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Abstract: Cadmium (Cd) contamination in agricultural soils has caused extensive concern to re-
searchers. Biochar with iron-compound modifications could give rise to the synergistic effect for
Cd restriction. However, the related capture mechanism based on physicochemical properties is
unclear. In this study, first principles calculations are proposed to explore the adsorption ability
and potential mechanism of the ferric hydroxide modified graphene (Fe@G) for capturing CdCl2.
The simulation results show that the adsorption energy to CdCl2 could enhance to −1.60 eV when
Fe(OH)3 is introduced on graphene. Subsequently, analyses of electronic properties demonstrated
a significant electron transfer between Cd s-orbital and O p-orbital, thereby leading to strong ad-
sorption energy. This theoretical study not only identifies a powerful adsorption material for Cd
reduction in agricultural soils and reveals the capture mechanism of Fe@G for Cd but also provides a
foundation and strategy for Cd reduction in agricultural soils.

Keywords: iron-modified biochar; cadmium; first principles calculation; capture mechanism; density
functional theory

1. Introduction

With recent rapid developments and increased industrial emissions, cadmium (Cd)
contamination is becoming a serious concern in east and south Asia, especially in China,
India, and Thailand [1–4]. Here, until 2005, approximately 1.3 × 105 ha of agricultural soils
in China were reported to be contaminated by Cd [5]. It is well known that Cd is a non-
essential substance for plants; however, it is easily accumulated in agricultural crops [6–9].
For example, paddy rice can uptake Cd easily, and straw is the main accumulation region
for Cd. A wide number of rice straws have been reportedly polluted by Cd every year in
China [6,10]. In 2016, more than 10% of rice samples from rice markets exceeded the China
National Standard for food contamination of Cd (<0.2 mg kg−1) [11]. Furthermore, due to
the 30 year biological half-life of Cd, it has the potential to cause serious medical conditions
such as cancer and Itai-Itai disease [12–14]. Thus, it is necessary to reduce the availability
of Cd in agricultural crops and consequently to the human system.

To date, in situ metal stabilization has raised considerable concern due to its high
effect on reducing the bioavailability and toxicity of heavy metals in short periods [15–17].
Among them, biochar from pyrolysis with limited oxygen has an irregular aromatic struc-
ture, multi-layered accumulation forms, and unique physicochemical properties, which
make it a great candidate for soil amendments to inhibit Cd in soils [18–21]. For instance,
Luo et al. demonstrated that corncob biochar could significantly increase the total nitrogen
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and organic matter content of the soil while stabilizing the availability of arsenic (As)
and Cd in soil [22]. Furthermore, iron-based materials could reduce the efficiency of Cd
by changing the physicochemical property of Cd [23,24]. Compared with pure biochar
treatment, hybrid soil amendments of biochar and inorganic materials containing iron
are better for reducing the Cd contamination of agricultural soils [18,25,26]. Qiao et al.
reported that zero-valent iron (ZVI)-biochar could reduce Cd contamination in agricultural
soils effectively [27]. Yin et al. reported that Fe-modified biochar reduced the accumu-
lation of As and Cd in rice by reducing soil acidification [28]. However, the capture
mechanism of Fe-modified biochar on Cd physicochemical systems has rarely been re-
ported. Therefore, clarifying the capture mechanism of Fe-modified biochar on Cd is of
paramount importance.

In this study, graphene (G) was used as the substrate to emulate the biochar. Graphene
and its ferric hydroxide modification (Fe@G) were taken as the research objects to explore
the capture mechanism with CdCl2 by first principles calculations. First, the structural and
electronic property differences between G and Fe@G were checked. Then, the adsorption
ability of G and Fe@G with CdCl2 were identified. Moreover, inherent changes in electronic
properties and charge transferability were demonstrated. These findings show that there is
a significant charge transfer between Fe@G and CdCl2, which could be the main reason
that Fe@G enhances the reduction of Cd. The calculation results will help to explain the
capture mechanism of Fe-modified biochar and guide materials design for Cd reduction in
agricultural soils.

