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Abstract: Four new cyano-bridged DyIII-CrIII, DyIII-FeIII, HoIII-CrIII and HoIII-FeIII bimetallic coor-
dination polymers were synthesized by the reaction of [Ln(H2dapsc)(H2O)4](NO3)3 (Ln = Dy, Ho);
H2dapsc = 2,6-diacetylpyridinebis(semicarbazone)) with K3[M(CN)6] (M = Cr, Fe) in H2O, resulting
in the substitution of two water molecules in the coordination sphere of rare earth by paramagnetic
tricharged hexacyanides of Fe and Cr. The complexes are isostructural and consist of alternating
[Ln(H2dapsc)(H2O)2]3+ and [M(CN)6]3− units linked by bridges of two cis-cyano ligands of the
anion to form square-wave chains. The ac magnetic measurements revealed that the DyCr and DyFe
complexes are field-induced single molecule magnets, while their Ho analogs do not exhibit slow
magnetic relaxation.

Keywords: field-induced single-molecular magnets; nine-coordinate complexes; Ln(III) complexes;
H2dapsc ligand; crystal structure; dc and ac magnetic properties

1. Introduction

Molecular nanomagnets—SMMs (single-molecule magnets), SIMs (single-ion magnets)
and SCMs (single-chain magnets)—are intensively studied owing to their unique properties
such as superparamagnetism, magnetic bi-stability, slow magnetic relaxation, blocking and
quantum tunneling of magnetization as well as potential application as components of
high-density information storages, spintronic and quantum computing devices [1]. Among
them the lanthanide-based SIMs attract a special attention because of strong uniaxial
magnetic anisotropy of the lanthanide ions (especially 4f-lanthanides Tb3+, Dy3+, Ho3+,
Er3+) caused by enhanced spin-orbital coupling, which can improve the characteristics of
molecular nanomagnets by increasing the values of spin reversal barrier, Ueff, and blocking
temperature of magnetization, TB [2,3]. In addition, the geometry of the ligand environment
also plays a critical role, since it can enhance the local magnetic anisotropy [4,5]. In the
case of rare-earth ions, the spatial distribution of the electrons in the different 4f orbitals
leads to inherent anisotropic shapes of electronic density: oblate (Tb, Ho, Dy) and prolate
(Er, Tm, Yb), equatorially or axially elongated f-electron charge clouds, respectively. Based
on the 4f electron density shape of the rare earths, Rinehard and Long concluded that the
oblate shape of the lanthanide ion must be stabilized by an axial ligand field, while the
prolate shape requires an equatorial ligand field, because such the ligand fields lead to a
decrease of electrostatic repulsion between the ligands and metal center and increase the
molecular magnetic anisotropy [6]. With this in mind, several seven-coordinate pentagonal-
bipyramidal Dy complexes with high Ueff and TB, up to 1800 K and 22 K, respectively,
have recently been synthesized [7–12]. These complexes contain weak donor ligands in
the equatorial plane, in particular, five molecules of water or pyridine, and strong bulky
ligands in the axial positions, such as tricyclohexylphosphine oxide or tert-butoxide.
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Our recent efforts to synthesize new lanthanide-based SIMs using the pentadentate
N3O2-donor Schiff-base ligand H2dapsc (2,6-diacetylpyridinebis(semicarbazone), Figure 1),
which forms pentagonal-bipyramidal complexes with many 3d metals [13–18], resulted in
four isostructural nine-coordination [Ln(H2dapsc)(H2O)4](NO3)3 complexes. Two of them
with Dy3+ and Er3+ Kramers ions are field-induced single-ion magnets whereas the Tb3+

and Ho3+ complexes show absence of slow magnetic relaxation [19]. It should be noted that
interaction between adjacent 4f-metals is usually weak because of the core-like character of
4f-electrons shielded by fully filled 5s2 and 5p6 orbitals. In this reason it is reasonable to
construct mixed 4f-3d complexes in order to introduce stronger magnetic coupling along
with high magnetic anisotropy of the lanthanide ion. However, magnetic interactions have
a dual effect on the SMM properties of 4f ions-based complexes [20]. On the one hand,
the weak intramolecular magnetic interaction between the magnetic ions in polynuclear
complexes may promote the quantum tunneling of magnetization (QTM) thus accelerating
the process of magnetic relaxation [21–25]. On the other hand, strong magnetic exchange
coupling can increase the blocking temperature of SMM [26]. The combination of 4f-3d
ions can be achieved using hexacyanides of paramagnetic 3d metals [MIII(CN)6]3− as a link
between 4f ions via cyanide bridges [27]. Recently, by implementing this approach, Tong’s
group synthesized a trinuclear linear complex (PPh4)[Dy2(bbpen)2{Fe(CN)6}]·3.5CH3CN
that showed a record magnetization barrier of 659 K in d-f SMMs, which made the cyanide-
bridged 3d-4f systems more attractive [28].
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Figure 1. Molecular structure of the pentadentate ligand H2dapsc (R = NH2) and its analog H2dapbh
(R = C6H5).

