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Abstract: Six new three-dimensional metal–organic frameworks based on early lanthanide(III) cations
and trans-1,4-cyclohexanedicarboxylic acid (H2chdc) were obtained. Their crystal structures were de-
termined by single-crystal X-ray diffraction analysis. The structure of [La2(H2O)4(chdc)3]·2DMF·H2O
(1; DMF = N,N-dimethylformamide) contains one-dimensional infinite La(III)-carboxylate chains
interconnected by cyclohexane moieties to form a highly porous polymeric lattice with 30% solvent
accessible volume. Compounds [Ln2(phen)2(chdc)3]·0.75DMF (2Ln; Ln3+ = Ce3+, Pr3+, Nd3+ and
Sm3+; phen = 1,10-phenanthroline) are based on binuclear carboxylate building blocks, which are
decorated by chelate phenanthroline ligands and interconnected by cyclohexane moieties to form
more dense isostructural coordination frameworks with primitive cubic pcu topology. Compound
[Nd2(phen)2(chdc)3]·2DMF·0.67H2O (3) is based on secondary building units similar to 2Ln and
contains a coordination lattice isomeric to 2Ln with a rare hexagonal helical snz topology. Thermal
stability and luminescent properties were investigated. For 2Sm, a strong and nonmonotonous
dependence of the luminescence color on the variation of excitation wavelength was revealed, chang-
ing its emission from pinkish red at λex = 340 nm to white at λex = 400 nm, and then to yellow at
lower excitation energies. Such nonlinear behavior was rationalized in terms of the contribution of
several different luminescence mechanisms. Thus, 2Sm is a rather rare example of a highly tunable
monometallic lanthanide-based luminophore with possible applications in light-emitting devices and
optical data processing.

Keywords: coordination polymers; metal–organic frameworks; polymorphism; rare earth elements;
luminescence

1. Introduction

Metal–organic frameworks (MOFs) represent an emerging class of hybrid inorganic–
organic materials. A design of diverse functional properties, e.g., catalytic, optical, adsorp-
tion and magnetic, is possible in MOFs by carefully choosing metal building blocks and
organic bridges [1–6]. The effects of reversible structural transitions (breathing) [7–10] and
topological polymorphisms [11–13] inherent to metal–organic coordination polymers are of
great interest due to the corresponding ability of fine tuning the porosity, crystal packing of
functional centers and strength of host–guest interactions. The aliphatic-backboned ligands
bearing their own enhanced structural mobility and specific optical, thermal and adsorption
properties [14–17] deserve special attention in MOF chemistry. In particular, the optical
transparency of such ligands gives us the perfect ability to investigate the photophysical
properties of photoactive coordination nodes or guest molecules incorporated into the
aliphatic-spread polymeric network [18,19].

Lanthanide-based metal–organic frameworks are extensively studied owing to their re-
markable luminescence [20–23] originating from the emission of metal cation when organic
ligands and guest molecules with conjugated π-systems often act as photosensitizers for
self-emitting Ln3+. In particular, combining lanthanide(III) ions bearing different emission
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colors and/or using highly emissive organic guests or ligands within Ln3+-based MOFs is
a convenient route for the synthesis of single-phase white-light emitters suitable for real
applications [24–29]. High coordination numbers of Ln(III) ions and the corresponding
abundant structural variability of polymeric coordination lattices [30–32] push ahead their
synthesis and comprehensive investigations. Ln3+-based MOFs are also characterized by
higher thermal and hydrolytic stabilities compared to more common frameworks based on
divalent transition metal cations [33–35], which makes them suitable for applications in
sensor devices, light emitters and bioimaging [36–40].

