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Abstract: The large volume expansion and self-locking phenomenon of metal hydride particles
during hydrogen sorption often leads to a high stress concentration on the walls of a container, which
may cause the collapse of the container. In present study, silicone oil was investigated as a glidant
for a V-based BCC metal hydride bed to alleviate the stress concentration during hydrogen sorption.
The results indicated that the addition of 5 wt% silicone oil slightly reduced the initial hydrogen
storage capacity of V40Ti26Cr26Fe8 (particle size: ~325 µm) but improved the absorption reversibility,
regardless of the oil viscosity. It was observed that silicone oil formed a thin oil layer of 320~460 nm
in thickness on the surface of the V40Ti26Cr26Fe8 particles, which might improve the fluidity of the
powder, reduce the self-locking phenomenon and alleviate the stress concentration on the container
walls. Consequently, the maximum strain on the surface of the hydrogen storage container decreased
by ≥22.5% after adding 5 wt% silicone oil with a viscosity of 1000 cSt.

Keywords: hydrogen storage; metal hydride; volume expansion; stress concentration; silicone oil

1. Introduction

With the growing energy demand and the concerns of environmental pollution, the
development of emission-free energy carriers based on abundant resources such as hydro-
gen is arousing great interest [1,2]. Hydrogen can be used in internal combustion engines
to produce mechanical energy or in fuel cells to convert chemical energy to electrical en-
ergy [3]. However, before the large-scale utilization of hydrogen as an energy carrier, the
development of technologies to safely and efficiently store hydrogen, hydrogen storage
being the bridge between its production and consumption, is essential [4,5]. To date, three
main methods have been reported, i.e., hydrogen can be physically stored as a compressed
gas, a cryogenic liquid, or in metal hydrides [6]. Among them, metal hydrides, which could
potentially allow reversible hydrogen absorption and desorption at ambient conditions, are
considered an ideal mean for hydrogen storage [7,8].

However, a large volume expansion occurs during the hydrogen absorption process
due to the insertion of hydrogen atoms into the lattices [9–11]. For example, an expansion
of 20% was observed for LaNi5 during the absorption of hydrogen [12,13], of about 30% for
Mg-based alloys [14], and of 9–23% for a Ti–Cr–Mn-based alloy [11,15]. A body-centered
cubic (BCC) alloy showed a much higher expansion of more than 40% during the first
hydrogen absorption, with the lattice parameters growing from 3.0327 Å for the BCC lattice
to 4.2714 Å for the FCC lattice [16]. During the expansion of metal hydrides, the particles
are gradually reduced in size, e.g., from 150 µm to 5 µm for the Ti–Zr–Mn-based alloy after
180 cycles [17], and meanwhile, lattice expansion leads to the concentration of stress on the
walls of the hydrogen storage container, especially on the bottom of the container, due to the
flow of the alloy particles under gravity and the interlock of irregular particles [9,18,19]. It
is critical to ensure that the design of the hydrogen storage container allows it to withstand
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the expansion of metal hydrides. The stress concentration on the surface of a hydrogen
storage container depends on the type, particle shape, and loading fraction of the hydrogen
storage materials [12,13,20–22], as well as on how the hydrogen storage container is placed,
e.g., horizontally or vertically [12,18].

To alleviate the stress concentration on the container walls, approaches focusing on
the container or the metal hydride (MH) bed have been proposed. As regards the container,
leaving enough free expansion space for the hydrogen alloy is a common method [23].
C. K. Lin [20] reported a structural design of the hydrogen storage container, in which
the container is divided into three layers to release the stress concentration. For the MH
bed, hinders or glidants are generally applied to reduce the stress concentration [24–28].
The addition of hinders, such as expanded graphite, could limit the free moving of metal
hydride powders [28]. Glidants, such as silicone oil, MoS2 nanopowders, and carbon
black, can improve the fluidity of metal hydride powders and reduce the self-locking
phenomenon between powders [24–27].

Vanadium-based hydrogen storage alloys have a BCC crystal structure with a hydro-
gen storage capacity of ~3.8 wt % and a fast hydrogen sorption kinetics at room temperature.
By using a FeV80 master alloy to replace the pure vanadium metal, the cost of V-based BCC
alloys has been significantly reduced [29]. However, the large volume expansion, of ~40%,
during the first hydrogen absorption cycle, may cause a serious stress concentration on
the container walls. In the present study, silicone oil with low cost and high temperature
stability, which ranges from −50 to 200 ◦C during long-term use [30], was applied as a
glidant for a V-based BCC alloy powder bed. The influence of silicone oil on the hydrogen
storage properties of the V-based BCC alloy was systematically investigated. Furthermore,
the effect of silicone oil addition on stress concentration during the first hydrogen sorption
was evaluated using a swelling stress measurement system.