We synthesized four new polyheteronuclear cyano-bridged chain compounds on the
base of LnIII cationic complexes bearing H2dapsc ligand (Ln = Dy, Ho) and [MIII(CN)6]3−

anions: {[Ln(H2dapsc)(H2O)2][M(CN)6]}n·3nH2O; Ln, M = DyCr (1), DyFe (2), HoCr (3),
HoFe (4). Their crystal structures and magnetic properties have been investigated and
described in comparison with the initial discrete mononuclear lanthanide complexes.

2. Results and Discussion
2.1. Synthesis

Compounds 1–4 were synthesized by slow diffusion of water solution of K3[M(CN)6]
(M = Cr, Fe) through frit with a pore diameter of 10–20 microns into a water or wa-
ter/ethanol solution of [Ln(H2dapsc)(H2O)4](NO3)3 (Ln = Dy, Ho), the details are given
in the Materials and Methods section. The reaction results in the substitution of two
water molecules in the coordination sphere of rare earth by paramagnetic tricharged
hexacyanides of Fe or Cr accompanied by formation of infinite chains of alternating
[Ln(H2dapsc)(H2O)2]3+ cations and [M(CN)6]3− anions. Thermogravimetric analysis of the
complexes showed the weight loss in the temperature ranges 40–100 ◦C and 115–170 ◦C
corresponding to the loss of lattice and coordinated water molecules, respectively (Figures
S6 and S9 in Supplementary Materials). The decomposition of the complexes starts above
180 K with the release of CN-fragments.
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2.2. Description of the Structure

The complexes 1–4 are isostructural and crystallize in the monoclinic P21/c space
group (Table 1). The asymmetric unit includes one {[Ln(H2dapsc)][M(CN)6](H2O)2} frag-
ment and three solvent water molecules, all in general positions. An ORTEP drawing of
3 is shown in Figure 2 (the atomic numbering is similar in 1–4), key bond distances and
angles for 1–4 are listed in Table A1 of the Appendix A section.

Table 1. Crystal data and structural refinement parameters for the complexes 1–4.

1 2 3 4

Chemical formula C17H25CrDyN13O7 C17H25FeDyN13O7 C17H25CrHoN13O7 C17H25FeHoN13O7
Formula weight 738.00 741.85 740.43 744.28
Cell setting monoclinic monoclinic monoclinic monoclinic
Space group, Z P21/c, 4 P21/c, 4 P21/c, 4 P21/c, 4
Temperature (K) 150(1) 150(1) 140(1) 295(1)
a (Å) 12.8451(1) 12.6415(8) 12.8518(7) 12.721(2)
b (Å) 12.7918(1) 12.5812(7) 12.8157(7) 12.661(1)
c (Å) 17.1832(2) 17.0894(13) 17.2114(10) 17.293(2)
α (◦) 90 90 90 90
β (◦) 103.3953(9) 103.484(6) 103.557(6) 103.040(10)
γ (◦) 90 90 90 90
Cell volume (Å3) 2746.58(4) 2643.1(3) 2755.8(3) 2713.4(6)
ρ (g/cm3) 1.785 1.864 1.785 1.822
µ, cm−1 31.56 34.18 33.06 34.91
Refls collected/unique 35374/9358 24896/10290 22589/9216 16823/6386
Rint 0.0196 0.0793 0.0306 0.0762
θmax (◦) 31.20 28.28 31.00 26.50
Parameters refined 402 403 402 399
Final R1, wR2 [I > 2σ(I)] 0.0159, 0.0362 0.0496, 0.1157 0.0233, 0.0557 0.0519, 0.0814
Goodness-of-fit 1.006 1.001 1.007 1.000
CCDC number 2156616 2156617 2156618 2156619
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In the crystal structure of 1–4 cationic [LnIII(H2dapsc)(H2O)2]3+ and anionic [MIII(CN)6]3−

