it is a
direct conduction band.
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The partial density of states (PDOS) and total density of states (DOS) diagrams in
Figure 10 could be used to determine the composition of the calculated bands. The mixed
contribution of bismuth 5d orbitals, carbon (2s, 2p orbitals), nitrogen (2s orbital), oxygen
(2s, 2p orbitals), and hydrogen make up the lowest part of the valence band (VB) between
−23 and−15 eV. The electronic cloud around the N-H, O-H, and C-H bands are responsible
for this result. The mixed states (6s, 6p) of bismuth, (3p, 3s) of chlorine, (2s, 2p) of carbon,
(2s, 2p) of oxygen, and hydrogen make up the maximum of the valence band (MVB). The
orbital 6p of bismuth, 3p of chlorine, 2p of oxygen, 2p of nitrogen, and 2p of carbon make
up the minimum of the conduction band (MCB).
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2.8. Optical Properties

The most important function that describes the optical properties of a material is the
dielectric function ε(ω) which characterizes the interaction between electromagnetic waves
and electrons [38].
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Thus, the dielectric function connects the electronic structure of material to the physical
process of the transition. Then, the other optical spectrum (refractive index, reflectivity,
absorption, loss function energy, optical conductivity) can be deduced through it. The
dielectric function ε(ω) can be written as [39]

ε(ω) = ε1(ω) + iε2(ω) (2)

where ε1(ω) and ε2(ω) are the real (dispersive) and the imaginary (absorptive) parts respec-
tively [40]. The imaginary part of the dielectric function ε2(ω) represents the absorption
within the system when light of a specific frequency is used. ε2(ω) can be calculated
from direct numerical evaluations of the momentum matrix elements of the electric dipole
operator between the conduction and valence band wave functions [41]

ε2(ω) =

(
2e2π

ωε0

)
∑
kvc
|〈ψc

k|u.r|ψv
k 〉|

2δ(Ec
k − Ev

k − E) (3)

where u is the polarization vector of the incident electric field, r is the electron’s radius
vector, and e is electric charge, ψc

k and ψv
k are the conduction and valence band wave

functions at k, respectively, and ε0 is the vacuum permittivity. The summation of the
equation is applied over all states from the occupied and empty bands, with their wave
functions are obtained in a numerical form after the optimization of the crystal structure.

The real part, ε1(ω), of the dielectric function is linked to the polarization of the
material. It can be obtained from the imaginary part by using the Kramers–Krönig
dispersion equation [41,42]

ε1(ω) = 1 +
2
π

p
∞∫

0

ω′ε2(ω
′)dω′

ω′2 −ω2
(4)

where p is the principal value of the integral.
In addition, the other optical properties can be derived from the real ε1(ω) and imagi-

nary ε2(ω) of the dielectric function such as [41,42].
The refractive index n(ω) and the extinction coefficient k(ω):

n(ω) =

√
ε2

1(ω) + ε2
2(ω) + ε1/2

1 (ω)
√

2
(5)

k(ω) =

√
ε2

1(ω) + ε2
2(ω)− ε1/2

1 (ω)
√

2
(6)

The optical reflectivity R(ω):

R(ω) =

∣∣∣∣∣
√

ε1(ω) + jε2(ω)− 1√
ε1(ω) + jε2(ω) + 1

∣∣∣∣∣ 2 (7)

Energy-loss spectrum L(ω):

L(ω) =
ε2(ω)

ε2
1(ω) + ε2

2(ω)
(8)

Absorption coefficient α(ω):

α(ω) =
√

2
[√

ε2
1(ω) + ε2

2(ω)− ε1(ω)

]1/2
(9)
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All optical properties were calculated with calculation geometry polycrystalline, in-
strumental smearing 0.5 eV.

The real part ε1(ω) and the imaginary part ε2(ω) of the dielectric function with
polarized radiation along the [100], [010], and [001] directions are shown in Figure 11.
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function as function of the energy of the (C2H7N4O)2BiCl5 compound.

The three plots of the real parts of the dielectric function are different. This proves
that the optical properties of the compound are anisotropic. The estimated electronic static
dielectric function ε1(0) is ε1 xx(0) = 1.89, ε1 yy(0) = 2.08, and ε1 zz(0) = 2.18. The square
root of the static dielectric constant may provide an estimation of the refractive index. The
ε1(ω) plots increase with the increasing of the photon energy from their static values and
then reach maximum values of ε1(ω) of about ε1 xx(ω) = 2.87 at 3.39 eV, ε1 yy(ω) = 3.87
at 4.29 eV, and ε1 zz(ω) = 3.40 at 3.56 eV following its decrease. A rather steep decrease
is observed for ε1(ω), then it becomes negative. The negative values of the real part of
the dielectric function are due to damping of the electromagnetic wave, and zero values
indicate that the longitudinally polarized waves are possible.