2. Results
2.1. Hydrogen Storage Properties

Initially, the contact angle between silicone oils with different viscosity and the
V40Ti26Cr26Fe8 alloy (s1) was determined, as shown in Figure 1. The contact angle in-
creased from 9.006◦ for a silicone oil of 50 cSt to 17.719◦ for a silicone oil of 10,000 cSt.
Smaller contact angles indicate a good infiltration of the investigated silicone oil in the
V40Ti26Cr26Fe8 alloy. Hence, 5 wt% silicones oil of 50 cSt (s2), 1000 cSt (s3) and 10,000 cSt
(s4), respectively, were mixed with the V40Ti26Cr26Fe8 powder, and hydrogen sorption
was measured.
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Figure 1. Contact angles between silicone oils with different viscosity and the V40Ti26Cr26Fe8 alloy (s1).

Figure 2a compares the hydrogen absorption kinetics in the first cycle of sample s1
and samples containing 5 wt% silicone oils of 50 cSt (s2), 1000 cSt (s3) and 10,000 cSt
(s4). Sample s1, the pristine V40Ti26Cr26Fe8 alloy, started to absorb hydrogen immediately
without incubation at 298 K and 7 MPa H2, with a fast absorption >3 wt% H in the first
5 min and a full capacity of 3.43 wt% H. Samples s2, s3 and s4 showed incubation periods of
0.5, 0.3 and 0.1 min, respectively. The incubation period decreased for samples containing
silicone oil with higher viscosity. The hydrogen absorption rates also declined for samples
s2, s3 and s4, which showed hydrogen absorption amounts of 2.29, 2.42 and 2.62 wt% H,
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respectively, in the first 5 min. The full capacities of samples s2, s3 and s4 decreased to
3.231, 3.362 and 3.325 wt%, respectively. In the PCT curves of the first dehydrogenation
process (Figure 2b), the samples s1 to s4 showed a similar plateau pressure of ~0.4 MPa,
but the hydrogen desorption amount decreased from 2.20 wt% for s1 to 1.95 wt% for s2,
2.06 wt% for s3 and 2.04 wt% for s4, within the pressure range of 0.01–7 MPa.
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To further investigate the cycling stability, samples s1 to s4 were evacuated after
dehydrogenation at RT for 30 min and were then hydrogenated under 7 MPa H2 at RT.
Figure 3a,d show the hydrogen absorption kinetics of samples s1 to s4 up from the 2nd
to the 20th cycle. Starting from the second cycle, all samples could absorb hydrogen
immediately without incubation and absorbed the maximum hydrogen amount within
5 min. Moreover, hydrogen absorption sped up within the first minute as the number
of cycles increased for all samples (Figure 3e). For samples s2, s3 and s4, the amounts of
hydrogen absorbed within the first minute were almost the same at each cycle and reached
1.7 wt% at the 20th cycle (Figure 3e), which was slightly lower than the amount of 1.87 wt%
measured for sample s1.

Figure 3f compares the reversibly absorbed amounts of samples s1 to s4. The reversibly
absorbed hydrogen amounts of the four samples showed a fast decay in the first 10 cycles
and became relatively steady afterwards. Sample s1 showed a reversible hydrogen amount
of 2.42 wt%, which decreased to 2.12 at the 10th cycle, corresponding to a capacity retention
of 87.6%, and to 2.06 wt% at the 20th cycle, with a capacity retention of 85.1%. Interestingly,
samples s2–s4 showed a lower initial reversible hydrogen storage capacity but a higher ca-
pacity retention of 90%, 87.3% and 87%, respectively. That is, the initial reversibly absorbed
hydrogen amounts were 2.23, 2.36 and 2.32 wt% for samples s2–s4, which decreased to 2.0,
2.06 and 2.02 wt% at the 20th cycle, respectively.

