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Abstract: Recent studies in development of near-infrared luminophores focus on overcoming their
disadvantages such as low quantum efficiency, limited emission power, and broad emission spectra.
Rare earth (RE) elements are promising compounds in this respect as they offer a unique set of optical
properties that provide narrow emission spectra and large Stokes shifts. This work reports the results
of synthesis and characterization of new anisometric complexes of lanthanide(III) tris(b-diketonates)
and 1,10-phenanthroline. These complexes possess light emitting-properties in the near-infrared
range. Due to their structural features, these complexes allow production of homogeneous films by
spin coating. These films are transparent in the visible and near-infrared ranges (transmission up
to 99%). This paper demonstrates advantages of Yb(III), Er(III), and Nd(III) complexes as potential
components of highly efficient light-transforming NIR coatings.

Keywords: lanthanide complexes; NIR luminescence; light-transforming coatings

1. Introduction

Infrared radiation (IR) attracts the sustained attention of scientists due to growing
opportunities for its practical applications [1–6]. Most of these applications rely on the
results of research in physics, chemistry, pharmacy, medicine, cosmetics, food sciences, and
agriculture [1]. Various IR light sources are represented by tungsten halogen lamps, Globars,
and light-emitting diodes with luminophore conversion (PC light emitting diodes) [7].
Selection of a proper IR luminophore depends primarily on its emission wavelength, full
width at half maximum (FWHM), efficiency, service life, and thermal stability. Today,
PC LEDs are popular near-infrared (NIR) light sources that are used as components of
remote control devices, automobile sensors, traffic enforcement cameras, ocular scanners,
spectrometers, optic fiber devices, and biological analysis instruments [8–18]. Near-infrared
PC LEDs demonstrate a longer service life of up to 100,000 h. They are cost-effective devices
due to their small size [7].

Recent research activities in development of near-infrared luminophores focus on
overcoming their disadvantages such as low quantum efficiency, limited emission power,
and broad emission spectra [19–22]. Rare earth (RE) elements make a substantial contribu-
tion to solving these problems because they offer a unique set of optical properties such
as narrow emission spectra and large Stokes shifts [23]. With the exception of lanthanum
and lutetium, Ln3+ ions generate stable long-life f -f -emissions in response to a direct pho-
toexcitation within absorption wavelengths of metals. The advantages of lanthanide com-
plexes as components of optoelectronic devices are their narrow emission bands and broad
light color options offered by lanthanide ions: Tm(III)—blue, Tb(III)—green, Eu(III)—red,
Dy(III)—yellow, Sm(III)—orange, Nd(III), Er(III) and Yb(III)—infrared. By combining these
complexes with various ions, we can generate emission of virtually any color such as a
white color emission. However, molar absorption coefficients of inorganic Ln3+ compounds

Inorganics 2022, 10, 9. https://doi.org/10.3390/inorganics10010009 https://www.mdpi.com/journal/inorganics

https://doi.org/10.3390/inorganics10010009
https://doi.org/10.3390/inorganics10010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com
https://orcid.org/0000-0001-6697-1473
https://doi.org/10.3390/inorganics10010009
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com/article/10.3390/inorganics10010009?type=check_update&version=1


Inorganics 2022, 10, 9 2 of 11

are usually very small (ε = 0.01–10 L/(mol × cm)). They are limited by parity-forbidden
f -f -transitions [24]. Compounds allowing one to overcome these limitations are organic
ligands with absorbing chromophore groups. These groups transmit energy to the emis-
sion level of a metal ion (an antenna effect) [25]. They should satisfy the following two
criteria. Firstly, a suitable chromophore should be a good sensibilizer of Ln3+ ions [17].
Secondly, the resulting compounds should be thermally and chemically stable and possess
good mechanical properties for possible practical applications in molecular electronics [26].
Ligands represented by β-diketones possess strong broadband absorption properties. They
are among the most studied chromophores for neutral tris(β-diketonate) [27] or anionic
tetrakis(β-diketonate) Ln3+ complexes [28]. These compounds perform an efficient transfer
of energy to the Eu3+ and Tb3+ ions and generate a relatively high first excited state (5D0
for Eu3+ is 17,286 cm−1 and 5D4 for Tb3+ is 20,545 cm−1, respectively) [29,30]. On the
other hand, less detailed studies are reported for complexes of lanthanide β-diketonates
generating emissions in the near-infrared range [31,32]. Due to their monochromatic NIR
luminescence properties, such substances exhibit potential for applications in telecommu-
nications, biology, and laser technologies [24,33–35].

