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Abstract: Aspects of the molecular and supramolecular structure of the new dinuclear [Ag(L)(NO3)]2

complex, where L is 2-((E)-(((E)-1-(thiazol-2-yl)ethylidene)hydrazono)methyl)phenol, were discussed.
The complex was crystallized in the monoclinic crystal system and P21/n space group. The unit
cell parameters are a = 10.3274(2) Å, b = 11.4504(3) Å, c = 12.7137(3) Å and β = 108.2560(10)◦. The
asymmetric unit comprised one [Ag(L)(NO3)] formula in which the azine and nitrate ligand groups
act as NN- and OO-bidentate chelates, respectively. The coordination environment of the Ag(I) is
completed by one weak Ag-O bond with another [Ag(L)(NO3)] unit, leading to the dinuclear formula
[Ag(L)(NO3)]2. This was clearly revealed by Hirshfeld analysis. Additionally, the Ag . . . C, O . . .
H and C . . . C intermolecular interactions played an important role in the molecular packing of
the studied complex. The antimicrobial, antioxidant and cytotoxic activities of the [Ag(L)(NO3)]2

complex and the free ligand (L) were discussed. While the [Ag(L)(NO3)]2 complex showed very
weak antioxidant activity, the results of the antifungal and cytotoxic activities were promising. The
inhibition zone diameters (IZD) and the minimum inhibitory concentration (MIC) values were
determined to be 31 mm and 20 µg/mL, respectively, against A. fumigatus, which is compared
to 17 mm and 156 µg/mL, respectively, for the positive control Ketoconazole. Generally, the Ag(I)
complex has better antimicrobial activities than the free ligand against all microbes except for S. aureus,
where the free ligand has higher activity. Additionally, the IC50 value against colon carcinoma (HCT-
116 cell line) was determined to be 12.53 ± 0.69 µg/mL, which is compared to 5.35 ± 0.49 µg/mL
for cis-platin. Additionally, the Ag(I) complex displays better cytotoxicity than the free ligand (L)
(242.92 ± 8.12 µg/mL).

Keywords: asymmetric azine; silver(I); Hirshfeld; antimicrobial; anticancer

1. Introduction

The search for novel drugs for the treatment of diseases such as cancers and antibiotic-
resistant microbes is still a challenge, and much effort has been devoted to the discovery
of new chemotherapeutic agents. Transition metal complexes are continuously designed,
synthesized, and assessed against different targets [1–5]. For example, cis-platin is used
as an anticancer drug, although it still has limitations due to resistance and significant
side effects [6]. This disadvantage encouraged many scientists to search for alternative
transition metal complexes for different purposes [7]. Silver(I) complexes play a significant
role in the treatment of many diseases such as tumors and bacterial infections [8–15]. The
optimism surrounding silver-based drugs is due to their higher drug-tolerance profiles
and higher selectivity to cancer cells rather than the non-cancerous cells compared to other
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metal complexes. These potential benefits make this area of research important and create
the need for further exploration.

One important class of chelating ligands in coordination chemistry is Schiff bases,
which are well known and have become important molecules in pharmaceutical and
medicinal fields. They exhibit many biological effects, including anti-fungal [16,17], antibac-
terial [18], herbicidal [19], anti-HIV [16] antitubercular [20], anti-inflammatory [21] and
anti-tumor effects [22]. Coordination between the metal and chelating ligands creates a new
product with enhanced therapeutic efficiency [23–25]. Understanding and discovering the
functions of metal ions in disease treatment is still a challenge in medicinal inorganic and
bioinorganic chemistry [26]. In many cases, the donor sequence of the chelating ligands and
the identity of the metal play a crucial role in pharmacological activity [27,28]. The thiazole-
based Schiff base ligands and their analogues are an important class of chelating ligands in
coordination chemistry [29]. The cytotoxic properties of some silver(I) complexes of Schiff
bases derived from thiazole and pyrazine scaffolds were reported by X.-J. Tan et al. [30].
Additionally, Ag(I) thiazole-based coordination polymers have interesting photophysical
properties [31]. Recently, our research group reported the synthesis of some Ag(I) com-
plexes with symmetric azine-type ligands and explored their molecular, supramolecular
and biological aspects [32–34].

