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Abstract: A WO3/Fe-Cu-ZSM-5 catalyst was prepared using the solid state ion exchange method
(SSIE) and its performance for the Selective Catalytic Reduction of NO with NH3 (NH3-SCR of
NO) was investigated. The study shows that the tungsten addition can slightly improve the high
temperature catalytic activity of Fe-Cu-ZSM-5. The influence of hydrothermal aging at 850 ◦C for 5 h
on the structural and textural properties of WO3/Fe-Cu-ZSM-5 was also studied in this paper. The
XRD and FE-SEM measurements did not indicate a breakdown of the zeolite structure upon steam
treatment for both aged catalysts. The aged W-base catalyst demonstrates a lower deactivation and
better catalytic activity for NO reduction than the bimetallic catalyst after hydrothermal aging despite
the lower acidic properties as shown by FTIR-Pyr spectroscopy owing to the presence of tungsten
oxide crystallites. The “severe” stage of aging occurring in the absence of W led to the formation of
copper oxide agglomerates detected using STEM and H2-TPR techniques being responsible for the
deterioration of SCR activity of the aged Fe-Cu-ZSM-5.

Keywords: tungsten; SSIE; SCR; aging; ZSM-5

1. Introduction

Selective Catalytic Reduction (SCR) is a chemical process that reduces nitrogen oxides
produced during the combustion process of hydrocarbon fuels. Its main role is to limit
pollution in order to meet anti-pollution standards. Nitrogen oxide (NO) is a colorless gas
with the ability to oxidize in air forming nitrogen dioxide (NO2). In high concentrations,
it causes nervous system paralysis. NO2 is a brown colored gas with a pungent odor.
Combined with sunlight and hydrocarbons, NO2 forms smog. Nitrogen oxides (NOx) are
reduced by the SCR process in the exhaust gases containing oxygen. The exhaust gases,
treated with a reactive solution of ammonia/urea, pass through the honeycomb-structured
converters of fine cells, reducing nitrogen oxides to water and nitrogen. On vehicles with
diesel engines, the SCR system is located on the exhaust, mounted downstream of an
economizer and/or air heater and, in some cases, downstream of a dust collector. The
optimum temperature range for this system is 300–400 ◦C and the reaction is slightly
exothermic [1]. In some applications, gas reheating is used to maintain an optimum
temperature for the catalyst bed. Most of the nitrogen compounds contained in exhaust
gases are in the form of NO. The main SCR reaction (Standard SCR) is considered to be the
following [2]:

4 NO + 4 NH3 + O2 → 4 N2 + 6 H2O
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Nevertheless, N2O, a greenhouse gas, may be also produced from direct ammonia
oxidation and ammonium nitrate decomposition during the SCR process.

Catalysts are based on a number of materials, the most popular being metal oxides and
metal-exchanged zeolites [1,2], and are typically located in units between the economizer
and the preheater. The catalyst unit can adopt the form of a plate, honeycomb, grid cylinder,
or pellet reactor mounted in a carbon steel housing. They must be robust enough to
withstand thermal cycling, sulfur, and halogen attack/poisoning and be able to resist the
ash clogging.

Owing to its unique pore structure, strong acidity, larger surface area, and excellent
thermal stability [3], ZSM-5 (MFI) zeolite has been widely utilized as the catalytic support
material for the SCR process [4]. The SCR of NO over Cu and Fe supported on ZSM-5 has
been extensively studied [5–8]. The bimetallic Fe-Cu catalyst showed higher activity than
monometallic catalysts, thanks to the synergetic effect between the two metals [5].

W-based ZSM-5 catalysts are broadly investigated for environmental applications. The
W-ZSM-5 catalyst showed remarkable hydrothermal stability and oxidation resistance in
catalytic oxidation and catalytic cracking processes [9,10]. The study of W-ZSM-5 system
by Chen et al. revealed that the introduction of tungsten improved the stability of the
Si-O-Al structure through the elimination of the non-skeleton Al and regulated the acidity
of ZSM-5 during the cracking of 1-hexene to propene reaction [11]. Tungsten showed in the
SCR of NO in the presence of acetylene promoting effects on HZSM-5 support as reported
by Wang et al. [12]. The W(6%)/HZSM-5 catalyst at 350 ◦C converted about 90% of the
NO into N2. The W incorporation was effective to accelerate the NO oxidation to NO2 and
enlarge the strong adsorption of NOx on the catalyst surface and thus considerably enhance
the C2H2-SCR of the NO reaction. Liu and co-workers studied the high-temperature NH3-
SCR of NO over an Fe-Ni-W catalyst. The main challenge in the catalytic performance at
high temperatures was the complex side reaction of NH3 oxidation, which was suppressed
owing to multi-metal centers supported on ZSM-5 support [13].