units are linked through two cyanide bridges in a cis mode with respect to M3+ ion into
neutral 1D chains which have shape of square wave and run along the b-axis (Figure 3a).
Within the chain N(12)-Ln(1)-N(13) and C(12)-M(1)-C(13**) angles are 73 and 94◦, respec-
tively, when M = Cr (in 1 and 3) and 75 and 95◦, respectively, when M = Fe (in 2 and 4,
Table A1). The M(1)-Ln(1)-M(1) and Ln(1)-M(1)-Ln(1) angles are 101 and 96◦, respectively,
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in all the cases. The Ln3+ ion is nine-coordinated by three nitrogen and two oxygen atoms
of H2dapsc, two nitrogen atoms from cyanide bridges and two oxygen atoms from aqua
ligands. Two [M(CN)6] moieties and one coordinated water (O(4) in Figure 2) are attached
to Ln3+ ion on the same side of the H2dapsc ligand while another coordinated water (O(3))
lies on the opposite side of H2dapsc. As a result, the H2dapsc ligand is strongly deviated
from the planarity (Figure 2, right). The dihedral angle between two semi-carbazone planes
defined by 7 non-metallic atoms of two pentagonal cycles from each half of H2dapsc [O(1),
C(1), N(3), N(5), C(4), C(5), N(7) and O(2), C(2), N(4), N(6), C(10), C(9), N(7)] is 21.52(3),
22.7(2), 22.01(4) and 22.22(12)◦ in 1–4, respectively. For a comparison, in the discrete nine-
coordinated mononuclear complexes [Ln(H2dapsc)(H2O)4](NO3)3 with Ln = Dy and Ho
the similar angle is about 13◦ [19]. Thus, the steric effects are strengthened in 1–4 in the pres-
ence of the square-wave chain. According to the shape analysis of these nine-coordinated
compounds (Table S1 in Supplementary Materials) the coordination of Dy and Ho in the
initial discrete complexes [19] is close to the muffin geometry with a Cs symmetry while
distortion parameters in 1–4 is somewhat higher and shape of the polyhedra better fits to
the spherical capped square antiprism with a C4v symmetry.
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Formation of the square-wave type of chain is supported by strong hydrogen intra-
chain bonding shown by red dashed lines in Figure 3a. Details of H-bond geometry is
given in Tables S2–S5 and discussed further on the example of structure 3 (HoCr). The
shortest hydrogen bond between the adjacent non-connected [Ho(H2dapsc)(H2O)2] and
[Cr(CN)6] units in the chain, O(3)-H(3wa) . . . N(14), fixes the square-wave shape. The
H . . . N distance in this bond is 1.93 Å, the distance between Ho and Cr ions linked by
this hydrogen bond is 7.2368(5) Å. Second aqua ligand is hydrogen bonded to N atoms of
[Cr(CN)6] through bridging O(5) water molecules: O(4)-H(4wa) . . . O(5)-H(5wb) . . . N(17)
(H . . . O 1.98 Å, H . . . N 2.35 Å) and O(4)-H(4wb) . . . O(5)-H(5wa) . . . N(16) (H . . . O
2.08 Å, H . . . N 2.25 Å). The same O(5) water molecule acts as a bridge both in the intrachain
and interchain hydrogen bonds (Figure 3b). NH2-groups of H2dapsc also participate in
hydrogen bonding both inside and between the chains, which are direct or include bridging
free water molecules O(6) and O(7) (Figure 3b). H . . . O distances in these bonds are 2.00,
2.13 Å; H . . . N ones are 2.11–2.29 Å. It should be noted that, unlike to NH2-groups, the
H-bond donor function of NH-groups in H2dapsc is deactivated, they form only weak
hydrogen contacts of N-H . . . N type (H . . . N of 2.58, 2.64 Å) to CN-ligands.

Average Fe-CCN distance, 1.94(2) Å, is about 0.13 Å shorter than Cr-CCN one, 2.07(1) Å.
Accordingly, the square-wave chain is more compact in 2, 4 than in 1, 3 with intermetallic Ln-
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Fe distances a bit shorter than Ln-Cr ones (av. 5.5 Å vs. 5.6 Å, Table A1). The Ln-M distance
in the chain between the metals without CN bridge (with hydrogen bond interaction) is
7.2207(2), 7.1216(10), 7.2368(5), 7.1686(10) Å in 1–4, respectively. The shortest interchain
Ln-M distance is 7.4976(2), 7.4179(10), 7.5018(5) and 7.4833(14) Å in 1–4, respectively. The
shortest intrachain and interchain Ln-Ln separations are 8.318 and 8.071 Å in 1, 8.156 and
7.975 Å in 2, 8.328 and 8.081 Å in 3, 8.201 and 8.098 Å in 4, respectively.

The similar 1D square-wave chains were found in the cationic Ln complexes with water
and dimethylformamide (DMF) ligands combined with [MIII(CN)6]3− anions. They are
isostructural to each other and have general formula {Ln(DMF)4(H2O)2][M(CN)6]}n·nH2O
(Ln = Sm, Gd, Tb; M = Cr or Fe) [29–32]. Unlike to nine-coordinated complexes in 1–4, the
Ln3+ ion in these compounds is eight-coordinated by four oxygen atoms from four DMF
ligands, two oxygen atoms from coordinated water molecules and two nitrogen atoms from
cyanide bridges. Ln3+ and M3+ ions are connected into infinite square-wave chain through
two cyanide bridges in the cis geometry with respect to M3+ ion. The chains are further
extended into three-dimensional networks through hydrogen bonding interactions [32].
The study of magnetic properties showed that none of these complexes is a SMM. However,
the Sm-Fe and Tb-Cr complexes demonstrate a three-dimensional ferromagnetic ordering
with Tc = 3.4 and ~5 K, respectively [30,32].