Figure 4a shows the XRD pattern of the pristine V40Ti26Cr26Fe8 alloy (s1), which was
composed of a BCC phase as the major phase and CeO2 as the minor phase. After 20 ab/de-
sorption cycles, sample s1 contained mainly a BCT phase and minor FCC and CeO2 phases.
The formation of the BCT phase, a monohydride of the V-based BCC alloy, was due to the
dehydrogenation of the dihydride (FCC phase) at room temperature [31]. Note that after
20 ab/desorption cycles, the BCT phase of samples s1 to s4 showed very broad reflections
(Figure 4b–e), implying the presence of large microstrains. The initial microstrain of sample
s1 was around 0.36% and increased to 1.282% after 20 ab/desorption cycles. Compared to
sample s1, samples s2–s4 showed very similar microstrains of around 1.3% (Figure 5f) after
20 ab/desorption cycles.
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Sample s3 was chosen to further investigate the morphology evolution during the
hydrogen ab/desorption cycles by SEM and EDS, as shown in Figure 5. The average
particle size after the first ab/desorption cycle was 76.14 µm (Figure 5a) and decreased
to 53.19 µm after 20 cycles (Figure 5c). With the decrease in the particle size of sample
s3, a larger fresh surface was generated, improving the hydrogen absorption dynamics
(Figure 3e). The presence of silicone oil on the surface of the alloy particles of sample s3
was confirmed by EDS elemental mapping, which allowed observing C, Si and O elements
on the surface of the alloy particles, as shown in Figure 5b,d. Furthermore, the thickness
of the silicone oil film was approximately 320–460 nm after the 1st cycle (Figure 5b) and
slightly decreased to 340–450 nm after the 20th cycle (Figure 5d).

2.2. Influence of the Silicone Oil on Strain Distribution

To investigate whether the addition of silicone oil could lower the strain on the
container walls during the hydrogen absorption process of the BCC alloy, three kinds of
samples were loaded into a home-made MH reactor (Scheme 1), including V40Ti26Cr26Fe8
powders with particle size of 2~3 mm (s5), pre-hydrogenated V40Ti26Cr26Fe8 powder with
particle size of 325 µm (s6) and a mixture of s6 and silicone oil of 1000 cSt (s7). Four strain
gauges at positions 3a to 3d were used to measure the distribution of the circumferential
strain on the container walls during the first hydrogen absorption by sample s5, s6 and s7.
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For sample s5 (Figure 6a), the strains at positions 3a to 3d increased slowly in the
first 5 min, rose rapidly to the vertex after about 10 min and declined slowly afterwards.
The strain at position 3a near the bottom of the container, with the maximum of 1750 µε,
was obviously higher that at other positions, indicating that stress was concentrated at the
bottom of the container. This was due to the small expansion space near the bottom of the
container, which allowed the fine powders to easily pass through the metal hydride bed,
reaching the bottom of the container and filling the empty space [7]. As for sample s6 with
a smaller particle size, the strain increased rapidly after hydrogen absorption started and
reached the maximum after around 3 min. Compared to the strain at positions 3a to 3d for
s5, shown in Figure 6b, the strain on the container walls for all samples were much smaller.
For example, the maximum strain at position 3a decreased by about 56.89 %, from 1750 µε
for s5 to 750.84 µε for s6. For s7 sample, the strain at the four positions was further reduced.
For instance, the maximum strain at position 3a decreased to 582.13 µε for s7, which is a
drop by 22.5% compared to the value (750.84 µε) measure for s6. Additionally, for s5 and
s6, the time required to reach the maximum strain at the four positions was almost the
same, i.e., 10 min for s5 and 3 min for s6. For sample s7, the time to reach the maximum
strain was 7, 7, 8, and 10 min for positions 3a to 3d, respectively; the delay in reaching the
maximum strain at positions 3c and 3d implied an alleviation of the stress concentration.
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Figure 6. (a–c) Strain distribution at positions 3a to 3d on the container for sample s5, s6, and s7 and
(d) comparison of the maximum strain at position 3a to 3d for sample s5, s6 and s7.

Figure 6d further compares the maximum strain at the four positions on the container
walls for the three samples. For sample s7, which was composed of a fine V40Ti26Cr26Fe8
powder (325 µm) and silicone oil, the maximum strain was much lower, compared to
those measured for the other two samples. This can be explained by the presence of a
silicone oil film with a thickness of 320–460 nm on the surface of the metal hydride powder,
which might improve the fluidity of the V40Ti26Cr26Fe8 powder, reduce the self-locking
phenomenon and alleviate the stress concentration.
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3. Materials and Methods
3.1. Sample Preparation

The purity of Ti, Cr and Ce was 99.5 wt%, 99.9 wt%, 99.0 wt%, respectively. A FeV80
master alloy was used as the V source; it contained 78.14 wt% V, 19.16 wt% Fe and minor
amounts of Al, Si, C and O. We added 3 wt% Ce to the alloy to remove the oxygen
introduced by the FeV80 master alloy and improve the activation performance [29]. The
V40Ti26Cr26Fe8 alloy (denoted as s1) was prepared using a suspension melting furnace,
followed by annealing at 1673 K for 30 min under vacuum (5 × 10−3 Pa) in a ZM-16 vacuum
molybdenum wire furnace. The V40Ti26Cr26Fe8 alloy was crushed into a powder with
particle size of 325 µm in an Argon glove box.