In this paper, we attempt to modify the Fe-Cu-ZSM-5 catalyst with WO3 to develop
a more efficacious catalyst for NO reduction from diesel exhaust emissions through an
NH3-SCR pathway. The behavior of the studied catalyst upon a process of high tempera-
ture aging assimilating the harsh conditions of diesel engines was also investigated thus
targeting either marine or automotive applications [14,15].

2. Results

The elemental analysis of studied samples was carried out by ICP-OES, Table 1 sum-
marizes the relative contents of the contents of Cu, Fe, and W expressed in wt.%. The
examination of ICP results shows that the SSIE preparation method was effective to control
the amount of metals exchanged with the zeolite support, which is in accordance with our
previous studies [5,8].

Table 1. ICP-OES chemical analysis results.

Sample Label Theoretical Composition Fe (wt.%) Cu (wt.%) W (wt.%)

Fe-Cu-Z Fe (2 wt.%)-Cu (1.5 wt.%) 1.83 1.40 -
W-Fe-Cu-Z W (2 wt.%)-Fe (2 wt.%)-Cu (1.5 wt.%) 1.72 1.48 2.02

All fresh samples were found to be microporous in N2 physisorption studies at 77 K,
with BET surface areas (Table 2) ranging from 327 to 291 m2/g, primarily dependent on
the composition of each sample. There was a small reduction in the BET surface (11%)
and micropore volume (58%) for the Fe-Cu-Zag sample as compared to the fresh sample.
There was a reduction in micropores, which can be caused by Al removal from the zeolite
framework and the hydrolysis of the Si-O-Al bonds. The dramatic aging-related decrease
in pore size indicates that an agglomerated phase may have occluded the zeolite pores.
The addition of W on the bimetallic catalyst also resulted in a slight reduction in the BET
surface area (7%) and pore volume (25%). The W-doped sample has kept its SBET and
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doubled its micropore volume after hydrothermal treatment. In general, these material
textural qualities ought to deteriorate. This outcome could be explained by either (1) the
development of a new phase resulting in the generation of secondary pores or (2) the
stability of the texture brought on by the presence of tungsten.

Table 2. N2 physisorption at 77 K results.

Sample SBET
a

(m2/g)
Micropore Volume b

(cm3/g)
Pore Size c

(Å)

Fe-Cu-Z 327 0.110 287.90
Fe-Cu-Zag 291 0.046 56.92
W-Fe-Cu-Z 304 0.063 69.94

W-Fe-Cu-Zag 306 0.122 29.45
a calculated by BET method. b calculated by t-plot method. c calculated by BJH method.

According to the categorization of IUPAC [16], the nitrogen adsorption–desorption
isotherm for fresh samples displayed the Type H3 loop as seen in Figure 1, but aged samples
displayed the Type H4 loop, indicating the presence of mesoporosity created by the packing
of zeolite nanocrystals [17]. Hysteresis loop thickness varies between the fresh and aged
samples, suggesting that hydrothermal treatment alters the ZSM-5 pore shape. The Type H5
loop, on the other hand, is visible in the W-Fe-Cu-Zag sample and has a characteristic form
that is connected to certain pore structures that contain both open and partially blocked
mesopores (plugged structure) [16].

Inorganics 2022, 10, x FOR PEER REVIEW 3 of 18 
 

 

All fresh samples were found to be microporous in N2 physisorption studies at 77 K, 
with BET surface areas (Table 2) ranging from 327 to 291 m2/g, primarily dependent on 
the composition of each sample. There was a small reduction in the BET surface (11%) and 
micropore volume (58%) for the Fe-Cu-Zag sample as compared to the fresh sample. 
There was a reduction in micropores, which can be caused by Al removal from the zeolite 
framework and the hydrolysis of the Si‒O‒Al bonds. The dramatic aging-related decrease 
in pore size indicates that an agglomerated phase may have occluded the zeolite pores. 
The addition of W on the bimetallic catalyst also resulted in a slight reduction in the BET 
surface area (7%) and pore volume (25%). The W-doped sample has kept its SBET and dou-
bled its micropore volume after hydrothermal treatment. In general, these material tex-
tural qualities ought to deteriorate. This outcome could be explained by either (1) the de-
velopment of a new phase resulting in the generation of secondary pores or (2) the stabil-
ity of the texture brought on by the presence of tungsten. 

Table 2. N2 physisorption at 77 K results. 

Sample SBET a 
(m2/g) 

Micropore Volume b 
(cm3/g) 

Pore Size c 

(Å) 
Fe-Cu-Z 327 0.110 287.90 

Fe-Cu-Zag 291 0.046 56.92 
W-Fe-Cu-Z 304 0.063 69.94 

W-Fe-Cu-Zag 306 0.122 29.45 
a calculated by BET method. b calculated by t-plot method. c calculated by BJH method. 