The H2dapsc ligand and its analogs are remarkable for the synthesis of new magnetic
materials due to their ability to produce metal complexes with pentagonal-bipyramidal
(PBP) environment of the central metal atom (local pseudo D5h symmetry) which pro-
motes high anisotropy of the complexes and thereby increases the magnetization bar-
rier [18,33–35]. The PBP coordination with the H2dapsc ligand has been realized in three 3d-
3d cyano-bridged chain compounds with SCM properties. Two of them were synthesized
using the strategy to combine MII(H2dapsc) transition metal complexes with [MIII(CN)6]3−

transition metal anions: {[Mn(H2dapsc)][Mn(CN)6][K(H2O)2.75(MeOH)0.5]}n·0.5nH2O and
{[Mn(H2dapsc)][Fe(CN)6][K(H2O)3.5]}n·1.5nH2O [36,37]. The third compound [Cr(dapbh)
(CN)2Fe(H2dapsc)]PF6 is the product of a reaction between two pentagonal-bipyramidal
units: [Fe(H2dapsc)Cl2] and [Cr(dapbh)(CN)2]− [38]. In all three structures, the MII center
is seven-coordinated by N3O2 atoms of the H2dapsc ligand in the equatorial plane and
two axial N atoms from the two CN-linkers. Owing to PBP geometry, these SCM com-
plexes have approximately linear structure of the chains in which MII(H2dapsc) units are
connected through a pair of CN-groups in trans-geometry with respect to metal ions and
H2dapsc moieties are near orthogonal to the chain direction. However, heavy lanthanide
ions show tendency to the higher degree of coordination. Indeed, in the known Tb, Dy,
Er mononuclear complexes with similar N3O2 ligands Ln3+ ion is mainly eight-, nine- or
ten-coordinated whereas seven-coordinated complexes are rarely obtained [39–43]. Linear
cyano-bridged chains for Ln complexes with the N3O2 pentadentate ligands are not known
although for some Ln complexes with other ligands approximately linear chains exist in
spite of eight- or nine-coordinated Ln [31,44–49]. To the best of our knowledge the linear
chains with seven-coordinate lanthanides have been synthesized only in the case of Dy
and Er complexes with the 2-picoline N-oxide ligand in the equatorial plane (five ligand
molecules) and two [M(CN)6]3− anions in the apical positions [50].

In our syntheses the initial Ln complexes were nine-coordinated and we did not
obtain linear chain. In any case, the compounds 1–4 are the first examples of the 1D
cyano-bridged chain Ln complexes with pentadentate (N3O2) ligand. To date, the sole
examples of cyano-bridged Ln-based compounds with H2dapsc analogue (H2LN3O2) are
tetranuclear ensembles {[Ln(H2LN3O2)(H2O)(DMF)]M(CN)6}2 (Ln = Tb, Dy, Ho; M = Co,
Fe) [51], which contain very similar to 1–4 structural motifs of alternated nine-coordinated
Ln centers and octahedral anions locked into square instead of infinite chain. Interestingly,
that SMM properties are found for the Dy complex with diamagnetic Co3+ cation whereas
Dy complex with paramagnetic Fe3+ does not show a slow magnetic relaxation.
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2.3. Magnetic Properties

The temperature dependence of the magnetic susceptibility was measured on poly-
crystalline samples of complexes 1–4 in the temperature range of 2.0−300 K under the
applied magnetic field of 0.1 T. The χmolT vs. T plots are depicted in Figure 4. At 300 K,
the χmolT values for the complexes are 16.045, 14.545, 15.945 and 14.445 cm3K mol−1 and
are close to the expected those of 15.94, 14.44, 16.04 and 14.54 cm3K mol−1 for 1, 2, 3 and 4,
respectively, as the sum of one non-interacting DyIII/HoIII ion (14.17 cm3K mol−1 for Dy
and 14.07 cm3K mol−1 for Ho) and one free CrIII/[FeIII]LS (1.87 cm3K mol−1 for Cr and
0.37 cm3K mol−1 for Fe) [52].
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On cooling, χmolT values decrease slowly and then their fall accelerates rapidly below
50 K, which may be mainly attributed to the progressive depopulation of the DyIII or HoIII

Stark sublevels [6] and magnetic interactions between the 3d and rare-earth ions. The
magnetic susceptibility data in the high temperature region (150–300 K) for all complexes
obey the Curie-Weiss law with the Weiss constants (θ) being −21.0, −5.8, −8.4 and −13.5 K
for 1, 2, 3, and 4, respectively. The nature of the DyIII/HoIII-CrIII/FeIII magnetic coupling in
complexes 1–4 is usually difficult to assess because of the significant spin–orbit interaction
of DyIII/HoIII ions. Comparative study of the magnetic properties of two tetranuclear quad-
rangle complexes [Dy(H2LN3O2)(H2O)(DMF)M(CN)6]2 and two binuclear linear Dy-NC-M
complexes with the hexacyanides of paramagnetic and diamagnetic 3d-metal (M = Fe, Co),
each of which is linked through a pair of cis-cyano groups to two Dy or one cyano group
to one Dy, respectively, showed that the interaction between Dy and Fe takes place and is
antiferromagnetic [51,53].

