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Abstract: A bisferrocenylsilane-bridged bisphosphine, i.e., a bisphosphine bridged by bis(1′-dicyclohe
xylphosphino-1-ferrocenyl)dimethoxysilane, was synthesized and structurally characterized. Its
redox behavior was examined by cyclic voltammetry and differential pulse voltammetry, which
revealed two-step oxidation processes.
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1. Introduction

Organic bisphosphines, i.e., organic molecules that bear two phosphine moieties as
coordinating sites, represent an important class of ancillary ligands in transition-metal
coordination chemistry and catalysis [1–4]. Especially transition-metal-based catalysts in
synthetic organic chemistry often require specific custom-tailored bisphosphine ligands
in order to realize their full catalytic performance [1–5]. Furthermore, bisphosphine lig-
ands can be applied as bridging blocks in metal-organic-frameworks (MOFs) [6–9]. In
this context, bisphosphine ligands that contain a redox-active moiety would be of great
interest, as such redox-active bisphosphine ligands could potentially be functionalized,
which would possibly afford control over the chemical/physical properties of the resulting
electrochemical-stimulus-responsive transition-metal catalysts and MOFs. Given that the
ferrocenyl group is a redox-active framework that can be easily modified by a variety of
well-established organic synthetic methods [10,11], ferrocenyl bisphosphines could po-
tentially serve as appropriate models for redox-controllable bisphosphine ligands [12].
Bisphosphametallocenes are potentially redox-active bisphosphine ligands given the char-
acteristic redox behavior of the metallocene framework, and the isolation of several bispho-
sphametallocene derivatives has already been reported [13]. However, in most cases, these
phosphametallocenes have only been used as simple organic bisphosphines that can chelate
onto a transition metal with a relatively rigid structure based on the h5-sandwich-type
skeleton, which often conceals their redox behavior. Furthermore, a ferrocenylsilane poly-
mer has attracted much attention as an optoelectronic material due to the redox behavior
of both oligosilanes and ferrocenyl moieties [14–19]. Based on the combined consideration
of the functions of both redox-active bisphosphine ligands and ferrocenylsilanes, we have
designed a novel type of a redox-active bisphosphine, the two phosphine moieties of which
are bridged by a bis(ferrocenyl)silene linker (Figure 1). The silyl linkage should enable
electronic communication between the two 1′-biscyclohexylphosphino-1-ferrocenyl groups,
and work as the redox-active bisphosphine ligand. In addition, the alkoxy groups on the
silicon atom, which is bridging the redox-active moieties, should be an appropriate model
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for a supporting moiety on silicone polymers. Here, we report the synthesis and solid-state
structure of the ferrocene-based bisphosphine ligand together with its redox behavior,
which was examined by cyclic voltammetry and differential pulse voltammetry.
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Figure 1. Molecular design of redox-active bisphosphine ligand.

2. Results and Discussion

According to literature procedures, 1-bromo-1′-dicyclohexylphosphinoferrocene was
prepared [20,21]. 1-Lithio-1′-dicyclohexylphosphinoferrocene (Li-fc-PCy2) was prepared
by the reaction of 1-bromo-1′-dicyclohexylphosphinoferrocene with n-BuLi in THF at –
60 ◦C. When an excess of Si(OMe)4 was added to the THF solution of Li-fc-PCy2 at –60 ◦C,
the corresponding ferrocenyltrimethoxysilane (1) was isolated in 42% yield (Scheme 1).
When the THF solution of Li-fc-PCy2 was treated with half an equivalent of Si(OMe)4
under otherwise identical conditions, bis(ferrocenyl)silane 2 was obtained in 46% isolated
yield. Thus, the number(s) of the introduced ferrocenyl ligand(s) can be controlled by
the equivalent(s) of Si(OMe)4 relative to 1-lithio-1′-dicyclohexylphosphinoferrocene. The
obtained ferrocenylphosphine ligands 1 and 2 were identified by multinuclear NMR spec-
troscopy and mass spectrometry as well as structurally characterized by single-crystal
X-ray diffraction analysis.
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Scheme 1. Synthesis of (1′-phosphino-1-ferrocenyl)trimethoxysilane 1 and bis(1′-phosphino-1-
ferrocenyl)dimethoxysilane 2.