According to the categorization of IUPAC [16], the nitrogen adsorption–desorption 
isotherm for fresh samples displayed the Type H3 loop as seen in Figure 1, but aged sam-
ples displayed the Type H4 loop, indicating the presence of mesoporosity created by the 
packing of zeolite nanocrystals [17]. Hysteresis loop thickness varies between the fresh 
and aged samples, suggesting that hydrothermal treatment alters the ZSM-5 pore shape. 
The Type H5 loop, on the other hand, is visible in the W-Fe-Cu-Zag sample and has a 
characteristic form that is connected to certain pore structures that contain both open and 
partially blocked mesopores (plugged structure) [16]. 

 

Figure 1. N2 Adsorption‒desorption isotherms of fresh and steamed Fe-Cu-Z and W-Fe-Cu-Z. 

Fresh and aged samples were subjected to XRD measurements to look for any poten-
tial structural alterations. The investigated recorded XRD patterns (Figure 2) exhibit the 
typical MFI (Mobile-type Five) diffraction peaks of ZSM-5 (JCPDS #73-1138). Given the 
low metal content of the samples (0.5–2 wt.%), it was not surprising that the introduction 
of metals (Fe, Cu, and W) did not cause any discernible alterations in the ZSM-5 crystalline 
structure. No discernible metal oxide diffraction peaks were observed, indicating that the 

Figure 1. N2 Adsorption–desorption isotherms of fresh and steamed Fe-Cu-Z and W-Fe-Cu-Z.

Fresh and aged samples were subjected to XRD measurements to look for any potential
structural alterations. The investigated recorded XRD patterns (Figure 2) exhibit the typical
MFI (Mobile-type Five) diffraction peaks of ZSM-5 (JCPDS #73-1138). Given the low metal
content of the samples (0.5–2 wt.%), it was not surprising that the introduction of metals
(Fe, Cu, and W) did not cause any discernible alterations in the ZSM-5 crystalline structure.
No discernible metal oxide diffraction peaks were observed, indicating that the metal
species were primarily in an amorphous state or were widely scattered within the zeolite
structure [18,19].

XRD pattern of Fe-Cu-Zag showed a decrease in the peaks intensity with the absence
of any extra-framework metal phase or any indication of possible amorphization. In the
diffractogram of W-Fe-Cu-Zag (Figure 2b), four diffraction lines associated with crystalline
WO3 (JCPDS #01-089-4479) were detected at 2θ = 25.7 (012); 29.3 (211); 36.7 (103); and
38.7 (113).
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The studied catalysts were subjected to FE-SEM analysis and the recorded micrographs
are shown in Figure 3. Well-crystallized zeolite particles with uneven localization, clear
edges, good crystallization, and with an average length and width of 146 nm and 105 nm,
respectively, were found in both fresh and aged samples. Thus, we demonstrate that the
zeolite crystals of aged samples exhibit the same morphology of the fresh zeolite crystals
supporting the findings of the DRX investigation.
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Structure modifications upon W exchange and steam treatment were investigated
using MAS 27Al-NMR spectroscopy (Figure 4).

Inorganics 2022, 10, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. FE-SEM micrographs of (a) Fe-Cu-Z, (b) Fe-Cu-Zag, (c) W-Fe-Cu-Z, and (d) W-Fe-Cu-Zag 
catalysts. 

 
Figure 4. 27Al NMR spectra of fresh and aged (a) Fe-Cu-Z and (b) W-Fe-Cu-Z. 

The spectra acquired from the 29 Si MAS NMR analysis of the analyzed materials were 
displayed in Figure 5. Resonances observed at about −113 ppm and −115 ppm (visible in 
the case of W-Fe-Cu-Zag sample) correspond to Si(4Si,0Al) sites [23]. The shoulder around 
−106 ppm arises from Si(3Si,1Al) sites: Si atoms with one neighboring Al atom [23]. All 

Figure 4. 27Al NMR spectra of fresh and aged (a) Fe-Cu-Z and (b) W-Fe-Cu-Z.

After tungsten modification (Figure 4b), the resonance intensity at 55 ppm (framework
Al, Td symmetry) rose, whereas the minor resonance at 0 ppm (extra-framework Al, Oh
symmetry) disappeared. The existence of a tetrahedral W-O-Al structure was shown by the
increase in peak intensity around 55 ppm [20], while the disappearance of the peak at 0 ppm
illustrated that the exchanged W induced a hexahedral structure with extra-framework
Al [21].

Both aged samples showed a decrease in the intensity of the peak around 55 ppm
indicating that the aging has disrupted the coordination of framework Al species.

For Fe-Cu-Zag, the intensity of the EFAL peak decreased, indicating a reduction in the
number of extra-framework Al species. The reason of this behavior is that some amounts
of non-framework Al species in the main zeolite channels may be cleaned under heat
treatment corresponding to a healing process, which smooths the zeolite channels [22]. This
healing process would normally increase the pore volume of the catalyst. However, the
opposite result is observed because of the important extent of the zeolite dealumination
under such severe steaming conditions [22].