Herein, we reported the synthesis, structural and biological evaluation of a new
dinuclear Ag(I) complex with the asymmetric azine-type ligand shown in Figure 1. The
new Ag(I) metal complex was evaluated for biological efficacy against different targets
including anticancer, antimicrobial and antioxidant reactivities.

Inorganics 2022, 10, x FOR PEER REVIEW 2 of 14 
 

 

15]. The optimism surrounding silver-based drugs is due to their higher drug-tolerance 
profiles and higher selectivity to cancer cells rather than the non-cancerous cells compared 
to other metal complexes. These potential benefits make this area of research important 
and create the need for further exploration. 

One important class of chelating ligands in coordination chemistry is Schiff bases, 
which are well known and have become important molecules in pharmaceutical and me-
dicinal fields. They exhibit many biological effects, including anti-fungal [16,17], antibac-
terial [18], herbicidal [19], anti-HIV [16] antitubercular [20], anti-inflammatory [21] and 
anti-tumor effects [22]. Coordination between the metal and chelating ligands creates a 
new product with enhanced therapeutic efficiency [23–25]. Understanding and discover-
ing the functions of metal ions in disease treatment is still a challenge in medicinal inor-
ganic and bioinorganic chemistry [26]. In many cases, the donor sequence of the chelating 
ligands and the identity of the metal play a crucial role in pharmacological activity [27,28]. 
The thiazole-based Schiff base ligands and their analogues are an important class of che-
lating ligands in coordination chemistry [29]. The cytotoxic properties of some silver(I) 
complexes of Schiff bases derived from thiazole and pyrazine scaffolds were reported by 
X.-J. Tan et al. [30]. Additionally, Ag(I) thiazole-based coordination polymers have inter-
esting photophysical properties [31]. Recently, our research group reported the synthesis 
of some Ag(I) complexes with symmetric azine-type ligands and explored their molecular, 
supramolecular and biological aspects [32–34]. 

Herein, we reported the synthesis, structural and biological evaluation of a new di-
nuclear Ag(I) complex with the asymmetric azine-type ligand shown in Figure 1. The new 
Ag(I) metal complex was evaluated for biological efficacy against different targets includ-
ing anticancer, antimicrobial and antioxidant reactivities. 

 
Figure 1. Structure of the asymmetric azine ligand. 

2. Results and Discussion  
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drazides with Ag(I) salts [32–34]. Unexpectedly, these reactions proceeded to the for-
mation of the corresponding azine, affording the Ag(I)-azine complexes as final products. 
Conversely, the reaction of AgNO3 with the asymmetric azine ligand L proceeded without 
hydrolysis and afforded the dinuclear [Ag(L)(NO3)]2 complex with high yield (Scheme 1). 
The product was characterized using elemental analysis, FTIR and XPS spectroscopic 
techniques, and then its structure was unambiguously determined with the aid of single-
crystal X-ray diffraction. The FTIR spectral band corresponding to the υC=N stretching vi-
bration appeared at 1615 cm−1 in case of the [Ag(L)(NO3)]2 complex, while it appeared at 
1619 cm−1 in the free ligand (L). This small spectral shift could be attributed to the coordi-
nation between the Ag(I) ion and the azine ligand via the N-atom of the C=N group. The 
υO-H and υC=C stretching vibrations appeared in both compounds at the same wave-
numbers of 3432 and 1548 cm−1, respectively. An intense band appeared at 1384 cm−1 only 
in the [Ag(L)(NO3)]2 complex, corresponding to the υN-O stretching vibration. This is good 
evidence of the presence of the nitrate group, which is not found in the FTIR spectra of 
the free ligand. 

Figure 1. Structure of the asymmetric azine ligand.