The imaginary parts of the dielectric function started at 2.16 eV, 2.45 eV, and 1.75 eV
for ε2 xx(ω), ε2 yy(ω), and ε2 zz(ω) respectively (Figure 11b). Since the spectrum of the
imaginary part ε2(ω) is related to the absorption of the radiation from the material, it
was possible to determine the origin of the spectrum peaks based on the density of states
curves. This implies that there was transition from valence sub-bonds to the conduction
sub-band. The unpolarized dielectric function curves of the (C2H7N4O)2BiCl5 are plotted
in Figure 12, which shows the presence of at least six electronic transitions (Figure 12). The
same transition bands—such as E1, E2, and E3—are overlapped. A careful examination of
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the partial state densities (Figure 9) and the ε2(ω) spectrum (Figure 12) and by following
the selection rules could determine the nature of different transitions [34].
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the presence of six transitions.

The refractive index of a material characterizes the modification of the propagation
of light waves by their interaction with the material’s medium in which they propagate.
Figure 13 shows the variation of the refractive index and the extinction coefficient of
(C2H7N4O)2BiCl5 as a function of energy of the material in the orthorhombic system and
along the three crystallographic directions.
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The refractive index n(ω) (Figure 13a) exhibited some anisotropy in the energy range
0–20 eV. n(ω) started from the static refractive index n(0), which are 1.37, 1.44, and 1.48 along
the [100], [010], and [001] directions respectively. The static refractive index n(0) is related
to the static dielectric function ε1(0) by the relation n =

√
εµ, where µ is the relative per-

meability which is equal to the unit for nonmagnetic substances. Thus, for the compound,
n =
√

ε. Then, n(ω) increased with an increase in the energy from the static value to reach
a maximum of about 1.71, 2.02, and 1.92 at 3.48 eV, 4.47 eV, and 4.65 eV along the [100],
[010], and [001] directions respectively. In this energy range, the more the refractive index
increased, the more the light beam was refracted. Afterwards, n(ω) decreased rapidly to
reach a minimum. By comparison, the spectra of the refractive index n(ω) and real part of
the dielectric function ε1(ω) were very similar.

Figure 13b shows the variation of the extinction coefficient k(ω) as a function of the
energy of the (C2H7N4O)2BiCl5. We observed that, in the ~6–~8 eV energy range, the
extinction coefficient k(ω) was greater than the refractive index n(ω) in the [010] and [001]
directions, which indicated that the light in this energy region was not able to propagate in
the material.

The optical reflectivity R(ω) is defined as the fraction of light reflected at an interface.
Figure 14 shows the energy-dependent reflectivity spectrum of (C2H7N4O)2BiCl5 along the
three crystallographic directions.
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compound.

The static reflectivity was about 4% along the three crystallographic directions. Then,
the reflectivity varied slightly but remained below 3 eV. Afterwards, the reflectivity in-
creased rapidly and reached a maximum in the 6–9 eV energy range. Then, the reflectivity
became almost zero. The reflectivity had the lowest value along the [100] direction in
the 0–10 eV energy range, where the maximum value did not exceed 15%. However, the
maximum values of the reflectivity were about 36% along the [001] direction.

The absorption coefficient α(ω) quantifies the energy of an electromagnetic wave
of frequency (ω), absorbed per unit length of medium, where it propagates. Figure 14
shows the energy dependent absorption coefficient spectrum of the (C2H7N4O)2BiCl5 in
an energy range of up to 30 eV for incident electromagnetic radiation polarized parallel to
crystallographic directions.

The general overall features of the absorption spectra of the three radiation direc-
tions were different, which means the anisotropy of the medium is consistent with the
orthorhombic system. Note that the two curves along the [100] and [001] directions started
at the same absorption and grew rapidly at the same rate. However, the curve along [010]
is shifted. This indicated that the band edge was anisotropic.

Figure 15 shows that (C2H7N4O)2BiCl5 is an absorber both in the visible and UV lights.
Indeed, the absorption occurs between 3 and 17 eV with six peaks where the first three
peaks were overlapped. In the 2–10 eV energy range, the [001] direction exhibited the
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highest α(ω) value which reached about 1.3 × 105 cm−1, while the [100] direction has
the smallest value at 0.8 × 105 cm−1. However, in the 10–17 eV energy range, the [100]
direction exhibited the highest absorption value of 0.6 × 105 cm−1 at 16 eV. The maximum
value of the absorption coefficient of the title compound is very similar to the well-known
lead halide perovskites CH3NH3PbX3 (X = I, Br, Cl) [43–45].
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The electron energy loss function L(ω) is an important optical parameter which de-
scribes the energy lost by the free charge carriers (absorbed) during the course of passing
through a homogeneous material. The energy loss spectrum of the (C2H7N4O)2BiCl5
compound is presented in Figure 16.
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Figure 16. Energy-loss spectrum of the (C2H7N4O)2BiCl5 compound.