The spectra acquired from the 29 Si MAS NMR analysis of the analyzed materials were
displayed in Figure 5. Resonances observed at about −113 ppm and −115 ppm (visible in
the case of W-Fe-Cu-Zag sample) correspond to Si(4Si,0Al) sites [23]. The shoulder around
−106 ppm arises from Si(3Si,1Al) sites: Si atoms with one neighboring Al atom [23]. All
recorded spectra do not exhibit any band with chemical shifts underneath −100 ppm that
might be ascribed to Si(2Al). This unequivocally demonstrates that Al-O-Si-O-Al sequences
are missing from our samples [24].
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The 29 Si NMR spectrum of W-Fe-Cu-Zag showed that the intensity of the resonance
was at about−106 ppm, decreased to a good extent. This might occur as a portion of Si(1Al)
was converted, showing that the impact of dealumination in the case of the trimetallic
sample is more significant than for Fe-Cu-Zag. This finding is in line with the results of 27Al
MAS NMR showing that the amount of EFAL clearly increased in the case of W-Fe-Cu-Zag.
The above results can be attributed to the weak interaction of W species with the framework
Al of the support allowing a higher extraction of EFAL during steam treatment [24].

The investigated samples have been the subject of several STEM observations (Figure 6).
The EDX reports of analyzed spectra recorded on the studied samples were provided in the
“Supplementary Materials” section. By using EDX elemental analysis, the distributions of
Fe, Cu, and W species were verified. The STEM image of the Fe-Cu-Z material (Figure 6a)
only revealed a small number of large Fe nanocomposites (17–38 nm). Cu particles of a
lower size were also detected (5 nm). Both iron and copper agglomerated significantly
in the case of Fe-Cu-Zag (Figure 6b). The largest size of the copper particles, having a
meaningful amount and rather homogeneous dispersion, is 11 nm.
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The inclusion of W helps to improve the dispersion of Fe and Cu species, according
to the EDX mapping images of W-Fe-Cu-Z; highly dispersed W particles less than 2 nm
in size have been detected. The aging treatment dramatically increased the amount of
Fe agglomeration: Fe particles with sizes between 27 and 50 nm and W particles with an
average size of about 9 nm were both observed.

To determine the local environment of transition metals, both untreated and aged
samples were subjected to UV-Vis experiments. Reflectance data were used to calculate
the Kubelka–Munk function and obtained spectra were provided in Figure 7. In order to
resolve the sub-bands buried in the recorded spectra, the deconvolution method was used
since the bands shape was not symmetric and not composed of a single band. Through the
use of a Matlab technique, UV-vis spectra have been divided into three or four Gaussian
components which have been assigned according to the literature in Table 3.

Figure 7. DRS UV-vis spectra of (a) Fe-Cu-Z, (b) Fe-Cu-Zag, (c) W-Fe-Cu-Z, and (d) W-Fe-Cu-
Zag catalysts.

Table 3. Assignment of the different UV-Vis bands according to the literature.

Catalyst λ (nm) Attribution Reference

223 isolated mononuclear Fe3+ (Td) [25]
Fe-Cu-Z 271 isolated mononuclear Fe3+ (Oh) [25]
(Figure 7a) 353 oligomeric Fe3+

xOy clusters [25]

201 zeolite matrix [26]
Fe-Cu-Zag 265 isolated mononuclear Fe3+ (Oh) [25]
(Figure 7b) 292 isolated mononuclear Fe3+ (Oh) [25]

501 Bulk CuO [27]

211 partially polymerized W(VI)/Surface WO3 [28,29]

W-Fe-Cu-Z 240 W species (low nuclearity)/tetrahedrally
coordinated W (VI) [11,29]

(Figure 7c) 301 oligomeric Fe3+
xOy clusters [25]

435 Bulk WO3 [30]

W-Fe-Cu-Zag 198 MFI matrix [26]
(Figure 7d) 284 isolated mononuclear Fe3+ (Oh) [25]

478 Bulk WO3 [30]
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The UV-vis results of the W-Fe-Cu-Z catalyst highlight that low nuclearity tungsten
oxide species coexist with tungsten that has been incorporated into the framework. Those
absorptions have disappeared after the hydrothermal treatment; the reported absorption
band of bulk WO3 has undergone a bathochromic shift as the nuclearity of tungsten entities
increases upon steam treatment [29]. According to the high-angle XRD data and the
observed variation of this band ascribed to bulk WO3, the crystalline WO3 in W-Fe-Cu-Zag
is mostly produced from amorphous tungsten oxide in the corresponding fresh sample.
These findings concur with heat decomposition analyses of the W precursor (ammonium
metatungstate), which indicate the production of an amorphous W phase that transforms
into crystallized WO3 upon heating at high temperatures [31].