Previously, we have reported a series of metal–organic frameworks based on 1,10-
phenathroline (phen) and trans-1,4-cyclohexanedicarboxylic acid (H2chdc) with the formu-
las [Ln2(phen)2(chdc)3]·0.5DMF (Ln3+ = Eu3+, Gd3+, Tb3+, Y3+) [28,41], for which a strong
and excitation wavelength-dependent luminescence with quantum yields of up to 63%
was observed. The origin of luminescence varied from metal-centered antenna-sensitized
emission for Eu3+ and Tb3+ compounds to the ligand-centered emission for the compounds
with non-emissive Gd3+ or Y3+ cations. Tuning the metal coordination environment by
nitrate, chloride or carboxylate in a series of structurally kindred Gd(III) metal–organic
frameworks with an optically transparent trans-1,4-cyclohexahedicarboxylate bridge al-
lowed us to understand the impact of the coordinated X anion on the ligand-centered
luminescence in photoactive {Gd2(phen)2(X)2(OOCR)4} moiety. Owing to the intensive
and highly tunable luminescence of several MOFs of the [Ln2(phen)2(chdc)3] family, we
further focused on the synthesis and investigation of [Ln2(phen)2(chdc)3]-type metal–
organic frameworks with early lanthanides based on an isostructural binuclear carboxy-
late building block (Figure 1). Early Ln3+ cations are also known to have unique emis-
sion characteristics. As a result, this work reports the successful isolation and charac-
terization of six new MOFs constructed by early lanthanides and H2chdc with the cor-
responding crystallographic formulae [La2(H2O)4(chdc)3]·2DMF·H2O (1; DMF = N,N-
dimethylformamide), [Ln2(phen)2(chdc)3]·0.75DMF (2Ln; Ln3+ = Ce3+, Pr3+, Nd3+ and
Sm3+) and [Nd2(phen)2(chdc)3]·2DMF·0.67H2O (3). The numbers 1–3 represent differ-
ent structural types inherent to the compounds obtained in close conditions. A non-
photosensitized luminescence was revealed for 2Nd, while 2Sm demonstrated strongly
excitation-dependent color of emission, which is rather unusual for monometallic Ln(III)
metal–organic frameworks.
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2. Results and Discussion
2.1. Synthesis

Single crystals of compound [La2(H2O)4(chdc)3]·2DMF·H2O (1) were obtained by the
reaction between lanthanum(III) chloride, trans-1,4-cyclohexanedicarboxylic acid (H2chdc)
and 1,10-phenantroline (phen) in a mixture of N,N-dimethylformamide (DMF) and water
at 80 ◦C. Phenanthroline is not comprised in 1; however, carrying the reaction without
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phen in similar conditions resulted in the formation of an unidentified crystalline phase.
The role of 1,10-phenathroline in the synthesis could be suggested in terms of its slight
basicity [42,43], promoting the deprotonation of weak organic acid H2chdc. The PXRD
pattern of the filtered sample of 1′ shows its poor crystallinity, which might be attributed to
the mobility of highly porous coordination framework based on conformationally flexible
chdc ligand after removal of the mother liquor and subsequent desolvation of 1 (see pages
10–12 in ESI). Chemical analysis of 1′ samples after the storage (see Section 3.3 in the
experimental) confirms the substantial decrease in guest molecule content, compared to the
crystallographic formula of 1.

Compounds [Ln2(phen)2(chdc)3]·0.75DMF (2Ln; Ln3+ = Ce3+, Pr3+, Nd3+ and Sm3+)
were synthesized in conditions quite similar to 1, except for changing lanthanum(III)
chloride to the corresponding amounts of other lanthanide(III) salts and some variation
in solvent DMF: H2O ratio. This synthetic method was optimized to avoid the formation
of unidentified crystalline phases. PXRD patterns of 2Ln (Figures S1–S4) correspond well
to the theoretical ones, indicating their successful synthesis. Unlike 1, crystal structures
of 2Ln contain a phen molecule being coordinated to each Ln(III) ion. Such difference
between La-based 1 and compounds 2Ln is apparently attributed to the widely known
effect on the decrease in the atomic and ionic radii in the lanthanide row with increasing
atomic number (called lanthanide contraction), which results in the possible chemical and
structural dissimilarity [30,44,45] of the forming coordination compounds; the latter is
more comprehensively discussed in the next part.

Single crystals of [Nd2(phen)2(chdc)3]·2DMF·0.67H2O (3) were obtained in low yield
by the reaction of neodymium(III) chloride, H2chdc and phen in DMF at 110 ◦C. The
formation of 3 appears to compete strongly to the crystallization of 2Nd. Time screening
at 110 ◦C revealed that 3 crystallizes as a major product only during several hours of
heating (Figure 2), while increasing the synthesis time up to two days carrying all other
similar conditions leads to pure 2Nd precipitation. In this regard, 3 can be recognized as
a metastable kinetic reaction product. Temperature screening at a short synthesis time
showed that 3 forms as only a minor admixture to 2Nd at 120 ◦C, while no precipitation was
observed at 100 ◦C and 130 ◦C. Surprisingly, no formation of 3-like phases was observed
in similar screening syntheses using Pr(III) and Sm(III) (Figures S5 and S6), which are the
nearest available neighbors of neodymium in the lanthanide row, which puts Nd-based 3,
topologically isomeric to the 2Nd coordination framework, in a completely unique place.
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2.2. Crystal Structure Description