2. Results and Discussion
2.1. Synthesis and Characterizations

In our previous work, we examined the reaction of a number of hydrazones and
hydrazides with Ag(I) salts [32–34]. Unexpectedly, these reactions proceeded to the for-
mation of the corresponding azine, affording the Ag(I)-azine complexes as final products.
Conversely, the reaction of AgNO3 with the asymmetric azine ligand L proceeded without
hydrolysis and afforded the dinuclear [Ag(L)(NO3)]2 complex with high yield (Scheme 1).
The product was characterized using elemental analysis, FTIR and XPS spectroscopic tech-
niques, and then its structure was unambiguously determined with the aid of single-crystal
X-ray diffraction. The FTIR spectral band corresponding to the υC=N stretching vibration ap-
peared at 1615 cm−1 in case of the [Ag(L)(NO3)]2 complex, while it appeared at 1619 cm−1

in the free ligand (L). This small spectral shift could be attributed to the coordination
between the Ag(I) ion and the azine ligand via the N-atom of the C=N group. The υO-H
and υC=C stretching vibrations appeared in both compounds at the same wavenumbers
of 3432 and 1548 cm−1, respectively. An intense band appeared at 1384 cm−1 only in
the [Ag(L)(NO3)]2 complex, corresponding to the υN-O stretching vibration. This is good
evidence of the presence of the nitrate group, which is not found in the FTIR spectra of the
free ligand.
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[Ag(L)(NO3)]2 and highlighted the spin-orbital coupling for each element that is directly 
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intensity relationship for Ag, N, S, O and C in the studied complex [34–36]. 
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with spin-orbit splitting ΔE = 6.01 eV and an intensity ratio of 0.67. Nitrogen showed two 
peaks: N1s at 399.78 eV for covalent-coordinate nitrogen atoms and a characteristic peak 
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doublet peak at 165.92 and 164.76 eV, corresponding to S2p5/2 and S2p3/2, respectively, with 
ΔE = 1.16 eV and an intensity ratio of 0.55. Carbon showed three characteristic peaks as 
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Scheme 1. Synthesis of the dinuclear Ag(I)-azine complex.

The X-ray photoelectron spectral analysis confirmed the elemental composition in
[Ag(L)(NO3)]2 and highlighted the spin-orbital coupling for each element that is directly
affected by their structure and oxidation states. Elemental composition and characteristic
binding energies are reported in Table 1, while Figure 2 represents the binding energy–
intensity relationship for Ag, N, S, O and C in the studied complex [34–36].

Table 1. Binding energies and chemical composition of [Ag(L)(NO3)]2.

Name Peak BE (eV) Atomic %

C1s 284.68 21.45
C1s A 285.25 21.08
C1s B 286.29 18.25
O1s 532.60 18.34
N1s 399.78 7.91

N1s A 406.71 2.96
Ag3d, 5/2 368.49 3.95
Ag3d, 3/2 374.50 2.66
S2p, 3/2 164.76 1.97
S2p, 1/2 165.92 1.42
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Silver showed a characteristic doublet peak corresponding to the Ag(I) oxidation state
as 3d3/2 and 3d5/2 with binding energies (B.E) of 374.50 and 368.49 eV, respectively, with
spin-orbit splitting ∆E = 6.01 eV and an intensity ratio of 0.67. Nitrogen showed two
peaks: N1s at 399.78 eV for covalent-coordinate nitrogen atoms and a characteristic peak of
nitrate nitrogen N1sA at 406.71 eV. Sulphur in the thiazolyl ring showed a characteristic
doublet peak at 165.92 and 164.76 eV, corresponding to S2p5/2 and S2p3/2, respectively,
with ∆E = 1.16 eV and an intensity ratio of 0.55. Carbon showed three characteristic peaks
as C1s, C1sA and C1sB at 284.68, 285.25 and 286.29 eV, respectively, confirming the presence
of C-C, C-S and C-N/C-O bonds. Oxygen showed one broad peak centered at 532.6 eV.