In order to examine possible SMM properties of the complexes 1–4, the ac susceptibility
was studied at zero dc field with Hac = 4 Oe. The ac measurements serve as a probe for
the relaxation processes in the magnetic system, revealing in a frequency dependence of
in-phase χ′(f ) and a non-zero out-of-phase χ′′(f ) signal. None of these compounds shows
the slow magnetic relaxation in a zero dc magnetic fields; the χ′′ signals are not observed,
Figure S1.

It is well known that magnetic relaxation of SMMs based on 4f elements is highly
susceptible to quantum tunneling of magnetization (QTM), which can be suppressed by
applying an external dc field [2,54]. The dc field-dependencies of ac susceptibility (χ′ and
χ′′) were recorded under fields of 0–10000 Oe in search for an optimal field to suppress the
QTM effect, Figure 5. When applying a dc field of 1000–2000 Oe, a maximum of χ′′ was
observed in the case of DyCr (1) and DyFe (2) complexes.
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In contrast to the Dy Kramers ion, the complexes of non-Kramers Ho ion (3, 4) did not
show a maximum of χ′′ in dc fields up to 6000 Oe, that is, they are not field-induced SMMs.
The SMM-silence was also observed for the tetranuclear complex of another non-Kramers
ion (Tb), [Tb(H2LN3O2)(H2O)(DMF)Co(CN)6]2, in contrast to the analogous complex of
Dy [51]. The crystal-field analysis of the initial mononuclear [Ln(H2dapsc)(H2O)4](NO3)3
complexes showed that in the case of non-Kramers Tb and Ho ions, their ground state
in these complexes is a well-isolated non-magnetic singlet, which explains the absence
of SCM behavior of the nine-coordination Tb and Ho complexes [19]. The deeper drop
of the χT product at low temperatures, observed in Ho complexes (3, 4) as compared
with Dy complexes (1, 2), Figure 4, reflects this feature of the Ho complexes electronic
structure [19,55].

To probe the relaxation behavior of 1 (DyCr) and 2 (DyFe) complexes, the ac suscep-
tibility was studied in a dc field of 1000 Oe at different frequencies (Figure 6). Both the
in-phase χ′ and out-of-phase χ” susceptibilities show frequency dependent signals in the
temperature range of 1.8 to 2.6 K indicating slow relaxation of magnetization. However,
at temperatures above 2.6 K, the χ′′ maxima lie above 1400 and 10,000 Hz for 1 and 2,
respectively (maximum frequencies available to us). Assuming that the relaxation of mag-
netization in 1 and 2 is Debye process driven by the thermal activation over the energy
barrier Ueff we estimated the values of energy barrier Ueff and τ0 using the Formula (1),
proposed in [56].

ln
(
χ′′/χ′

)
= ln(ωτ0) +

Ue f f

kT
(1)

where ω (ω = 2πf )—is angular frequency, τ0 is a preexponential factor of the Arrhenius
law τ = τ0exp(Ueff/kT), T—absolute temperature, Ueff—the effective energy barrier for the
reversal of magnetization, k—Boltzmann constant.

The experimental plots ln(χ′′/χ′) vs. T−1 at different frequencies and their fitting by
the Formula (1) are presented in Figure 7. The average values of Ueff and τ0 are 3.8 K and
1.3 × 10−5 s and 3.3 K and 1.0 × 10−6 s for 1 and 2, respectively. The τ0 lies in the range
values, which are comparable to those of SIMs based on ions of transition metals (τ0 in the
range of ~ 10−5–10−11 s [57]). The energy barriers of magnetization for the complexes 1 and
2 are practically the same that is probably a consequence of the same ligand environment
of Dy in these compounds, which plays a critical role, since it can affect the local magnetic
anisotropy of the rare earth element [6]. Let us consider the possible reasons of the low
values of the energy barriers of magnetization for the complexes 1 and 2, in particular,
in comparison with the initial mononuclear complex [Dy(H2dapsc)(H2O)4]3+ (3.8 K vs.
18 K). During the synthesis of 1 and 2, two weak neutral donor ligands (water molecules)
of the initial complex are replaced by negatively charged hexacyanometallate building
blocks. The cis-cyano attachment of these blocks leads to the formation of square-wave
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cyano-bridged chains, in which the angles between CN-Ln-NC and M-Ln-M are 73–75◦