A suitable crystal of 1 was taken directly from the mother liquor before the filtration
for performing single-crystal XRD. Compound 1 crystallizes in the triclinic symmetry with
P–1 space group. The asymmetric unit of 1 includes one La atom. La(III) is coordinated by
two O atoms of two κ2- carboxylic groups, four O atoms of two chelated κ2,κ1- carboxylic
groups, two O atoms of two nonchelated κ2,κ 1- carboxylic groups and two O atoms
of two water molecules. Therefore, the La atom adopts the coordination number 10.
La–O(COO) bond lengths range from 2.524(3) Å to 2.771(3) Å and La–O(H2O) bond lengths
are 2.525(3) Å and 2.543(3) Å. La atoms are interconnected by κ2,κ1- carboxylate bridges
forming one-dimensional {-La(OH2)2(OOCR)3-}n chains (Figure 3a), which act as building
units in the coordination framework. These chains are interconnected by cyclohexane
moieties to form a three-dimensional polymeric lattice, in which chdc ligands present
in two different (κ2,κ1;κ2,κ1) and (κ2;κ2) coordination modes (Figure S7), situated along
the b and c axes, respectively. The coordination framework in 1 contains the system of
one-dimensional channels running in two perpendicular directions. The larger channels
paved by cyclohexane rings (Figure 3b) are situated along the a crystallographic axis and
are ca. 4 × 4 Å2 in size (Figure S8a). The smaller channels paved by cyclohexane rings and
coordinated water molecules (Figure 3c) are situated along the b crystallographic axis and
are ca. 3 × 4 Å2 in size (Figure S8b). These two types of channels intersect and the total
solvent accessible volume in 1 reaches 30%. The channels are fully occupied by guest DMF
and water molecules.
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Figure 3. La(III) environment in 1. The neighboring La(III) ions are shown as transparent. O atoms
are red, H atoms are orange (a). View along different crystallographic axes in 1: a (b) and b (c). Guest
molecules and H atoms of chdc ligand are not shown. Only one possible position of disordered
(κ2;κ2)-chdc cyclohexane ring is shown.

Compounds 2Ce, 2Pr, 2Nd and 2Sm were obtained under similar conditions and are
isostructural. Therefore, only the 2Nd structure will be described in detail as a representing
example, which is also may be conveniently compared to the 3Nd structure described
below. 2Nd crystallizes in the monoclinic symmetry with the P21/n space group. Nd(III) is
coordinated by two O atoms of the κ2- carboxylic group, two O atoms of the chelated κ2,κ1-
carboxylic group, one O atom of the nonchelated κ2,κ1- carboxylic group, two O atoms
of two κ1,κ1- carboxylic groups and two N atoms of the phenanthroline chelate molecule.
Therefore, the Nd atom adopts the coordination number 9. The bond lengths of the metal
coordination environment in 2Ln are presented in Table S3. Two symmetry-equivalent Nd
atoms are coupled into binuclear {Nd2(phen)2(OOCR)6} building blocks (Figure 4a) acting
as six connected nodes in the coordination framework. Importantly, the lanthanum-based 1
was obtained in conditions similar to 2Ln, including the addition of phenanthroline, despite
the metal salt precursor. Therefore, a lanthanide contraction leads not only to the decrease
in the metal coordination number from 10 (1) to 9 (2Ln), but also to the coordination of phen
instead of two water molecules and to the change in the structural type of the secondary
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building unit from infinite 1D chains (1) to separate binuclear carboxylate blocks (2Ln).
These blocks are interconnected by cyclohexane moieties, forming a three-dimensional
polymeric lattice (Figure 4b) with primitive cubic (pcu) topology (Figure 4c). As it was
found by the PLATON routine [46], the voids in 2Nd are represented by small isolated cages
with only 6% total solvent accessible volume. These cages are filled by partially occupied
guest DMF positions with 0.75DMF content per formula unit.
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Figure 4. Binuclear block {Nd2(phen)2(OOCR)6} in the structure of 2Nd (a) and view along c crystal-
lographic axis (b). O atoms are red, N atoms are blue, H atoms and guest molecules are not shown.
Topological representation of the coordination lattice in 2Nd (c). Binuclear block {Nd2(phen)2(OOCR)6}
is shown as a black node.