2.2. X-ray Structure Description of [Ag(L)(NO3)]2 Complex

The X-ray structure showing the asymmetric unit of the [Ag(L)(NO3)]2 complex is
shown in the upper part of Figure 3. This complex was crystallized in the monoclinic
crystal system and P21/n space group. The unit cell parameters were a = 10.3274(2) Å,
b = 11.4504(3) Å, c = 12.7137(3) Å and β = 108.2560(10)◦. The asymmetric unit comprised
one [Ag(L)(NO3)] formula. The azine ligand L and the nitrate group acted as bidentate
chelates. The azine ligand L formed two significantly different interactions with Ag(1)
via one nitrogen atom from the thiazole moiety and another nitrogen atom from one of
the two N-atoms of the azine group. The Ag1-N1 and Ag1-N2 distances were 2.218(5)
and 2.603(4) Å, respectively (Table 2). The bite angle of the azine ligand was 69.37(16)◦.
Additionally, the Ag1-O2 and Ag1-O3 bonds with the nitrate group were not equidistant.
The former was significantly shorter (2.347(6) Å) than the latter (2.631(6) Å). The bite angle
in this case was only 50.4(2)◦. Interestingly, the Ag1 formed a weak interaction with a
neighboring complex molecule via the symmetry related O3# atom, where the Ag1-O3#

distance was found to be 2.781(7) Å. Hence, the molecular structure of this complex could
be described by the dimeric structure [Ag(L)(NO3)]2 shown in the lower part of Figure 3.
Thus, the Ag(I) was penta-coordinated with the AgN2O3 coordination environment. The
structure of the Ag(I) complex was found to be stabilized by the intramolecular O-H . . .
N hydrogen bond occurring between the OH group as the hydrogen bond donor and the
other freely uncoordinated nitrogen of the azine moiety (Figure 3, upper part). For better
clarity, the intramolecular O-H . . . N hydrogen bond is illustrated as a turquoise dotted
line in this part of Figure 3. The hydrogen-acceptor and donor-acceptor distances were
1.82(11) and 2.652(8) Å, respectively.

Table 2. The important geometric parameters in the [Ag(L)(NO3)]2 complex; the independent
complex units are related by inversion center.

Bond Distance (Å) Bond(s) Angle (◦)

Ag1-N1 2.218(5) N1-Ag1-O2 156.3(2)
Ag1-O2 2.347(6) N1-Ag1-N2 69.37(16)
Ag1-N2 2.603(4) O2-Ag1-N2 95.65(17)
Ag1-O3 2.631(6) O2-Ag1-O3 50.4(2)
Ag1-O3 # 2.781(7) N2-Ag1-O3 # 164.8(2)

O2-Ag1-O3 # 99.0(2)
O3-Ag1-O3 # 79.2(2)

# 2−x,1−y,1−z.

The packing of the [Ag(L)(NO3)]2 complex is dominated by the weak non-covalent
C-H . . . O interactions, as depicted in Table 3 and shown as a red dotted line in the
upper part of Figure 4. A view of the packing through the bc plane showing the complex
units connected by the C-H . . . O interactions is presented in the lower part of the same
illustration. The donor–acceptor interaction distances range from 3.149(8) Å (C1-H1A...O4)
to 3.487(10) Å (C5-H5C...O4).
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Table 3. Hydrogen bond parameters (Å, ◦) in [Ag(L)(NO3)]2 complex.

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) Symm. Code

O1-H1...N3 0.91(11) 1.82(11) 2.652(8) 152(9)
C1-H1A...O4 0.93 2.46 3.149(8) 131 x,1+y,z
C5-H5A...O2 0.96 2.58 3.435(10) 149 1−x,1−y,1−z
C5-H5C...O4 0.96 2.59 3.487(10) 155 3/2−x,1/2+y,3/2−z
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2.3. Hirshfeld Analysis

It is well acknowledged that the molecules in the crystal are packed in a way that
maximizes the crystal stability via complicated sets of intermolecular interactions. Hirshfeld
analysis is considered a powerful tool for predicting all intermolecular contacts in the
crystal. For the [Ag(L)(NO3)] complex unit, the different Hirshfeld surfaces are shown in
Figure 5. There are three Hirshfeld surfaces: dnorm, shape index and curvedness. According
to Spackman et al., the dnorm is the normalized contact distance, shape index shows the
shape of surface (concave (−1.0) to convex (+1.0)) and curvedness indicates the surface
flatness (flat (−4.0) to singular (+0.4)) [37].