In the 29Si and 31P NMR spectra of 1 and 2, J-coupling between the nuclei was not
observed, suggesting negligible P→Si coordination in solution. Thus, it can be expected
that the phosphine moieties in 1 and 2 may serve as intermolecular coordinating sites. In the
crystalline state, the molecular structures of (1′-phosphino-1-ferrocenyl)trimethoxysilane 1
and bis(1′-phosphino-1-ferrocenyl)dimethoxysilane 2 show that the phosphine moieties
are, as in solution, free from intramolecular coordination (Figure 2). The unit cell of 1
contains two crystallographically independent molecules, which differ with respect to the
orientation of the methoxy groups. The observed structural parameters of 1 and 2 are
comparable, suggesting that the structural/electronic perturbation in the bisphosphine
framework of 2 relative to that of monophosphine 1 should be negligible with regard to the
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coordinating ability. The P–C(Fc) and P–C(Cy) bond lengths of 1 are 1.8237(13)/1.8214(13)
Å and 1.8594(13)/1.8652(13)/1.8580(13)/1.8667(13) Å, respectively, while those of 2 are
1.823(3)/1.825(3) Å and 1.863(3)/1.871(3)/1.860(3)/1.877(3), respectively. The P–C(Fc)
bonds, which are slightly shorter than the P–C(Cy) bonds in both 1 and 2, should most
likely be interpreted in terms of the sp2 character of the ferrocenyl carbon atoms and
a possible hyperconjugation between the π-orbitals of the ferrocenyl moieties and the
σ*(P–C(Cy)) orbitals. Moreover, the high values of the sum of the C–P–C angles in both 1
(ca. 305◦) and 2 (ca. 303◦) suggest a strong σ-coordinating ability for the P atoms.
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Figure 2. Molecular structures of (a) (1′-phosphino-1-ferrocenyl)trimethoxysilane 1 and (b) bis(1′-
phosphino-1-ferrocenyl)dimethoxysilane 2 with thermal ellipsoids at 50% probability. Selected
bond lengths (Å) and angles (◦): (a) 1, P1–C6, 1.8237(13), P1–C14, 1.8594(13), P1–C20, 1.8652(13),
P2–C31, 1.8214(13), P2–C39, 1.8580(13), P2–C45, 1.8667(13), Si1–C1, 1.8331(14), Si1–O1, 1.6295(11),
Si1–O2, 1.6215(11), Si1–O3, 1.6171(11), Si2–C(26), 1.8313(14), Si2–O4, 1.6212(11), Si2–O5, 1.6259(11),
Si2–O6, 1.6193(11), C6–P1–C14, 102.15(6), C6–P1–C20, 101.59(6), C14–P1–C20, 102.04(6), C31–P2–C39,
101.95(6), C31–P2–C45, 101.07(6), C35–P2–C45, 101.98(6). (b) 2, P1–C8, 1.823(3), P1–C13, 1.863(3),
P1–C19, 1.871(3), P2–C30, 1.825(3), P2–C35, 1.877(3), P2–C41, 1.860(3), Si1–C3, 1.841(3), Si1–C25,
1.840(3), Si1–O1, 1.627(3), Si1–O2, 1.637(3), C3–Si1–C25, 110.11(14), C8–P1–C13, 100.71(13), C8–P1–
C19, 100.00(13), C13–P1–C19, 102.07(13), C30–P2–C35, 98.92(14), C30–P2–C41, 102.54(14), C35–P2–
C41, 101.87(14).

The theoretically optimized structural parameters for 1 and 2, calculated at the
B3PW91-D3(BJ)/6-311G(3d) level of theory, were in good agreement with those obtained
from the XRD analyses (See, Supporting Information.). For example, the optimized P–
C(Fc)/P–C(Cy) bonds of 1 and 2 are 1.82/1.86 Å in both cases, while the high values of the
sum of the C–P–C angles in 1 and 2 are ca. 302◦. Thus, further theoretical calculations were
carried out at the same level of theory [22].

The redox behavior of bisphosphine 2 was examined using cyclic voltammetry (CV)
and differential pulse voltammetry (DPV). The cyclic voltammogram of 2 showed a pseudo-
reversible two-step redox wave in the oxidation region (Figure 3a). The oxidation potentials
of 2 (EOX

1 = 0.20 V; EOX
2 = 0.43 V) were determined based on both CV and DPV, even

though the Epa1 peak for the first oxidation process and the Epc2 peak for the reduction
process of the dicationic species were not observed clearly in the cyclic voltammogram.
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Monophosphine 1 showed a one-step oxidation wave (E1/2 = 0.30 V) at a higher potential
relative to those of 2 (Figure 3b), suggesting an extended conjugation between the two
ferrocenyl moieties in 2 via σ-conjugation with the Si(OMe)2 linker. The separation of the
oxidation potentials for 2 (∆E = 0.23 V; at –30 ◦C) can be converted into the corresponding
comproportionation constant Kcom for the equilibrium 22+ + 2 � 2 2+ (Kcom = 5.9× 104) [23],
which suggests strong electronic communication between the two 1′-phosphinoferrocenyl
moieties in 5 under oxidative conditions.
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The theoretically calculated adiabatic ionization energies for 1 (6.00 eV) and 2 (5.89 eV)
suggest a lower oxidation potential for 2 relative to that of 1 [22]. As shown in Figure 4, the
calculated spin density for 2+ is delocalized around the ferrocenyl moiety; in contrast, that
of 1+ is localized on the iron atom. Furthermore, the triplet state of 22+ was found to be by
25 kcal/mol more stable than the singlet state of 22+, whereby the spin density of 22+ was
predominantly spread on one of the ferrocenyl moieties together with small contributions
from the other ferrocenyl moiety and the phosphine atom.
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3. Conclusions