Compound 3 crystallizes in the trigonal symmetry with the R–3 space group. The
Nd(III) coordination environment and structure of the binuclear {Nd2(phen)2(OOCR)6}
carboxylate block (Figure 5a) are similar to those in 2Nd. However, the packing of such
building units is different, which leads to the helical snz topology (Figure 5c) of a coordina-
tion lattice, rarely occurring in MOFs [47,48]. The framework in 3 contains one-dimensional
channels running along c crystallographic axis (Figure 5b). These channels are paved by
phenanthroline molecules and are ca. 4 × 4 Å2 in size. The total solvent accessible volume
in 3 is more than in 2Nd and reaches 8%. The channels are fully occupied by guest DMF
and water molecules.
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a black node. Green arrows show a helical structure of trilateral channels in the net.
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2.3. Characterization and Thermal Properties

The crystal structure of 1 was found to be unstable after filtration. The PXRD pattern
of the filtered sample shown in Figure S9a demonstrates a significant decrease in its
crystallinity. The interpretation of chemical and physicochemical analyses performed for
this sample, which is denoted as 1′, is provided in pages 10–12 of the Supplementary
Information file.

Infrared spectra (Figure S11) of the samples 2Ln correspond well to their compo-
sitions firstly determined by the single-crystal XRD. The spectra of 2Ln contain typical
cyclohexane ring and DMF methyl group C(sp3)–H vibrations, DMF C=O vibrations and
COO-group antisymmetric and symmetric stretchings. A presence of weak coupled bands
at 3075–3060 cm–1 corresponding to the valence vibrations of C(sp2)–H bonds, as well
as strong bands at ca. 1583, 1534 and 850 cm–1, belonging to the phenanthroline oscil-
lations [49,50], prove the successful incorporation of the phen ligand into coordination
frameworks 2Ln instead of 1, fully consisting with their crystal structures. Elemental
CHN and thermogravimetric data (Figure 6) also confirm the chemical nature and guest
composition of the synthesized MOFs 2Ln. According to TGA, slow solvent loss occurs
in the range of 250–450 ◦C; such a high temperature of guest DMF and water release is
apparently attributed to their isolation into very narrow-windowed pores (see above).
Decomposition of the coordination frameworks in 2Ln occurs at 470–510 ◦C, according
to the temperatures of weight loss rate local maxima. Weights of final residues at 600 ◦C
exceed the calculated weights of lanthanide oxides (Table S4), which indicates a presence
of a considerable amount of carbon admixture in the thermolysis products of 2Ln, due to
the incomplete evaporation of organic moieties. Such thermal stability fits typical values
for the phenanthroline-coordinated carboxylate MOFs of early lanthanides [51–54].
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2.4. Luminescent Properties

As it was described in the introduction, a series of metal–organic frameworks with
the formulae [Ln2(phen)2(chdc)3]·0.5DMF (Ln3+ = Eu3+, Gd3+, Tb3+, Y3+), in which the
coordination lattice is isostructural to 2Ln, was reported by us previously. Highly effective
and tunable luminescence was revealed for such series. Since that, the investigation of
luminescent properties of 2Ln, especially for 2Sm containing a moderately emissive Sm3+

cation, has been of great interest. The luminescent measurements revealed no emission
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for 2Ce and 2Pr, possibly due to the strong paramagnetic quenching of the corresponding
cations. For 2Nd, a weak infrared emission with λem = 1102 nm was observed under
804 nm excitation (Figure S12). This emission band is attributed to the 4F3/2 → 4I11/2
transition in Nd3+ [55–57] and the excitation band might be attributed to the 4F9/2 →
4I11/2 transition [58,59] or to 4F5/2, 4H9/2 → 4I9/2 transitions [60], indicating no apparent
sensitization of Nd3+ luminescence by phenanthroline.