There are many red spots in the dnorm map, and these refer to the short distance Ag
. . . O, Ag . . . C and O . . . H contacts. The Ag1 . . . C10 (3.389 Å) and Ag1 . . . C11 (3.286 Å)
as well as the O4 . . . H1A (2.363 Å), O4 . . . H5C (2.486 Å) and O4 . . . H2 (2.375 Å) contacts
have shorter distances than the vdWs radii sum of the interacting atoms. The red spots
close to the Ag1 and O3 atoms are related to the weak Ag1-O3 bond (2.782 Å), which
confirms the dinuclear formula of this complex. Additionally, the presence of red/blue
triangles combination in the shape index as well as the flat green area in curvedness reveals
the presence of some π-π stacking interactions between the phenyl and thiazolyl aromatic
moieties, where the shortest C . . . C contact distance is 3.408 Å and corresponds to the C2
. . . C10 contact. This interaction has a slightly longer distance than twice the vdWs radii of
carbon atoms indicating relatively weak π-π stacking interactions between the phenyl and
thiazolyl moieties. The rings centroid–centroid distance was calculated to be 3.697Å, which
shows the importance of stacking interactions involving π-electrons of these aromatic rings
in the molecular packing of the studied complex. All these interactions appeared as sharp
spikes in the fingerprint plots, revealing short distances and strong interactions (Figure 6).
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zolyl moieties. The rings centroid–centroid distance was calculated to be 3.697Å, which 
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Figure 5. Hirshfeld surfaces for [Ag(L)(NO3)]2 complex. A, B, C and D refer to the Ag . . . O, Ag . . .
C, O . . . H and C . . . C contacts, respectively.

Moreover, the Hirshfeld analysis gave accurate results for the percentages of the
different intermolecular contacts between the surface and neighboring molecules (Figure 7).
The most dominant contacts were the O . . . H and H . . . H interactions, which contributed
to more than half of the whole observed contacts. Additionally, the percentage of Ag . . . O,
Ag . . . C and C . . . C interactions were 3.7, 2.9 and 6.7%, respectively. Other contacts shown
in Figure 7 were less dominant in the molecular packing of the [Ag(L)(NO3)] complex. The
interactions between all neighboring molecules and the surface are shown in Figure 8.

2.4. Biological Studies
2.4.1. Antimicrobial Activity

The antimicrobial activity of the studied Ag(I) complex on selected bacterial and
fungal strains was determined in terms of the inhibition zone diameter (IZD) and the
minimum inhibitory concentration (MIC). The antimicrobial activity results are depicted
in Table 4. The IZDs are very small for the Gram-positive bacterial strain compared
with Gram-negative bacteria. The sizes of the inhibition zones were 8 and 9 mm for
S. aureus and B. subtilis, respectively, compared with 12 and 15 mm for E. coli and P. vulgaris,
respectively. Hence, the studied Ag(I) complex is more potent against Gram-negative
bacteria than Gram-positive bacteria. Moreover, the MIC value was lowest for P. vulgaris
(625 µg/mL), which indicates the highest potency against this bacterium. In comparison
with the antibacterial control Gentamycin, the studied Ag(I) complex is considered a weak
antibacterial agent. In terms of antifungal activity, the studied [Ag(L)(NO3)]2 complex
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inhibited both A. fumigatus and C. albicans. The IZDs were 31 and 18 mm for A. fumigatus and
C. albicans, respectively, while the IZDs were 17 and 20 mm, respectively, for the standard
Ketoconazole. The corresponding MIC values were 20, 625, 156 and 312 µg/mL. Hence,
the studied Ag(I) complex showed the highest potency against A. fumigatus compared with
the other microbes.
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Table 4. IZDs (mm) and MICs (µg/mL) for [Ag(L)(NO3)]2 complex a.

Microbe [Ag(L)(NO3)]2 Free L Control

A. fumigatus 31 (20) - 17(156) b

C. albicans 18 (625) - 20(312) b

S. aureus 8 (5000) 11(1250) 24(10) c

B. subtilis 9 (5000) - 26(5) c

E. coli 12 (1250) - 30(5) c

P. vulgaris 15 (625) - 25(5) c

a Values in parentheses for MIC, b Ketoconazole, c Gentamycin.