The significant peaks were located at 7.95, 8.52, and 8.21 eV for [100], [010], and [001]
directions respectively, where electrons were originally unbound to their lattice sites and
started the plasma oscillation. It was evident that the dielectric energy loss was more
pronounced according to the [010] direction and was the weakest according to the [100]
direction. The maximum of the electron energy loss function corresponded to the abrupt
decline of the reflection magnitude [46].
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3. Materials and Methods
3.1. Materials

Bismuth chloride (BiCl3) and cyanoguanidine (C2H4N4) (molar ratio 1:2) was dis-
solved in 20 mL of absolute ethanol and an excess of HCl was added to the solution. The
mixture was stirred, then kept at room temperature. After three months, colorless single
crystals were obtained and isolated from the reaction.

3.2. Physical Measurements

Fourier-transform infrared spectroscopy (FT-IR) spectrum of the compound was mea-
sured at room temperature in the range of 4000–400 cm−1 on a Perkin-Elmer Paragon
1000 Pc spectrometer (Sacramento, CA, USA). The sample for the FTIR analysis was pre-
pared by dispersing 2% of the compound in KBr discs. A Perkin-Elmer Lambda 45 UV–
visible absorption spectrometer was used to measure the optical absorption spectrum at
room temperature. A HORIBA JOBIN-YVON (HR320) spectrometer (Piscataway, NJ, USA)
was used to record the photoluminescence spectrum, while a diode laser with a wavelength
of 270 nm was used to excite the sample.

3.3. Computational Details

All first principal calculations were carried out based on the density functional theory
(DFT) method by employing the pseudopotential plane wave as implemented in CASTEP
code [30,47]. The crystallographic data of (C2H7N4O)2BiCl5, determined by single X-ray
diffraction, have been used as starting sets. The electronic exchange-correlation energy (XC)
was treated using the generalized gradient approximation (GGA) together with the Perdew–
Burke–Ernzerhof (PBE) parameterization [48]. The norm-conserving pseudopotential was
used to describe the ionic core and valence electron interactions. The plane wave basis set
had a 400-eV energy cut-off, and a 2 × 2 × 2 special Monkhorst-Pack [49] k-point mesh for
the Brillouin zone (BZ) was adopted. The Broyden–Fletcher–Goldfarb–Shannon (BFGS)
algorithm was used to determine the minimum energy of the crystal structure. The atomic
force, maximum displacement, and total energy convergence criteria were 0.05 eV Å−1,
0.002 Å, and 10−6 eV, respectively.

3.4. Hirshfeld Surfaces Analysis, Enrichment Ratio (E), and Morphology Simulation

CrystalExplorer17 was used to create the Hirshfeld surfaces [50] and their correspond-
ing 2D fingerprint plots [51] with a final refined crystallographic information file as the
input. The intercontact in the crystal packing was quantified and decoded using dnorm
(normalized contact distance) and 2D fingerprint plots, respectively. The short interatomic
contacts created the dark-red spots on the dnorm surface, while the other intermolecular
interactions caused light-red spots. The di (inside) and de (outside) symbolize the distances
from the nuclei to the Hirshfeld surface in terms of relative van der Waals radii. The
color gradient (blue to red) in the fingerprint plots depicts the proportional contribution of
intercontact over the surface.

The enrichment ratio (E) [52] was used to analyze the tendency of the pair of elements
(X, Y) to form contacts in the crystals. E is the proportion of actual contacts in the crystal
compared to random contacts (theoretical proportion). If E > 1, pairs of elements will have
a greater chance of developing contacts in crystals; and if E < 1, the pairs will avoid making
contact. The input values for both types (one type and two types of chemical elements) to
the E was derived from the CrystalExplorer17 software.

The Materials Studio program [53] was used to predict the morphology of the
(C2H7N4O)2BiCl5 material. As input, a crystallographic information file (cif) is provided.

4. Conclusions

The present work describes the spectroscopic and morphological characterization of
chlorobismuthate (C2H7N4O)2BiCl5 by both experimental and theoretical approaches. In
the theoretical study, the intermolecular interactions were explored using Hirshfeld surface
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analysis and enrichment ratio (E), which showed that the most important role in the stability
of the crystal structure was provided by hydrogen bonding and π–π stacking interactions.
The highest value of E was calculated for the contact Bi···Cl (2.53), followed by N···N (2.17),
and there was a high tendency to form contacts in the crystal. This provided the basis
for the existence of the π–π stacking interactions in the structure. The crystal growth
morphology of (C2H7N4O)2BiCl5 was predicted by the BFDH model, which showed that
(020) and (011) faces of the crystal were the main growth faces. The vibrational modes of the
organic cation present in the structure were assigned using the experimental IR spectrum,
while the optical properties were studied by optical absorption and photoluminescence
measurements. The results revealed that the band gap of this compound was 3.20 eV and
that it exhibited a broad violet emission band in the violet range centered at 336 and 358 nm.
The theoretical determination of the optical properties shows that the title compound
was a direct semiconductor. The dielectric function shows six electronic transitions. The
absorption spectrum indicates that the (C2H7N4O)2BiCl5 material is an absorber in the
3–10 eV energy range with a maximum of 1.3 × 105 cm−1.
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