Solid-state luminescent properties of 2Sm were also investigated. The excitation spec-
trum is shown in Figure S13. The emission spectrum at λex = 340 nm (Figure 7a) contains
a wide several-moded band in the UV-violet region, apparently attributed to the phenan-
throline ligand-centered emission, and a series of strong bands at λem = 564 nm, 598 nm
and 646 nm, typical to the Sm3+-centered emission and corresponding to the series of 4G5/2
→ 6HJ (J = 5/2, 7/2, 9/2, respectively) transitions. The integral emission color of 2Sm at
λex = 340 nm is pinkish-red (Figure 7b), as is seen from the CIE 1931 chromaticity diagram.
Sm3+ is known to be a mild energy acceptor in photosensitization processes, compared to
Eu3+, representing the strongest emitter among Ln(III) cations. Therefore, the emission
of Sm3+ in its coordination complexes often competes to the intraligand emission of the
coordinated photoactive species. In different MOF cases, Sm3+ emission may be either
dominant [61–63] or almost silent [64–66], the latter indicating ineffective energy transfer
to the metal ion from organic antenna. Moreover, the emission intensities of both Sm3+ and
ligand components can be comparable to each other [67,68], which could unveil a route for a
pronounced color tuning in a simple single-lanthanide system, which is preferrable for real
applications, although there are some reported nice examples of effective emission color
tuning in Sm-MOFs by codoping with other lanthanides [64,69,70]. Since the emission of
2Sm belongs to the third of the types described above, and owing to the λex dependence of
emission color previously reported by us for close (Y/Eu/Tb)-phen-chdc systems [28], we
decided to further study the luminescence of 2Sm in a wide range of excitation wavelengths.

Inorganics 2022, 10, x FOR PEER REVIEW 8 of 14 
 

 

color tuning in Sm-MOFs by codoping with other lanthanides [64,69,70]. Since the emis-
sion of 2Sm belongs to the third of the types described above, and owing to the λex depend-
ence of emission color previously reported by us for close (Y/Eu/Tb)-phen-chdc systems 
[28], we decided to further study the luminescence of 2Sm in a wide range of excitation 
wavelengths.  

 
 

(a) (b) 

Figure 7. Emission spectra for 2Sm at different excitation wavelengths (a). CIE 1931 chromaticity 
diagram for 2Sm calculated from emission spectra (b). 

The luminescent spectra for 2Sm under varying λex are shown in Figure 7a. With an 
increase in the excitation wavelength from 340 nm to the higher wavelengths, a gradual 
red shift of phenanthroline emission band is observed, which may be due to the redistri-
bution of the vibrational states of such a large conjugated system. Due to moving the main 
maximum of wide-banded emission from ca. 370 nm (UV region) to ca. 430 nm (visible 
region), the overall increase in blue color contribution is observed, as indicated by chro-
maticity diagram (Figure 7b). Further increasing the excitation wavelength leads to the 
weakening of blue emission bands, giving almost perfect white light at λex = 400 nm with 
the corresponding (x,y) coordinates of (0.323,0.327). The correlated color temperature 
(CCT), which is calculated for this point to be 5970 K, and 5% color purity for the 480 nm 
blue characteristic wavelength, indicate an almost perfect daylight color suitable for the 
implementation in WLEDs. A further decrease in the excitation energy leads to the com-
plete vanishing of blue emission, while a relatively weak emission of Sm3+ is still retained 
even at λex = 480 nm, which further results in a gradual shift of the emission color to the 
yellow region upon blue light excitation. Such a complex nonlinear variation of 2Sm lumi-
nescence color is apparently attributed to the abovementioned competing between differ-
ent luminescence mechanisms, including ligand-centered emission of the coordinated 
phenanthroline and dipole–dipole energy transfer from phen antenna to the emissive Sm3+ 
center. Although there are several reported examples of single-metal samarium MOF 
white emitters [71–74], no excitation-dependent color tuning was reported for Sm(III)-
based carboxylate coordination compounds with any ligand containing 2,2′-bipyridyl 
cores, to the best of our knowledge. Therefore, 2Sm is an unusual example of a pronounced 
tuning of the emission color in a monometallic lanthanide-based MOF, which makes it 
promising for obtaining multicolored luminophores and optical data processing.  

3. Experimental 
3.1. Materials 

Trans-1,4-cyclohexanedicarboxylic acid (H2chdc, >97.0%) and 1,10-phenanthroline 
monohydrate (phen·H2O, >98.0%) were received from TCI. N,N-dimethylformamide 
(DMF, reagent grade) was received from Vekton. Cerium(III) nitrate hexahydrate 

Figure 7. Emission spectra for 2Sm at different excitation wavelengths (a). CIE 1931 chromaticity
diagram for 2Sm calculated from emission spectra (b).