and 101◦, respectively. Two [M(CN)6]3− moieties are attached to Ln3+ ion on the same
side of H2dapsc ligand increasing its non-planarity (Figure 2, right). The dihedral angle
between two semi-carbazone halfs of H2dapsc is 21.52 and 22.73◦ in 1 and 2, respectively,
while this angle in the initial mononuclear complex is about 13◦ [19]. The introduction of
negatively charged groups (CN) into the coordination center and the nonlinear nature of
one-dimensional M-CN-Ln-NC-M chains lead to strong electrostatic repulsion between the
ligands and 4f electron density of the Dy ion and, as a result, to a destabilization of the DyIII

oblate nature and weakening the SMM behavior. In addition, the weak antiferromagnetic
coupling in 1 and 2 between DyIII and MIII (M = Cr, Fe) ions through a cyano bridge has a
negative effect on the manifestation of the SMM behavior, leading to enhancing the QTM
and reducing the energy barrier, as shown in the works [23,28,51,53].
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3. Materials and Methods
3.1. Synthesis

All chemicals were used as received from Aldrich without further purification.
The ligand H2dapsc was prepared following the method described in [58].
The starting compounds [Dy(H2dapsc)(H2O)4](NO3)3 and [Ho(H2dapsc)(H2O)4](NO3)3

were synthesized according to the procedure reported previously [19]. The C, H and N
elemental analyses were carried out with a Vario Micro Cube analyzing device. The Raman
and IR spectra were measured on solid samples using a VERTEX 70v (Bruker) spectrometer
on the range of 4000–500 cm−1.
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• {[Dy(H2dapsc)(H2O)2][Cr(CN)6]}n·3nH2O (1)

The crystals of 1 were obtained by slow diffusion of 3 mL water solution of K3Cr(CN)6
(13.5 mg, 0.041 mmol) through frit with a pore diameter of 10–20 microns into a water
solution of [Dy(H2dapsc)(H2O)4](NO3)3 (29 mg, 0.041 mmol) in 5 mL H2O for 7 days at
room temperature. The resulting crystals were filtered, washed with H2O and dried in
vacuum. Yield: 22 mg (73%). Anal. calcd. (%) for C17H25N13O7CrDy: C, 27.67; H, 3.41; N,
24.67. Found (%): C, 27.96; H, 3.49; N, 24.52. Characteristic Raman data (cm−1): ν(C≡N)
2150, 2135; ν(C=N) 1632 (imine). The bands of stretching vibrations of H2O and NH do
not appear in the Raman spectra, since they have a very low intensity. In the IR spectra,
the bands of stretching vibrations of H2O and NH group are observed in the region of
3180–3400 cm−1 (Figures S3, S5 and S8) [59,60].

• {[Dy(H2dapsc)(H2O)2][Fe(CN)6]}n·3nH2O (2)

The crystals of 2 were also obtained by slow diffusion but with replacement of
K3Cr(CN)6 by K3Fe(CN)6. Yield: 60%. Anal. calcd. (%) for C17H25N13O7FeDy: C, 27.52; H,
3.40; N, 24.55. Found (%): C, 27.52; H, 3.57; N, 24.28. Characteristic Raman data (cm−1):
ν(C≡N) 2130, 2119; ν(C=N) 1627 (imine) (Figure S2).

• {[Ho(H2dapsc)(H2O)2][Cr(CN)6]}n·3nH2O (3)

The water solution (3 mL) of K3Cr(CN)6 (20 mg, 0.062 mmol) and the solution of
[Ho(H2dapsc)(H2O)4](NO3)3 (43 mg, 0.062 mmol) in 5 mL H2O and 1 mL ethanol were
added by slow diffusion to 10 mL H2O. The mixture was left undisturbed at room tempera-
ture for 1–2 days. The resulting crystals of 3 were filtered, washed with water and dried in
vacuum. Yield: 38 mg (83%). Anal. calcd. (%) for C17H25N13O7CrHo: C, 27.58; H, 3.40; N,
24.60. Found (%): C, 27.48; H, 3.50; N, 24.51. Characteristic Raman data (cm−1): ν(C≡N)
2145, 2132; ν(C=N) 1633 (imine) (Figure S4).

The thermogram of the complex 3 (Figure S6) demonstrates a mass loss of 5.51% in the
temperature range 50–100 ◦C with an endothermic peak at 93 ◦C which corresponds to the
loss of lattice H2O molecules. The second endothermic peak at 157.3 ◦C with a mass loss of
4.81% corresponds to a loss of coordinated H2O molecules. In the mass spectrum recorded
in the gas phase the peaks are observed at m/z = 18 and m/z = 17 from H2O molecules.
The decomposition of the complex starts above 200 ◦C and is accompanied by the release
of CN- (m/z = 26), OH- (m/z = 18, 17) and CH3- (m/z = 15) fragments.