The H2-TPR experiments were carried out to investigate the redox characteristics of
the various examined catalysts. Presented in Figure 8 are H2-TPR profiles over the analyzed
catalysts before and after steaming. It should be noted that there were no H2 consumption
peaks by unexchanged ZSM-5 in the test temperature range.
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Previous studies [32,33] defined two fundamental reduction zones for the H2-TPR
profile of Cu and Fe-based zeolite materials: peaks around 300–400 ◦C are ascribed to the
reduction of Fe3+ and/or Fe2O3 to Fe2+, whereas peaks above 450 ◦C correspond to the
reduction of Fe2+ and/or FeO to Fe0.

Since copper species may be reduced at lower temperatures (200–400 ◦C) than iron
species, they are more readily reducible. According to the literature [34–36], both active
cupric species in ZSM-5 zeolite (Cu oxides and isolated Cu2+ located at exchange sites) are
reduced by hydrogen at temperatures below 230 ◦C, while isolated Cu2+ at exchange sites
are reduced at around 160–200 ◦C and CuO crystallites at 200–250 ◦C. The reduction above
330 ◦C is ascribed to the reduction of Cu+ (formed from the reduction of Cu2+ and CuO)
to Cu0.

The TPR profile of bulk WO3 shows two peaks with maxima at around 750–800 ◦C
and above 800 ◦C. These peaks can be ascribed, respectively, to the two stepwise reduction
of WO3 to W0: W6+ →W4+ and W4+ →W0 [37,38].

As shown in Figure 8b, upon aging at 850 ◦C, a reduction peak appears at 231 ◦C for
Fe-Cu-Zag, which is assigned to CuO clusters. According to Cavataio et al. [35], the new
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peaks appearing above 400 ◦C upon the aging treatment would arise from metal species
that interact with destroyed zeolite and therefore are inactive for the SCR reaction in the
presence of ammonia. Thus, Fe-Cu-Zag displayed a small H2 consumption peak at 745 ◦C.
Since this catalyst is W-free, this peak was found to arise from the reduction of CuAl2O4
species formed during the steam treatment [39]. 27Al NMR showed a decrease in the
amount of EFAL in the case of Fe-Cu-Zag, which consolidates the possibility of CuAl2O4.
In the case of W-Fe-Cu-Zag (Figure 8d), the position of the reduction peaks attributed
to Fe and Cu species shifted to a lower temperature compared to Fe-Cu-Zag, suggesting
that the doping of W increased the reduction capacity of the aged catalyst. Therefore,
the improved reduction property of this catalyst compared to bimetallic Fe-Cu-Zag was
beneficial to the NH3-SCR. The hydrothermally treated trimetallic catalyst showed a slight
high temperature shift of the WO3 reduction peak detected above 700 ◦C, this could be
caused by the transfer of Cu from exchange sites to the surface or is thought to be an
indicator of strong interactions between oxide species and the zeolite [36].

The acidity modification before and after steam treatment was checked for the pre-
pared materials by the FTIR-Pyr technique. The recorded spectra at different evacuation
temperatures (150, 250, 350, and 400 ◦C) were gathered in Figure 9. Using the molar extinc-
tion coefficients listed in the literature [40], the concentrations of Lewis and Brönsted acid
sites (Table 4) were determined from the integrated areas of the FTIR-Pyr bands at 1450
and 1545 cm−1, respectively.
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Figure 9. FTIR-Pyr spectra of fresh and aged catalysts degassed at (a) 150 ◦C, (b) 250 ◦C, (c) 350 ◦C,
and (d) 400 ◦C.

Chemisorbed pyridine is recognized by the conventional set of stretching vibrations:
(L) two bands at 1450 and 1610 cm−1 assigned to coordinately bonded pyridine to Lewis
acid sites; (B) two bands at 1545 and 1635 cm−1 assigned to pyridinium cations PyH+

(pyridine protonated by Brönsted acid sites); and (B + L) the superposition of signals of
Lewis and Brönsted adsorbed species at approximately 1490 cm−1 [24].

The incorporation of W onto the Fe-Cu-Z material caused a decrease in both B and L
peaks, this was predicted since the exchanged tungsten species replaced the acid sites. The
interaction between W and the C-H bond in the pyridine could be the cause of the decrease
in the peak at 1490 cm−1 arising from the (B + L) acid sites [41].
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Table 4. FTIR-Pyr quantitative study of acid centers.