Silyl-tethered bis(ferrocenylphosphine) 2 was successfully synthesized and structurally
characterized. The redox behavior of bisphosphine 2 and monophosphine 1 was examined
based on cyclic voltammetry and differential pulse voltammetry. Bisphosphine 2 is oxidized
at a lower oxidation potential compared to that of monophosphine 1 due to the electronic
communication between the two ferrocenylphosphine moieties through the silyl linker.
Further investigations into the complexation of 5 with transition metals and the creation of
redox-active MOF systems that contain 2 are currently in progress in our laboratory.

4. Materials and Methods
4.1. General Information

All manipulations were carried out under an argon atmosphere using Schlenk-line
techniques. 1H, 13C, 29Si, and 31P NMR spectra were measured on a Bruker AVANCE-400
spectrometer (1H: 400 MHz; 13C: 101 MHz; 29Si: 79.5 MHz, 31P: 162 MHz). Signals arising
from residual C6D5H (7.16 ppm) in C6D6 were used as the internal standard for the 1H
NMR spectra, that of C6D6 (128.0 ppm) was used for the 13C NMR spectra, and external
SiMe4 (0.0 ppm) and external 85% H3PO4 in a capillary (0.0 ppm) were used for the 29Si and
31P NMR spectra, respectively. High-resolution mass spectra were obtained on a JEOL JMS-
T100CS (APCI) mass spectrometer. All melting points were determined on a Büchi Melting
Point Apparatus M-565 and are uncorrected. 1-Bromo-1′-dicyclohexylphosphinoferrocene
was prepared according to a reported procedure [20,21].

4.2. Synthesis of Monophosphine 1

FcPBr (122 mg, 0.264 mmol) was dissolved in THF (0.40 mL) and cooled to −60 ◦C.
After a hexane solution of n-BuLi (0.100 mL, 2.64 M in hexane, 0.264 mmol) had been
added dropwise, the solution was kept at −60 ◦C for 3.0 h. Then, Si(OMe)4 (0.195 mL,
1.32 mmol) was added at –78 ◦C. After stirring the reaction mixture for 18 h at room
temperature, all volatiles were removed under reduced pressure and hexane was added.
After all insoluble inorganic salts had been removed by filtration through a pad of celite,
the solvent was removed from the filtrate under reduced pressure to give an orange solid
that was purified by column chromatography (SiO2, hexane:ethyl acetate = 10:1 (v/v)).
Removal of the solvent of the obtained fractional solution gave monophosphine 1 (55.5 mg,
0.110 mmol, 42%) as orange crystals. Mp. 76–82 ◦C. 1H NMR (400 MHz, C6D6) δ 1.05–1.41
(m, 10H), 1.56–1.93 (m, 10H), 1.99–2.10 (m, 2H), 3.58 (s, 9H), 4.29 (AA’BB’C system, pseudo-q,
J = 1.6 Hz, 2H), 4.33–4.37 (m, 4H), 4.44 (AA’BB’ system, pseudo-t, J = 1.8 Hz, 2H); 13C{1H}
NMR (101 MHz, C6D6) δ 26.9 (CH2), 27.6 (d, JCP = 8.1 Hz, CH2), 27.7 (d, JCP = 11 Hz, CH2),
30.6 (d, JCP = 11 Hz, CH2), 30.7 (d, JCP = 14 Hz, CH2), 34.0 (d, JCP = 14 Hz, CH), 50.7 (CH3),
61.7 (C), 70.8 (d, JCP = 2.0 Hz, CH), 72.4 (d, JCP = 11 Hz, CH), 73.6 (d, JCP = 2.0 Hz, CH),
75.0 (CH), 78.0 (d, JCP = 21 Hz, C); 29Si{1H} NMR (79.5 MHz, C6D6) δ −47.2; 31P{1H} NMR
(162 MHz, C6D6) δ −8.2; HRMS (APCI), m/z: Found: 503.18039 ([M+H]+), calculated for
C25H40FeO3PSi ([M+H]+): 503.18341.