The silicone oils with different viscosities of 50, 1000 and 10,000 cSt were purchased
from the Dow Corning company. We added 5 wt% silicone oil to the V40Ti26Cr26Fe8 powder
by hand grinding for 15 min in a mortar. The mixtures of V40Ti26Cr26Fe8 powder and
silicone oil of 50, 1000 and 10,000 cSt were denoted as samples s2, s3, and s4, respectively.

We placed ~2 g of the samples in a stainless-steel autoclave, which was then air-
evacuated by a rotary pump at 373 K for 1 h. After the autoclave was cooled down to room
temperature (RT), H2 (purity: 99.999 wt%) at 7 MPa was introduced. The hydrogenation
kinetics and pressure composition isotherm (PCT) curves during the dehydrogenation
process were measured using a Siverts-type apparatus. The hydrogen amounts of the
samples were calculated without considering the mass of silicone oil.

The morphologies of the samples were observed on a scanning electron microscope
(SEM, Hitachi REGULUS8230, Japan). The distribution of the particle size was analyzed by
a Malvern particle analyzer (Bettersize 1900, China). The contact angles between the alloy
and silicone oil were obtained by a contact angle meter (SL250, USA KINO Co., Ltd., USA).
X-ray diffraction data of the samples were collected on an X-ray diffractometer (Oxford
Xcalibur E diffractometer, UK) using Cu Kα radiation (λ = 1.5418 Å) at a scanning speed
of 0.01◦/s and 2θ of 25–80◦. The microstrain of the samples was evaluated by refining the
XRD patterns using the Rietveld method with the software Jade 6.0.

3.2. Strain Test

The home-made metal hydride (MH) reactor for the strain test is illustrated in Scheme 1.
The reactor consists of two parts, an outer jacket and an inner MH container, made of
stainless steel. The flanges were sealed by spiral wound gaskets (PTFE), and the upper
flange contained a pipeline for hydrogen supply. The inner MH container with an outer
diameter of 33 mm and a wall thickness of 3 mm was equipped with four strain gauges
(Zemic, China). To measure the strain in the tangential (q) directions on the inner container,
strain gauges were placed at positions 3a to 3d, which were 25, 45, 65 and 85 mm away from
the bottom of the container, respectively. Strain is the ratio of the amount of deformation
with respect to the original size and is denoted by ε. The measurement range of the strain
gauges was −11,000 ≤ µε≤ 11,000. The outer jacket with an outer diameter of 45 mm and a
wall thickness of 3 mm had an eccentric circular structure, leaving a 3 mm gap for attaching
the strain gauges. On the top of the outer jacket, a wiring hole allowed the connection of
the strain gauges with the signal acquisition device.

For each measurement, approximately 400 g of the MH powder was loaded into the
MH reactor in an Ar glove box, which occupied roughly 40% of the space of the inner
container. Afterward, the reactor was heated by a heating jacket to 373 K and evacuated for
3 h. Subsequently, the MH reactor was placed in a water bath for the hydrogen absorption
and desorption test.

4. Conclusions

Silicone oils with viscosity from 50 to 10,000 cSt were investigated as a glidant for a
V-based BCC alloy, V40Ti26Cr26Fe8 (particle size: ~325 µm). We added 5 wt% silicone oil to
the V40Ti26Cr26Fe8 powder, which formed a 320~460 nm-thick layer covering the surface
of the V40Ti26Cr26Fe8 particles. Regardless of viscosity, the addition of 5 wt% silicone
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oil slightly reduced the initial hydrogen storage capacity of V40Ti26Cr26Fe8 but improved
the reversibility of hydrogen absorption. During the first 20 hydrogen sorption cycles,
the reversible capacity of V40Ti26Cr26Fe8 dropped from 2.42 to 2.06 wt%, with a capacity
retention of 85.1%, while the capacity retention improved to 90%, 87.3% and 87% after the
addition of silicone oil with viscosity of 50, 1000, 10,000 cSt, respectively. Furthermore,
for the V40Ti26Cr26Fe8 powder bed with 5 wt% silicone oil, the maximum strain on the
container walls decreased by ≥22.5%. These results indicate that silicone oil is an effective
glidant to alleviate the stress concentration in hydrogen storage containers with a V-based
BCC alloy.
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