The luminescent spectra for 2Sm under varying λex are shown in Figure 7a. With an
increase in the excitation wavelength from 340 nm to the higher wavelengths, a gradual
red shift of phenanthroline emission band is observed, which may be due to the redis-
tribution of the vibrational states of such a large conjugated system. Due to moving the
main maximum of wide-banded emission from ca. 370 nm (UV region) to ca. 430 nm
(visible region), the overall increase in blue color contribution is observed, as indicated by
chromaticity diagram (Figure 7b). Further increasing the excitation wavelength leads to
the weakening of blue emission bands, giving almost perfect white light at λex = 400 nm
with the corresponding (x,y) coordinates of (0.323,0.327). The correlated color tempera-
ture (CCT), which is calculated for this point to be 5970 K, and 5% color purity for the
480 nm blue characteristic wavelength, indicate an almost perfect daylight color suitable
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for the implementation in WLEDs. A further decrease in the excitation energy leads to
the complete vanishing of blue emission, while a relatively weak emission of Sm3+ is still
retained even at λex = 480 nm, which further results in a gradual shift of the emission color
to the yellow region upon blue light excitation. Such a complex nonlinear variation of 2Sm
luminescence color is apparently attributed to the abovementioned competing between
different luminescence mechanisms, including ligand-centered emission of the coordinated
phenanthroline and dipole–dipole energy transfer from phen antenna to the emissive Sm3+

center. Although there are several reported examples of single-metal samarium MOF white
emitters [71–74], no excitation-dependent color tuning was reported for Sm(III)-based
carboxylate coordination compounds with any ligand containing 2,2′-bipyridyl cores, to
the best of our knowledge. Therefore, 2Sm is an unusual example of a pronounced tuning
of the emission color in a monometallic lanthanide-based MOF, which makes it promising
for obtaining multicolored luminophores and optical data processing.

3. Experimental
3.1. Materials

Trans-1,4-cyclohexanedicarboxylic acid (H2chdc, >97.0%) and 1,10-phenanthroline
monohydrate (phen·H2O, >98.0%) were received from TCI. N,N-dimethylformamide (DMF,
reagent grade) was received from Vekton. Cerium(III) nitrate hexahydrate (Ce(NO3)3·6H2O,
99.5% REO) was received from Alfa Aesar. Lanthanide(III) chloride hydrates (LaCl3·7H2O,
high-purity grade; PrCl3·7H2O, high-purity grade; NdCl3·7H2O, high purity grade;
SmCl3·6H2O, reagent grade) were received from Novosibirsk Rare Metals Plant. All
reagents were used as received without further purification.

3.2. Instruments

IR spectra in KBr pellets were recorded in the range 4000−400 cm−1 on a Bruker Scim-
itar FTS 2000 spectrometer. Elemental analysis was conducted with a VarioMICROcube
analyzer. Powder X-ray diffraction (PXRD) analysis was performed at room temperature
on a Bruker D8 Advance diffractometer (Cu-Kα radiation, λ = 1.54178 Å). Thermogravi-
metric analysis was carried out using a Netzsch TG 209 F1 Iris instrument under Ar flow
(30 cm3·min−1) at a 10 K·min−1 heating rate. Photoluminescence spectra were recorded
with a spectrofluorometer Horiba Jobin Yvon Fluorolog 3 equipped with ozone-free Xe-
lamp 450W power, cooled photon detector R928/1860 PFR technologies with refrigerated
chamber PC177CE-010 and double-grating monochromators. The spectra were corrected
for source intensity and detector spectral response by standard correction curves.

3.3. Synthetic Methods

Synthesis of 1. Amounts of 55.0 mg (0.148 mmol) of LaCl3·7H2O, 30.0 mg (0.152 mmol)
of phen·H2O and 53.0 mg (0.308 mmol) of H2chdc were mixed in a glass vial and dissolved
in the mixture of 7.5 mL of DMF and 1.5 mL of water. Then, the obtained solution was
closed by a screw cap and heated at 80 ◦C for 2 days. The formed white precipitate
was filtered off, washed with DMF and dried in air. A single crystal suitable for SCXRD
was taken directly from the mother liquor before filtration. Yield: 33.5 mg (44%). IR
spectrum (KBr, cm–1) main bands: 3441 (m, br, νO–H); 2928 (m, vCsp3–H); 2857 (m, νCsp3–
H); 1674 (w, νCODMF); 1606, 1580 and 1551 (m, νCOOas); 1410 (m, νCOOs). Elemental
analysis data for the sample 1′ after the filtration of 1 and its storage (%), calculated for
La2(C3H7NO)1.5(H2O)0.5(C8H10O4)3: C, 37.7; H, 4.6; N, 2.3. Found: C, 37.9; H, 4.7; N, 2.5.
TG data: 12% weight loss at 280 ◦C. Calculated for 1.5DMF+0.5H2O: 13%.