4.3. Synthesis of Bisphosphine 2

FcPBr (122 mg, 0.264 mmol) was dissolved in THF (0.40 mL) and cooled to −60 ◦C.
After a hexane solution of n-BuLi (0.100 mL, 2.64 M in hexane, 0.264 mmol) had been added
dropwise, the solution was kept at −60 ◦C for 3.0 h. Then, Si(OMe)4 (0.020 mL, 0.132 mmol)
was added at –78 ◦C. After stirring the reaction mixture for 15 h at room temperature, all
volatiles were removed under reduced pressure and hexane was added. After all insoluble
inorganic salts had been removed by filtration through a pad of celite, the solvent was
removed from the filtrate under reduced pressure to give an orange oil that was subjected
to column chromatography (SiO2, hexane:ethyl acetate = 20:1 (v/v)). Storage of a hexane
solution of the obtained orange oil at −30 ◦C gave an orange suspension. After centrifugal
separation and decantation, the supernatant was removed by using a syringe. Washing
the residual solid with hexane gave bisphosphine 2 (52.1 mg, 0.061 mmol, 46%) as orange
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crystals. Mp. 96–106 ◦C. 1H NMR (400 MHz, C6D6) δ 1.06–1.42 (m, 20H), 1.56–1.94 (m, 20H),
2.01–2.12 (m, 4H), 3.69 (s, 6H), 4.26 (AA’BB’C system, pseudo-q, J = 1.6 Hz, 4H), 4.38–4.45
(m, 12H); 13C{1H} NMR (101 MHz, C6D6) δ 26.9 (CH2), 27.6 (d, JCP = 9.1 Hz, CH2), 27.8 (d,
JCP = 11 Hz, CH2), 30.6 (d, JCP = 10 Hz, CH2), 30.7 (d, JCP = 14 Hz, CH2), 34.0 (d, JCP = 13 Hz,
CH), 51.1 (CH3), 66.3 (C), 70.9 (d, JCP = 2.0 Hz, CH), 72.4 (d, JCP = 10 Hz, CH), 73.6 (d,
JCP = 2.0 Hz, CH), 74.9 (CH), 77.9 (d, JCP = 21 Hz, C); 29Si{1H} NMR (79.5 MHz, C6D6)
δ −17.3; 31P{1H} NMR (162 MHz, C6D6) δ −8.2; HRMS (APCI), m/z: Found: 853.31297
([M+H]+), calculated for C46H67Fe2O2P2Si ([M+H]+): 853.30867.

4.4. X-ray Crystallographic Analysis of 1 and 2

Single crystals of 1 and 2 were obtained after recrystallization from hexane. Inten-
sity data for 1 and 2 were collected on a Bruker APEX-II system using Mo-Kα radiation
(λ = 0.71073 Å), while the preliminary data were collected on the BL02B1 beamline of
SPring-8 (proposal numbers: 2020A0557, 2020A1056, 2020A1644, 2020A1650, 2020A0834,
2021A1592, 2021A1578, 2021B1435, and 2021B1833) on a PILATUS3 X CdTe 1M camera
using synchrotron radiation (λ = 0.4148 Å). The structures were solved using SHELXT-2018
and refined by a full-matrix least-squares method on F2 for all reflections using SHELXL-
2018 [24]. All non-hydrogen atoms were refined anisotropically, and the positions of all
hydrogen atoms were calculated geometrically and refined as riding models. Supplemen-
tary crystallographic data were deposited at the Cambridge Crystallographic Data Centre
(CCDC) under deposition numbers CCDC-2141476 (1) and CCDC-2141477 (2); these can be
obtained free of charge via www.ccdc.cam.ac.uk/data_request.cif (accessed on 29 January 2022).

4.5. Electrochemical Measurements

Cyclic and differential-pulse voltammograms were recorded on an ALS 1140A poten-
tiostat/galvanostat using Pt wire electrodes under an argon atmosphere in custom-tailored
glassware. Voltammograms were recorded at –30 ◦C on CH2Cl2 solutions ((analyte):
1.0 mM; supporting electrolyte: 0.1 M [nBu4N][PF6]) using a variety of scan rates.

4.6. Theoretical Calculations

Theoretical calculations for the geometry optimization and frequency calculations of
1, 2, 1+, 2+, 22+(singlet), and 22+(triplet) were carried out using the Gaussian 16 (Revision
C.01) program package [22]. Geometry optimizations were performed at the B3PW91-
D3(BJ) level of theory using the 6-311G(3d) basis sets. Minimum energies for the optimized
structures were confirmed by frequency calculations. Computational time was generously
provided by the Supercomputer Laboratory at the Institute for Chemical Research (Kyoto
University). The coordinates of the optimized structures are included in the corresponding
.xyz files as supporting information.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics10020022/s1, Theoretically optimized coordinates (xyz) are
available in the Supplementary Materials.
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