Sample Temperature (◦C)
Acid Centers (µmol Py/gr)

Brönsted Lewis B350/B150 L350/L150

Fe-Cu-Z
150 526 999

0.67 0.35250 495 499
350 356 353

Fe-Cu-Zag
150 86 341

0.24 0.27250 55 164
350 21 92

W-Fe-Cu-Z
150 380 715

0.70 0.31250 378 307
350 265 224

W-Fe-Cu-Zag
150 34 185

0.051 0.20250 16 120
350 2 38

After outgassing at 250 ◦C, the intensities of all FTIR-Pyr bands were progressively
reduced, those of aged samples and especially W-Fe-Cu-Zag were obviously more affected.
After outgassing at 400 ◦C, all detected FTIR-Pyr bands vanished for both steamed samples.
Table 4 shows that the ratio between the Lewis acid sites (L350/L150) was maintained
for W-Fe-Cu-Zag compared to the bimetallic sample, probably owing to the presence of
tungsten oxide species in a tetrahedral coordination, detected previously from UV-vis and
H2-TPR techniques, presenting the characteristics of Lewis acid centers [41]. Meanwhile,
the B350/B150 ratio has considerably decreased upon aging demonstrating that after
the hydrothermal treatment of the trimetallic catalyst, the loss of the Brönsted sites is
greater than the loss of Lewis sites. This finding confirms the NMR results showing that
dealumination in the case of trimetallic sample was more significant.

Over 95% of the NO was converted using a fresh Fe-Cu-Z catalyst at temperatures
between 365 and 590 ◦C (Figure 10). However, the NH3 oxidation caused a decrease in
NO conversion at temperatures above 500 ◦C. The supply of NH3 for NO reduction is
constrained by this side reaction, which limits the conversion of nitrogen oxide at high
temperatures. The conversion profile of a fresh W-Fe-Cu-Z catalyst remained lower than
that of the bimetallic catalyst until about 450 ◦C and the NO conversion was recorded
as 95% at 410 ◦C. The catalytic results show that tungsten limits the ammonia oxidation
capacity to NO of the Fe-Cu-ZSM-5 catalyst to a good extent. This finding is consistent with
those of Väliheikki et al., who found that the substantial ammonia-inhibiting adsorption
led to limited NH3 conversion in W-based ZSM-5 catalyst [42].
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After steam treatment, a considerable deactivation is seen for aged samples across
the entire temperature window and this was more considerable for the bimetallic Fe-Cu-Z
catalyst. The starting NO conversion of the Fe-Cu-Zag catalysts was 30% the same as that
of the fresh sample and then surprisingly diminished to become inactive at around 300 ◦C.
Above this point, a significant improvement in the conversion is seen and for the bimetallic
catalyst a maximum conversion of 62% is attained at 550 ◦C. The initial conversion of
W-Fe-Cu-Zag was about 20% over the whole temperature range; the conversion profile
rose monotonically, reaching a maximum conversion of more than 70% at 490 ◦C and
remained stable until the end of the catalytic test, excluding any deactivation caused by the
phenomenon of ammonia oxidization.

Over the entire temperature range, all supports were N2 selective, with selectivities
surpassing 90% (Figure 11a). In the case of Fe-Cu-Zag, the production of N2 has degraded
to two minimums at around 350 ◦C and 450 ◦C. As seen in Figure 11b, this observation has
been linked to an increase in the creation of the undesired nitrous oxide product. Fe-Cu-Zag
has a tendency to generate N2O at a high temperature (>400 ◦C) instead of decomposing
NO in the presence of NH3 according to the reaction path [43]:

4 NH3 + 4 NO + 3 O2 → 4 N2O + 6 H2O
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For both fresh and steamed catalysts, the generation of N2O was rather constant
throughout the catalytic test but was less significant in the presence of W.

3. Discussion

The hydrothermal stability of the W-Fe-Cu-ZSM-5 catalyst for the ammonia selective
catalytic reduction of NO has been investigated. Major findings and conclusions of this
study are listed below:

- Iron and copper are known for their good ability to oxidize NO to NO2, which is the
rate-determining step of the standard NH3-SCR reaction in the presence of O2 [5,6].
The addition of tungsten into the fresh Fe-Cu-Z did not improve its low temperature
catalytic activity at low temperatures probably due to the lack of acidity and/or redox
active components. Furthermore, as detected using the UV-vis technique, a fresh
Fe-Cu-Z catalyst encloses oligonuclear Fe3+

xOy clusters, known as an active site for
the NH3-SCR of NO reaction [44]. The ameliorated activity of a fresh W-based catalyst
above 450 ◦C may be ascribed to the presence of a tetrahedrally W(VI) species known
as an active site for SCR process [11]. W-O-Si and W-O-Al active sites are the two main
types of W species on W-ZSM-5, according to Chen et al. [11]. The presence of the
tetrahedral W-O-Al structure was proved using 27Al NMR on a W-Fe-Cu-Z sample.
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- The aging process considerably deteriorated the NO conversion over the Fe-Cu-Z
catalyst; however, this sample showed a better acidity compared to the trimetallic
sample above 400 ◦C. This explains its best starting activity, which dropped to zero
as Cu atoms were displaced from their counter-cation locations in the support and
formed CuAl2O4 and CuO aggregates detected mainly owing to STEM and H2-TPR
techniques, which is in line with our previous study that also draws attention to copper
oxide production following high-temperature aging for an Fe-Cu-ZSM-5 system [45].
These agglomerates are responsible for catalytic deactivation and are known to be
very active for high temperature NO oxidation, as well NH3 oxidation, with a high
selectivity in nitrogen oxide formation [46,47].