Synthesis of 2Ce. Amounts of 43.0 mg (0.099 mmol) of Ce(NO3)3·6H2O, 20.0 mg
(0.101 mmol) of phen·H2O and 26.0 mg (0.151 mmol) of H2chdc were mixed in a glass
vial and dissolved in the mixture of 1.2 mL of DMF and 0.8 mL of water. Then, the
obtained solution was closed by a screw cap and heated at 80 ◦C for 2 days. The formed
yellow precipitate was filtered off, washed with DMF and dried in air. A single crystal
suitable for SCXRD was taken directly from the mother liquor before filtration. Yield:
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16.3 mg (27%). IR spectrum (KBr, cm–1) main bands: 3440 (w, br, νO–H); 3073 and 3059 (w,
νCsp2–H); 3012 and 2998 (w, νCsp2–H); 2934 (m, vCsp3–H); 2858 (m, νCsp3–H); 1685 (s,
νCODMF); 1586 (s, νCOOas); 1411 (s, νCOOs). Elemental analysis data (%), calculated for
[Ce2(C12H8N2)2(C8H10O4)3]·0.75C3H7NO·H2O: C, 49.3; H, 4.4; N, 5.4. Found: C, 49.4; H,
4.5; N, 5.6. TG data: 5% weight loss until 400 ◦C. Calculated for 0.75DMF+H2O: 6%.

Synthesis of 2Pr, 2Nd and 2Sm was carried out analogously to the synthesis of 2Ce,
except for changing the cerium nitrate to the corresponding amounts of PrCl3·7H2O,
NdCl3·7H2O or SmCl3·6H2O and reducing the reaction time to 20 h.

2Pr. Yield of greenish precipitate: 15.3 mg (26%). IR spectrum (KBr, cm–1) main
bands: 3433 (w, br, νO–H); 3072 and 3058 (w, νCsp2–H); 3009 and 2996 (w, νCsp2–H); 2929
(m, vCsp3–H); 2856 (m, νCsp3–H); 1685 (s, νCODMF); 1586 (s, νCOOas); 1410 (s, νCOOs).
Elemental analysis data (%), calculated for [Pr2(C12H8N2)2(C8H10O4)3]·0.75C3H7NO·H2O:
C, 49.2; H, 4.4; N, 5.3. Found: C, 49.1; H, 4.4; N, 5.4. TG data: 4.5% weight loss until 430 ◦C.
Calculated for 0.75DMF+H2O: 6%.

2Nd. Yield of pinkish-blue precipitate: 15.0 mg (25%). IR spectrum (KBr, cm–1) main
bands: 3429 (w, br, νO–H); 3074 and 3059 (w, νCsp2–H); 3011 and 2998 (w, νCsp2–H); 2929
(m, vCsp3–H); 2856 (m, νCsp3–H); 1685 (s, νCODMF); 1585 (s, νCOOas); 1410 (s, νCOOs). El-
emental analysis data (%), calculated for [Nd2(C12H8N2)2(C8H10O4)3]·0.75C3H7NO·0.5H2O:
C, 49.3; H, 4.3; N, 5.4. Found: C, 49.2; H, 4.4; N, 5.3. TG data: 4% weight loss until 440 ◦C.
Calculated for 0.75DMF+0.5H2O: 5%.

2Sm. Yield of white precipitate: 17.4 mg (29%). IR spectrum (KBr, cm–1) main bands:
3443 (w, br, νO–H); 3076 and 3060 (w, νCsp2–H); 3011 and 2998 (w, νCsp2–H); 2929 (m,
vCsp3–H); 2856 (m, νCsp3–H); 1685 (s, νCODMF); 1588 (s, νCOOas); 1413 (s, νCOOs).
Elemental analysis data (%), calculated for [Sm2(C12H8N2)2(C8H10O4)3]·0.75C3H7NO: C,
49.2; H, 4.2; N, 5.4. Found: C, 49.0; H, 4.3; N, 5.3. TG data: 4% weight loss until 450 ◦C.
Calculated for 0.75DMF: 4.5%.