Additionally, the antimicrobial activities of the free L against the same microbes
were examined, and the results were compared with those of the [Ag(L)(NO3)]2 complex
(Table 4). It is clear that the free ligand (L) is active only against S. aureus. It has greater
activity against this microbe than the [Ag(L)(NO3)]2 complex. The inhibition zone diame-
ters are 8 and 11 mm, respectively. In contrast, the free ligand is not active at the applied
concentration against any other microbe, while the [Ag(L)(NO3)]2 complex showed diverse
antibacterial and antifungal activities.

2.4.2. Anticancer and Antioxidant Activities

The results of the cytotoxicity test for the [Ag(L)(NO3)]2 complex against colon carci-
noma are presented in Table 5. The %cell viability reached only 1.28 ± 0.46 at 500 µg/mL,
and the concentration required to cause toxic effects in 50% of intact cells (IC50) was de-
termined to be 12.53 ± 0.69 µg/mL. This indicates high cytotoxic activity against this cell
line. For the free ligand (L), the IC50 value was determined to be 242.92 ± 8.12 µg/mL,
which indicates lower cytotoxic effect of the free ligand and confirms the enhancement
in cytotoxic activity as a result of the complexation between the ligand L and Ag(I) ion.
The corresponding value for cis-platin as positive control was 5.35 ± 0.49 µg/mL in the
same experimental conditions. Hence, the studied [Ag(L)(NO3)]2 complex has promising
cytotoxic activity against the examined cell line.

The results of the antioxidant activity of the [Ag(L)(NO3)]2 complex, determined using
the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay [38], is reported in Table 6. The %DPPH
scavenging at 1280 µg/mL was only 75.18%, indicating low antioxidant activity of the
[Ag(L)(NO3)]2 complex. Moreover, the concentration required to inhibit DPPH radical by
50% (IC50) was determined to be 626.91 ± 10.87 µg/mL, which further confirms the low
antioxidant activity of the Ag(I) complex. The corresponding values for the free ligand L
and ascorbic acid as positive control were 156.48± 3.66 and 12.3± 0.51 µg/mL, respectively.
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These results indicated low antioxidant activity of the [Ag(L)(NO3)]2 complex compared
with the positive control and the free ligand.

Table 5. The cytotoxicity of [Ag(L)(NO3)]2 complex against colon carcinoma.

Sample Conc. (µg/mL) Viability % Inhibitory % S.D. (±) a

500 1.28 98.72 0.46
250 3.96 96.04 0.32
125 8.48 91.52 0.74
62.5 15.27 84.73 1.35

31.25 29.96 70.04 1.82
15.6 42.81 57.19 1.65
7.8 61.29 38.71 2.73
3.9 75.46 24.54 2.08
2 86.13 13.87 1.95
1 90.47 9.53 1.21
0 100 0 0

a Standard deviation.

Table 6. DPPH scavenging assay for [Ag(L)(NO3)]2 complex a.

Sample Conc. (µg/mL) DPPH Scavenging % S.D. (±)

1280 75.18 1.68
640 50.73 2.09
320 32.91 2.43
160 15.29 1.17
80 9.73 0.65
40 6.28 0.46
20 4.09 0.35
10 1.85 0.29
5 0.91 0.17

2.5 0.23 0.09
0 0 0

a Standard deviation.

3. Materials and Methods
3.1. Materials

All chemicals were purchased from Aldrich chemical company.

3.2. Instruments

Instruments including the X-ray diffractometer used for the single crystal structure
measurement and solution structure details [39,40] are given in the Supplementary Data.
The crystallographic data of the [Ag(L)(NO3)]2 complex are listed in Table 7.