• {[Ho(H2dapsc)(H2O)2][Fe(CN)6]}n·3nH2O (4)

The crystals of 4 were obtained by the same method of the preparation for 3 but with
using of K3Fe(CN)6. Yield: 63%. Anal. calcd. (%) for C17H25N13O7FeHo: C, 27.43; H, 3.38;
N, 24.46. Found (%): C, 27.37; H, 3.40; N, 23.98. Characteristic Raman data (cm−1): ν(C≡N)
2142, 2127; ν(C=N) 1627 (imine) (Figure S7).

The thermal analysis of crystals 4 showed a weight loss in the temperature range
40–100 ◦C and 115–170 ◦C corresponding to the loss of lattice and coordinated water
molecules, respectively (Figure S9). In the mass spectrum of the gas phase the peaks at
m/z = 18 and 17 from H2O molecules are observed. The decomposition of complex 4 with
the release of CN-fragments begins at 180–200 ◦C.

3.2. X-ray Crystal Structure

X-ray single crystal diffraction data were collected at different temperatures on an
Oxford Diffraction Gemini-R CCD diffractometer equipped with an Oxford cryostream
cooler [λ(MoKα) = 0.71073 Å, graphite monochromator, ω-scans]. Single crystals were
taken from the mother liquid using a nylon loop with paratone oil and immediately
transferred into cold nitrogen stream of the diffractometer. Data reduction with empirical
absorption correction of experimental intensities (Scale3AbsPack program) was made with
the CrysAlisPro software [61].

The structures were solved by direct method and refined by a full-matrix least squares
method using SHELX-2016 program [62]. Experimental data for 2 were collected from the
twinned crystal (twin operation is 180◦ rotation around the c-axis) and HKLF5 instruction
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of SHELXL was used for the structure refinement. All non-hydrogen atoms were refined
anysotropically. The positions of H-atoms were calculated geometrically and refined in
a riding model with isotropic displacement parameters depending on Ueq of connected
atom. Torsion angles for –CH3 hydrogens were refined using HFIX137. The hydrogen
atoms of water molecules were found from difference Fourier map and refined isotropically
with Uiso(H) = 1.5Ueq(O) and bond lengths restraints (SADI). Main crystal data, the X-ray
data collection and refinement statistics for 1–4 are listed in Table 1. CCDC 2156616–
2156619 contain the supplementary crystallographic data for this paper. These data can be
obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html accessed
on 10 February 2022 (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax:
+44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

3.3. Magnetic Measurements

The dc of powder samples 1–4 was measured by a Quantum Design MPMS-5 SQUID
magnetometer. Ac measurements were carried out on a MPMS-5 for complexes 1, 3, 4
and Physical Properties Measurements System PPMS-9 (Quantum Design) for complex
2. The experimental data were corrected for the sample holder and for the diamagnetic
contribution calculated from Pascal constants.

4. Conclusions

Four new cyano-bridged DyCr (1), DyFe (2), HoCr (3) and HoFe (4) bimetallic coordi-
nation polymers of the {[Ln(H2dapsc)(H2O)2][M(CN)6]}n·3nH2O composition were synthe-
sized by the reaction of [Ln3+(H2dapsc)(H2O)4](NO3)3 (Ln3+ = Dy, Ho) with K3[M3+(CN)6]
(M3+ = Cr, Fe) in water. X-ray single crystal diffraction study showed that the complexes
1–4 are isostructural to each other and have 1D chain structure. The chains are composed
by alternating cationic [Ln(H2dapsc)(H2O)2]3+ and anionic [M(CN)6]3− units linked by
CN-ligands of the anion which are located in the cis-position with respect to metal ions. As
a result, the chains have square-wave topology which is supported by strong hydrogen
bonding. The Ln3+ ion is nine-coordinated by N3O2 atoms of the H2dapsc ligand, two N of
CN-bridges and two O of coordinated H2O molecules.