2. Results and Discussion

Firstly, the structural stability and electronic properties of graphene were considered
with modified ferric hydroxide (Fe(OH)3) (Figures 1 and S1). The optimization structures
of G and Fe@G were compared. There was a long distance from Fe(OH)3 to G, which meant
that a weak interaction existed between Fe(OH)3 and G (Figure 1a,b). Furthermore, the
electron localization function (ELF) diagram proved that although the electron property of
G changed with the Fe(OH)3 modification, there was no distinct electron exchange region
between Fe(OH)3 and G that would demonstrate that a physical adsorption effect exists
(Figure 1c,d). Meanwhile, these results implied that G would not have a negative influence
on Fe(OH)3 to adsorb CdCl2.
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To further explore the adsorption ability of CdCl2 on G and Fe@G, the bond length
(Cd-Cl), bond angle (Cl-Cd-Cl), and adsorption energy were considered. In previous
studies, the long bond length and the large bond angle could facilitate the decomposition
of the compound. Meanwhile, the weak adsorption energy could lead to the adsorption
being unstable [29–31]. Compared with the pure CdCl2 (179.56◦) and that adsorbed on
G (171.03◦), the CdCl2 showed the lowest bond angle (125.01◦) when adsorbed on Fe@G
(Figure 2a–c). Furthermore, in contrast to the pure CdCl2 and adsorbed on G, the Fe@G
possessed a longer bond length (2.95Å, Cd-Cl) near the Fe(OH)3, whereas it had a shorter
bond length (2.33Å, Cd-Cl) at the distance from Fe(OH)3. This was substantial evidence
that CdCl2 would not decompose easily on Fe@G. Moreover, adsorption energies of G
and Fe@G with CdCl2 were taken for comparison. According to the computation formula
of adsorption energy, the negative value implied a stronger restriction effect of CdCl2
adsorbed on substrates [32]. Due to the weak physisorption of G and CdCl2, G showed a
poor adsorption ability (−0.42 eV), while Fe@G showed more negative values (−1.60 eV)
when CdCl2 was adsorbed (Figure 2d). The above results demonstrated that with the
introduction of Fe(OH)3, the Fe@G showed a considerable effect in restricting the migration
of CdCl2.
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Figure 2. Schematic of pure CdCl2 (a), CdCl2 on G (b) and on Fe@G (c). (d) Adsorption energies of
CdCl2 on G and Fe@G.

Next, the electronic properties of CdCl2 on G and Fe@G were investigated to gain an
understanding of the inhibition mechanism of CdCl2 on G and Fe@G. Initially, the electron
charge density difference of CdCl2 was drawn on G and Fe@G to probe the redistribution of
charge. There was a clear charge depletion region between Cd and O atoms and a distinct
charge accumulation region between Fe and Cl atoms, which indicated that a significant
electron transfer occurred between the CdCl2 and Fe@G (Figure 3b,d). However, this
phenomenon was only expressed between the CdCl2 and Fe@G interface. The adsorption
configuration of CdCl2 on G was no evidence of an obvious charge transfer between Cd or
Cl and G, which may be the main reason for the weak adsorption ability of CdCl2 on G
(Figure 3a,c).
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The above results are also observed in the ELF diagram (Figure 4). The CdCl2 on G
configuration had no distinct electron exchange between the CdCl2 and G (Figure 4a). How-
ever, in contrast to G, the CdCl2 on Fe@G configuration had a greater electron redistribution
than the ELF diagram of pure Fe@G, where the localization degree of the electron for the
-OH group near the Cd atom was reduced (Figure 4b,d). This phenomenon confirmed that
CdCl2 had influenced the electronic properties of Fe(OH)3 in Fe@G, which also implied that
a significant charge exchange existed between Fe(OH)3 and CdCl2. Next, the Bader charge
analysis method was used to gain a deeper insight into the number of charges transferred
between substrates and CdCl2. Generally, more charges transferred expresses the higher
restriction ability of the substrates to the molecules. Compared to the pure CdCl2, the Cd
site of the CdCl2 on Fe@G configuration had an apparent charge transfer (0.141 e) that
was higher than the CdCl2 on G configuration (0.008 e) (Figure 4c). In addition, as shown
in Table S1, the two Cl atoms in the CdCl2 on Fe@G configuration also showed a charge
exchange that was 0.05 e and 0.1 e greater than that of a Cl atom in pure CdCl2. The reason
for the significant difference in charge number between the two Cl atoms was ascribed to
the different distances from Fe(OH)3. Meanwhile, the total charge number of CdCl2 in the
CdCl2 on Fe@G configuration showed a higher charge transfer than in other situations, and
the results were consistent with Figures 3 and 4.