Synthesis of 3. Amounts of 38.0 mg (0.101 mmol) of NdCl3·7H2O, 20.0 mg (0.101 mmol)
of phen·H2O and 34.5 mg (0.201 mmol) of H2chdc were mixed in a glass vial and dissolved
in 5.0 mL of DMF. Then, the obtained solution was closed by a screw cap and heated
at 110 ◦C for 4 h. For performing PXRD, the resulting white precipitate was filtered off,
washed by DMF and dried in air. Due to a weak diffraction from the obtained single
crystals, for performing SCXRD analysis, mother liquor was replaced by pure DMF and
then crystals of 3 were carefully stored in this form until synchrotron working trip. Yield:
less than 10%.

3.4. Single-Crystal X-ray Diffraction Details

Diffraction data for single crystals of 1 and 2Ln were collected on an automated Agilent
Xcalibur diffractometer equipped with an area AtlasS2 detector (graphite monochromator,
λ(MoKα) = 0.71073 Å). Integration, absorption correction and determination of unit cell
parameters were performed using the CrysAlisPro program package [75]. The structures
were solved by the dual-space algorithm (SHELXT [76]) and refined by the full-matrix
least-squares technique (SHELXL [77]) in the anisotropic approximation (except hydrogen
atoms). Positions of hydrogen atoms of organic ligands were calculated geometrically
and refined in the riding model. Diffraction data for single crystals of 3 were obtained
on the ‘Belok’ beamline [78,79] (λ = 0.745 Å) of the National Research Center ‘Kurchatov
Institute’ (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. The data
were indexed, integrated and scaled, and absorption correction was applied using the XDS
program package [80]. The crystallographic data and details of the structure refinements
are summarized in Tables S1 and S2.

4. Conclusions

To summarize, six new metal–organic frameworks based on early lanthanide(III)
cations and trans-1,4-cyclohexanrdicarboxylic acid (H2chdc) were synthesized and struc-
turally characterized. All the compounds possess three-dimensional coordination lattices.
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However, a lanthanide contraction appears to provide a significant composition differ-
ence between lanthanum-based [La2(H2O)4(chdc)3] with CN(La3+) = 10 and lanthanide-
based [Ln2(phen)2(chdc)3] frameworks with CN(Ln3+) = 9, further resulting in a change
in the main structural motif from one-dimensional metal–carboxylate chains to separate
binuclear carboxylate building units. A variation of synthetic conditions gave two topo-
logical isomers of the [Nd2(phen)2(chdc)3] coordination framework, bearing primitive
cubic pcu topology or rare hexagonal helical snz topologies. Luminescent measurements
revealed a strong and nonmonotonous tuning of luminescence color for the compound
[Sm2(phen)2(chdc)3]·0.75DMF, while excitation wavelength variated, with an emission
color change from pinkish red at λex = 340 nm to white at λex = 400 nm and then to yellow
at lower excitation energies. Such behavior represents a rare example of both a white-light
emitter and highly tunable luminophore based on a single lanthanide ion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10100163/s1, Table S1: Single-crystal XRD experiment
and refinement details for 1, 2Ce, 2Pr; Table S2: Single-crystal XRD experiment and refinement
details for 2Nd, 2Sm, 3; Figure S1: Experimental (black) and theoretical (red) PXRD patterns for 2Ce;
Figure S2: Experimental (black) and theoretical (red) PXRD patterns for 2Pr; Figure S3: Experimental
(black) and theoretical (red) PXRD patterns for 2Nd; Figure S4: Experimental (black) and theoretical
(red) PXRD patterns for 2Sm; Figure S5: PXRD patterns for 2Pr temperature- and time-screening
syntheses; Figure S6: PXRD patterns for 2Sm temperature- and time-screening syntheses; Figure S7:
Coordination modes of (k2,k1;k2,k1)-chdc ligand (a) and (k2;k2)-chdc ligand (b); Figure S8: Space-
filling representation of channels in the coordination framework of 1; Figure S9: Experimental (black)
PXRD pattern for 1′ and theoretical (red) one for 1 (a). View along c crystallographic axis in 1 (b);
Figure S10: TGA pattern and relative dm/dT curve for the sample 1′; Table S3: Selected bond lengths
in 2Ln and 3; Figure S11: Infrared spectra for 1′ and 2Ln; Table S4: Details on TG decomposition steps
of 1′ and 2Ln; Figure S12: Excitation (red) spectrum for 2Nd at λem = 1077 nm and emission (black)
spectrum for 2Nd at λex = 804 nm; Figure S13: Excitation spectrum for 2Sm at λem = 580 nm.
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