3.3. Synthesis of [Ag(L)(NO3)]2 Complex

The azine ligand (L) was synthesized using the method described in the Supplemen-
tary Data and following procedures present in the literature [41,42]. An ethanolic solution
of L (0.1 mmol in 10 mL) was added to 0.1 mmol of AgNO3 in 5 mL of distilled water.
An immediate yellow precipitate was formed, which was dissolved by adding 5 mL of
acetonitrile. The solution was filtered, and the clear solution was then left at room tempera-
ture to slowly evaporate. After 5 days, a yellow crystalline product was obtained for the
[Ag(L)(NO3)]2 complex (Yield: 76%).

Anal. Calc. for C24H22Ag2N8O8S2: C, 34.72; H, 2.67; N, 13.49; Ag, 25.98%. Found: C,
34.56; H, 2.58; N, 13.33; Ag, 25.72%. IR (KBr, cm−1): 3432, 1615, 1548, 1384.

3.4. Hirshfeld Calculations

The Hirshfeld topology analyses were performed using the crystal explorer 17.5 pro-
gram [37].



Inorganics 2022, 10, 209 11 of 14

Table 7. Crystal data of [Ag(L)(NO3)]2 complex.

CCDC 2207716

Empirical formula C24H22Ag2N8O8S2
Fw 830.35 g/mol
Temp 296(2) K
λ 1.54178 Å
cryst syst Monoclinic
Space group P21/n
a/Å 10.3274(2) Å
b/Å 11.4504(3) Å
c/Å 12.7137(3) Å
α/◦ 90◦

β/◦ 108.2560(10)◦

γ/◦ 90◦

V 1427.76(6) Å3

Z 2
ρcalc 1.931 g/cm3

µ(Cu Kα) 12.933 mm−1

Reflections collected 15004
Independent reflections 2487 [R(int) = 0.0628]
Completeness to theta = 66.67◦ 98.6%
Data/restraints/parameters 2487/0/204
GOOF (F2) 1.094
Final R indices [I > 2sigma(I)] R1 = 0.0595, wR2 = 0.1687
R indices (all data) R1 = 0.0662, wR2 = 0.1793
Largest diff. peak and hole 1.574 and −1.154

3.5. Biological Studies

The bioactivities of the [Ag(L)(NO3)]2 complex were determined according to the
biological activity methods listed in the Supplementary Data [38,43,44].

4. Conclusions

A new dinuclear [Ag(L)(NO3)]2 complex of the asymmetric azine-type ligand (L) was
synthesized by a self-assembly method. The azine ligand L acts as a bidentate chelate via
the thiazole and azine nitrogen atoms. Additionally, the nitrate ion is a bidentate ligand
via two non-equidistant Ag-O bonds. The bite angles of the two bidentate chelates are
69.37(16)◦ and 50.4(2)◦, respectively. The coordination sphere of Ag(I) is completed by
one weak Ag-O bond with an oxygen atom from a neighboring nitrate group in another
[Ag(L)(NO3)] unit. Hence, the coordination number of the silver is five, and the structure
could be represented by the dinuclear formula [Ag(L)(NO3)]2. Hirshfeld analysis of the
[Ag(L)(NO3)] complex revealed the importance of the Ag . . . C, O . . . H and C . . . C
contacts in molecular packing. The studied Ag(I) complex showed promising antifungal
activity against A. fumigatus. Although the studied Ag(I) complex showed very weak
antioxidant activity, the cytotoxicity results were promising. The IC50 value against colon
carcinoma (HCT-116 cell line) was determined to be 12.53± 0.69 µg/mL, which is compared
with 5.35± 0.49 µg/mL for cis-platin. In comparison with the free ligand, the Ag(I) complex
has higher cytotoxicity (242.92 ± 8.12 µg/mL). Additionally, the Ag(I) complex has greater
antimicrobial activity than the free ligand against all microbes except S. aureus.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10110209/s1; Figure S1, FTIR spectra of L (upper) and
[Ag(L)(NO3)]2 (lower) complex; Figure S2, NMR spectra of L; instrumental details; biological activity
methods and synthesis of L; Table S1, the cytotoxicity of the free ligand (L) against colon carcinoma;
Table S2, DPPH scavenging assay for of the free ligand (L).

https://www.mdpi.com/article/10.3390/inorganics10110209/s1
https://www.mdpi.com/article/10.3390/inorganics10110209/s1
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