- This research points out that the stability of the tungsten-based catalyst at low reaction
temperatures against hydrothermal treatment is attributed to its good redox properties
as demonstrated from H2-TPR. Since the reducibility of the metal ions controls the
extent of low temperature NO conversion in metal exchanged zeolite catalysts, the
easier the reduction of metal species, the higher their oxidation ability in the SCR
process [48].

- Our results suggest that the studied samples reached the “severe” stage of aging
(observed between 750 and 850 ◦C) as described by Luo et al. [46]. This scenario shows
no structural breakdown of the zeolite and is accompanied by an agglomeration of
the metal atoms and a lowering of Brönsted acid sites, leading to low temperature
NH3 storage and NO conversion, which is in accordance with the findings of our
study. In the case of W-Fe-Cu-Zag, the agglomeration of W and Fe as seen from EDX
mapping images was beneficial to its catalytic stability. According to earlier research,
adding surface tungsten oxide to SCR catalysts increases their reactivity while also
having an inhibitory influence on the generation of unwanted N2O during the reaction
process [49,50].

4. Materials and Methods
4.1. Catalysts Preparation

The desired materials with the theoretical composition specified in Table 1 were
prepared using solid-state ion exchange (SSIE) following the consecutive steps cited below:

Step 1: 1 g of commercial NH4
+-ZSM-5 (Si/Al = 15) furnished by Zeolyst International

(CBV3024E) was mixed and finely ground in an agate mortar with the desired amount of
the precursor CuCl2 · 2H2O (Sigma-Aldrich, St. Louis, MO, USA) under ambient conditions
for 5 min. The obtained mixture was then treated for 12 h at 380 ◦C under a stream of He
(Air Liquide, 99.99%) using a flow rate of 30 cm3 min−1 and a heating rate of 2 ◦C min−1.

Step 2: The powder resulting from the first step was in turn mixed and finely ground,
under the same conditions cited in “step 1”, with the desired amount of the precursor
FeCl2 · 4H2O (Sigma-Aldrich, Missouri, USA), then heated at 290 ◦C during 12 h in He
steam. The final material was labelled Fe-Cu-Z.

Step 3: WO3/Fe-Cu-ZSM-5 catalyst (labeled as W-Fe-Cu-Z) was prepared by mixing
1 g of Fe-Cu-Z solid with the desired amount of the precursor (NH4)6H2W12O40 · xH2O
Sigma-Aldrich, Missouri, USA) trough mechanical grinding in an agate mortar. The
resulting mixture was ultimately treated in a steam of He during 12 h at 500 ◦C using a
flow rate of 30 cm3 min−1 and a heating rate of 1 ◦C min−1.

4.2. Catalysts Aging

The aging process was carried out as follows: 200 mg of catalyst were placed on the
porous frit of a U-tube quartz reactor that circulates a gas flow (20% O2/He) at a flow rate
of 50 cm3 min−1. The reactor was then heated with a gradient of 6 ◦C min−1 to 850 ◦C.
Starting at this temperature, a syringe pump began injecting H2O (liq.) at a flow rate of
0.0041 cm3 min−1 for 5 h. The oven was eventually cooled to room temperature and once
the temperature reaches 450 ◦C, the H2O injection was stopped. The steamed catalysts
were labelled Fe-Cu-Zag and W-Fe-Cu-Zag.
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4.3. Physical and Chemical Characterization