The above data show that the formation of the Cd-O and Fe-Cl bonds benefitted
from charges transferred between CdCl2 and the sorbent. However, in-depth studies must
explore the reaction mechanism of CdCl2 adsorption on Fe@G. Thus, the total density of
states (DOS) and partial density of states (PDOS) of CdCl2 on G and Fe@G configurations
were investigated to gain a perspective on the interval states of energy and electron transfer
(Figure 5). Differing from the CdCl2 on G configuration (Figure 5a), there were prominent
energy shifts that could be observed in the DOS of the CdCl2 on Fe@G configuration,
which means that the electron transfer had occurred under the adsorption situation as
displayed in Figure 5b. Furthermore, the PDOS of the O and Cd atoms in the CdCl2 on
Fe@G configuration before and after adsorption were also considered. Due to the distinct
charge donation of the Cd atom, the s-orbital of Cd exhibited a dramatic energy upshift after
adsorption on Fe@G (Figure 5d). In contrast, the downshift of the p-orbital of O was evident,
which was attributed to the O gain electrons when Fe@G interacted with CdCl2. Meanwhile,
these phenomena were also present in the Fe s-orbital and Cl p-orbital of the CdCl2 on
Fe@G configuration (Figure S2). However, there was no significant energy shift between
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the C p-orbital and Cd s-orbital of the CdCl2 on the G configuration (Figure 5c), which was
consistent with the results of ELF, charge density difference, and Bader charge analysis.
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3. Materials and Methods

The first principles calculations were carried out using the simulation software Vienna
Ab initio Simulation Package (VASP) based on density functional theory (DFT) with the
projector augmented wave (PAW) method [33–35]. Exchange-correction interactions were
parameterized by the Perdew, Burke, and Ernzerhof (PBE) type, and DFT-D3 was used to
consider the van der Waals interaction [36,37]. The energy cutoff was set to 500 eV, and
convergence criteria for energy and force were set to 10−5 eV and 0.02 eV Å−1 per atom,
respectively. A vacuum layer with a thickness of 15 Å was employed to avoid interactions
between the adjacent periodic units. The k-point was meshed by the Monkhorst–Pack
method with a 3 × 3 × 1 grid for geometry optimizations and 11 × 11 × 1 grid for DOS
calculation [38,39]. The calculations were computed within the DFT + U formalism to
describe the localized d electrons, and the U values of Fe and Cd were set to 4 eV and 2 eV,
respectively [40,41]. The adsorption energy (Ea) formula was defined as

Ea = E(Cd-substrate) − (ECd + Esubstrate), (1)

where ECd, Esubstrate, and E(Cd-substrate) represent the total energy of the CdCl2, the substrates
of G or Fe@G, and the energy of the CdCl2 adsorption on the different substrates. The
differential charge density (∆ρ) that was used to describe the charge distribution for the
adsorption system is defined with the following formula [42]:

∆ρ = ρCd-substrate − ρsubstrate − ρCd, (2)

where ρCd-substrate, ρsubstrate, and ρCd represent the charge density of the CdCl2 adsorption
on the different substrates, the substrates of G or Fe@G, and the CdCl2. The electron
localization function (ELF) diagram was drawn by VESTA [43].

4. Conclusions

In summary, we have revealed the capture ability and mechanism of CdCl2 with
Fe(OH)3 modified graphene via first principles calculations. The Fe(OH)3 modified car-
bon did not have a negative influence on adsorption of CdCl2, and it could increase the
chemisorption effect when the Fe(OH)3 was introduced. This led to an adsorption energy
improvement from −0.42 eV (G) to −1.60 eV. The adsorption behavior of Fe@G would then
result in a large change in bond length (Cd-Cl) and bond angle (Cl-Cd-Cl) when CdCl2
was adsorbed onto Fe@G. Furthermore, the electron charge density difference, ELF, and
Bader charge analysis were used to confirm the charge transfer capacity. The Bader charge
analysis displayed a 0.141 e charge transfer between Cd and Fe@G, which showed a greater
amelioration over the CdCl2 on G configuration. In addition, the electron transfer process
was revealed by DOS and PDOS analysis. The PDOS proved that the Cd s-orbital and
the O p-orbital exhibited a dramatic energy shift when the Fe@G interacted with CdCl2,
which provided powerful evidence for the capture mechanism of CdCl2 with Fe(OH)3
modified carbon. This study identified a powerful adsorption material for Cd reduction in
agricultural soils and revealed the capture mechanism of Fe@G for Cd addition, showing
potential as a strategy for Cd reduction in agricultural soils.
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//www.mdpi.com/article/10.3390/inorganics10100150/s1, Figure S1: ELF diagram of the top view
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