The compounds 1–4 are the first examples of the 1D cyano-bridged chain Ln com-
plexes with pentadentate (N3O2) ligand. The dc magnetic measurements indicated possible
antiferromagnetic coupling between the 3d and 4f metal ions. The 300 K χmolT values
correspond to the practically non-interacting Ln3+ and M3+ magnetic centers. According to
the ac measurements, the DyCr (1) and DyFe (2) complexes containing Dy3+ Kramers ion
behave as field-induced single molecule magnets, while their non-Kramers Ho analogs do
not exhibit slow magnetic relaxation. The lower values of the magnetization barrier for com-
plexes 1 and 2 compared to the initial mononuclear complex [Dy(H2dapsc)(H2O)4](NO3)3
are observed. The introduction of negatively charged groups (CN) into the coordination
center and the nonlinear nature of one-dimensional M-CN-Ln-NC-M chains lead to strong
electrostatic repulsion between the ligands and 4f electron density of the Dy ion and, as a
result, to a destabilization of the DyIII oblate nature and weakening the SMM behavior.
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//www.mdpi.com/article/10.3390/inorganics10040041/s1, Cif and CheckCif files; Figure S1: Real
and imaginary parts of ac magnetic susceptibility for the 1 (DyCr) and 2 (DyFe) complexes, measured
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Figure S5: IR spectrum of the complex 3 (HoCr); Figure S6: TG-DSC curves and mass spectra for
complex 3 (HoCr) after drying in vacuum; Figure S7: Raman spectrum of the complex 4 (HoFe);
Figure S8: IR spectrum of the complex 4 (HoFe); Figure S9: TG-DSC curves and mass spectra for
complex 4 (HoFe) after drying in vacuum; Table S1: SHAPE analysis; Table S2: Hydrogen bond
geometry in DyCr complex 1; Table S3: Hydrogen bond geometry in DyFe complex 2; Table S4:
Hydrogen bond geometry in HoCr complex 3; Table S5: Hydrogen bond geometry in HoFe complex 4.
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Appendix A

Table A1. Selected bond lengths (Å) and angles (◦) in 1–4.

1 (DyCr) 2 (DyFe) 3 (HoCr) 4 (HoFe)

Ln(1)-O(1) 2.3279(9) 2.317(5) 2.326(1) 2.321(4)
Ln(1)-O(2) 2.3627(9) 2.354(4) 2.357(1) 2.363(4)
Ln(1)-N(5) 2.5272(11) 2.525(5) 2.522(1) 2.535(5)
Ln(1)-N(6) 2.5654(11) 2.560(5) 2.564(1) 2.551(4)
Ln(1)-N(7) 2.5152(12) 2.499(5) 2.510(2) 2.496(5)
Ln(1)-N(12) 2.5288(12) 2.536(5) 2.521(2) 2.547(4)
Ln(1)-N(13) 2.5080(12) 2.516(5) 2.502(2) 2.521(5)
Ln(1)-O(3) 2.3508(10) 2.359(4) 2.347(1) 2.373(4)
Ln(1)-O(4) 2.3589(10) 2.349(5) 2.355(1) 2.362(4)
M(1)-CCN 2.0575(14)–2.0798(13) 1.925(7)–1.968(7) 2.063(2)–2.088(2) 1.918(6)–1.968(5)
Ln(1)-M(1) 5.6295(2) 5.5190(12) 5.6355(4) 5.5525(9)
Ln(1)-M(1) * 5.5982(2) 5.4749(12) 5.5999(4) 5.4918(12)
O(1)-Ln(1)-O(2) 97.74(3) 96.12(16) 97.23(5) 95.68(13)
O(1)-Ln(1)-N(5) 64.07(4) 64.17(17) 64.13(5) 64.42(14)
O(2)-Ln(1)-N(6) 63.34(3) 63.73(16) 63.44(5) 63.88(14)
N(5)-Ln(1)-N(7) 61.75(4) 61.97(19) 62.11(5) 62.08(14)
N(6)-Ln(1)-N(7) 61.46(4) 61.72(18) 61.50(5) 61.45(14)
O(1)-Ln(1)-N(6) 147.76(4) 146.47(17) 147.49(5) 145.52(14)
O(2)-Ln(1)-N(5) 147.23(3) 146.28(16) 147.01(5) 146.58(13)
O(3)-Ln(1)-O(4) 129.47(4) 129.84(19) 129.37(5) 129.8(2)
N(12)-Ln(1)-N(13) 73.08(4) 74.94(16) 73.18(5) 74.76(14)
Ln(1)-N(12)-C(12) 158.95(10) 160.2(5) 159.15(15) 159.4(4)
Ln(1)-N(13)-C(13) 155.25(10) 154.9(5) 155.45(15) 154.5(4)
M(1)-C(12)-N(12) 174.59(11) 175.1(6) 174.5(2) 176.0(5)
M(1)-C(13) **-N(13) ** 176.37(13) 177.9(6) 176.3(2) 178.0(5)
C(12)-M(1)-C(13) ** 94.26(5) 94.8(3) 94.37(7) 94.9(2)
M(1)-Ln(1)-M(1) * 100.72(0) 101.05(2) 100.77(0) 101.02(1)
Ln(1)-M(1)-Ln(1) ** 95.61(0) 95.78(2) 95.67(0) 95.90(1)

Symmetry codes: * (1 − x, 0.5 + y, 0.5 − z), ** (1 − x, y − 0.5, 0.5 − z).
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