The chemical analysis of the prepared samples was performed using ICP-OES with a
Varian 715-ES spectrometer with a wavelength coverage of 177–785 nm. Textural properties
were investigated using N2-physisorpton at 77 K technique with the aid of Micromeritics
ASAP 2000 equipment. Previously, the samples were degassed at 250 ◦C for 5 h. The
samples’ morphology was checked using Field Emission Scanning Electron Microscopy
with a ZEISS ULTRA- 55 microscope working at an accelerating voltage of 20 keV in analysis
mode. The sample powder was deposited in double-sided tape and analyzed using carbon
covering. The sample coating was performed with a BAL-TEC SCD005 instrument. The
solid-state MAS NMR analyses were conducted on a Bruker AV400 spectrometer at room
temperature. 27Al and 29Si measurements were referred to as Al(NO3)3 (0.1M) and TMS,
respectively. The 29 Si MAS NMR spectra were recorded using a BL-7 probe with 7 mm
diameter zirconia rotors spinning at 5 kHz using a recycle delay of 3 s. The 27Al MAS
NMR were recorded using a BL4mm probe with 4mm diameter zirconia rotors spinning
at 14 kHz using a recycle delay of 1 s and pulses of π/12. Employing a PAN-alytical
Cubix’Pro diffractometer with an X’ Celerator detector and automatic divergence and
reception slits using Cu-K radiation, the samples’ crystallinity was examined (0.154056 nm).
The instrument was powered by a 45 kV voltage and a 40 mA current. The software
PANalytical X’ Pert HighScore Plus was used to analyze the diffractograms, which were
recorded in the range of 5–40◦. The DRS UV-vis experiments were carried out using a Cary
7000 spectrometer equipped with a diffuse reflectance accessory (Praying Mantis Harrick).
Using BaSO4 as an internal standard, the spectra were obtained at room temperature in
the 200–800 nm wavelength range. STEM micrographs and EDX mapping analysis were
carried out using a JEOL-JEM 2100F instrument equipped with an X-MAX microanalysis
detector and operating under a resolution energy of 20 eV and an accelerating voltage
of 200 kV. The samples were suspended in a volume of isopropanol and subjected to an
ultrasonic bath for 20 min and a drop of this solution was deposited on a nickel grid. The
H2-TPR profiles were obtained on an automated Micromeritics Autochem 2920 instrument.
Previously, 50 mg of each sample was pretreated at 500 ◦C (10 ◦C min−1) under 5%O2/He
atmosphere (30 cm3 min−1) in a quartz U-tube reactor for 30 min and then cooled under He
to 40 ◦C. The H2-TPR measurements were performed under 5%H2/Ar flow (30 cm3 min−1)
in the temperature range 40–800 ◦C (5 ◦C min−1). The acid properties of the catalysts
were determined using FTIR spectroscopy of adsorbed pyridine (FTIR-Pyr) with the aid of
Nicolet 710 FTIR equipment. Before spectra recording, 13 mg of catalysts were pressed into
sheets and degassed overnight at 400 ◦C under dynamic vacuum (10−6 mbar). Pyridine
was adsorbed until equilibration after cooling to room temperature and then the samples
were degassed at different temperatures (150 ◦C, 250 ◦C, 350 ◦C, and 400 ◦C) and following
each desorption step, the corresponding spectrum was recorded.

4.4. Catalytic Tests

The NH3-SCR of NO catalytic tests were carried out in a temperature programmed
surface reaction (TPSR) with the aid of a flow reactor operating at atmospheric pressure
with a total flow rate of 6 L h−1 and a space velocity of 333.333 h−1. A sample amount
of 18 mg was activated in situ under an O2 and He mixture (8% O2, 88.3% He and 3.5%
H2O) at 250 ◦C and then cooled to 50 ◦C. The catalysts were tested in the temperature
range 250–550 ◦C, with a ramp of 3.75 ◦C min−1, under the same atmosphere used for their
activation and using the following gas composition: 1000 ppm of NH3 and 1000 ppm of
NO. The gas mixture of the studied reaction was administrated to the reactor using mass
flow controllers. The effluent composition was continuously monitored and by sampling
on line to an Omnistar Pfeiffer Vacuum quadruple mass spectrometer equipped with both
Faraday and Channeltron detectors. Results gathered from catalytic tests were expressed
as follows:

XNO =
[NO0]− [NOT]

[NO0]
× 100
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where [NOT] and [NO0] account for the NO concentrations at the temperature T and at the
inlet gas reactor, respectively.

5. Conclusions

Fresh Fe-Cu-ZSM-5 and WO3/Fe-Cu-ZSM-5 SCR catalysts were hydrothermally
treated in the presence of 10% water vapor at 850 ◦C for 5 h in a U-tube quartz reac-
tor. The aging of the catalysts influenced the structural, textural, and metal speciation of
the studied catalysts: the Fe-Cu-ZSM-5 catalyst undergoes extensive deterioration of its
NH3-SCR activity after hydrothermal treatment at 850 ◦C. CuO and CuAl2O4 formation is
majorly responsible for the loss of activity occurring both at 300 ◦C and at high temperature.
Tungsten deposition onto Fe-Cu-ZSM-5 does not modify in a meaningful way the catalytic
performance of the host catalyst. After the aging of WO3/Fe-Cu-ZSM-5, the NH3-SCR
activity of NO also deteriorated, but the presence of tungsten oxide crystallites and iron
oligonuclear clusters, both known as active species for the NH3-SCR reaction, allowed a
better stability of the aged catalyst at low temperatures and specially improved its activity
at high temperatures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10110180/s1, Figure S1. EDX reports of analyzed
spectra recorded on (a) Fe-Cu-Z, (b) Fe-Cu-Zag, (c) W-Fe-Cu-Z, and (d) W-Fe-Cu-Zag catalysts.
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