In addition to these peculiar features, lanthanide materials demonstrate less intensive
NIR light scattering in biological systems. The emission band of such materials is, therefore,
within the biological transparency window (λ = 700–1100 nm), so they are particularly at-
tractive for generation of detailed images of thick tissues with time synchronization [36–39].
Thus, synthesis and characterization of new rare earth coordination compounds with IR
luminescence properties represent an urgent problem of modern science.

This work reports the results of synthesis and characterization of new anisometric
complexes of lanthanide(III) tris(b-diketonates) and 1,10-phenanthroline that possess light
emitting-properties in the near-infrared range.

2. Results and Discussion

Ligands represented by β-diketonates possess strong broadband absorption properties.
Such ligands are among the most studied chromophores for the synthesized neutral tris-β-
diketonate [27] or anionic tetrakis-β-diketonate Ln3+-complexes [28]. Efficient sensitization
of visible light luminescence is reported for Eu3+ and Tb3+ ions with relatively high first
excited states (5D0 for Eu3+ is 17,286 cm−1 and 5D4 for Tb3+ is 20,545 cm−1) [29,30,40]. There
is, however, an unresolved problem of synthesis of a suitable β-diketonate ligand with a
relatively lower triplet energy level that matches the first excited state of NIR-luminescent
Ln3+ ions [41,42] (4F3/2 for Nd3+ is 11,257 cm−1; 2F5/2 for Yb3+ is 10,400 cm−1, and 4I13/2
for Er3+ is 6610 cm−1). According to the literature data, ligands with the triplet energy
levels from 18,000 cm−1 to 21,000 cm−1 are used to synthesize β-diketonate lanthanide
complexes with the NIR-emission properties (Table 1). A possible approach to intensifying
luminescence in the near-infrared range and minimizing a non-radiative deactivation is to
use β-diketonate ligands that contain fluorine [43,44]. Another approach is to reduce the
triplet energy level of a ligand by adding conjugated bonds [45].

Previously, the authors synthesized a large number of β-diketones with various sub-
stituents that allow alteration of the triplet level of a ligand (Table 1). In the earlier works,
however, these β-diketones were used to synthesize lanthanide(III) complexes, which pos-
sess visible light emission properties. The triplet level of a ligand was, therefore, selected
to efficiently sensitize the visible light luminescence of the Eu3+ Sm 3+, or Tb3+ ions with
relatively high first excited states [46,47]. In this work, the structures of β-diketones were
selected according to the following criteria: (a) matching the triplet level energy values of
similar compounds, which are known to be used for coordinating NIR-luminescent Ln3+

ions; (b) demonstrating good solubility in organic solvents; (c) possessing an amorphous
structure provided by long hydrocarbon or cyclohexane substituents that allows fabrication
of homogeneous and defectless films. Compounds that satisfy these criteria can be potential
components of film coatings for PC light-emitting diodes.
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Table 1. Structures and triplet levels of some β-diketones.

# Structure of β-Diketone 3T1, cm−1 Reference

1
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19,200 [54]

We synthesized complexes of lanthanide (III) tris(β-diketonates) and 1,10-phenanthroline.
The molecular structure of these complexes has an anisometric geometry (Figure 1) [55–57].
Original β-diketones and 1,10-phenanthroline were used as the ligands. Their triplet levels
perform efficient energy transfer to the emitting levels of the Ln3+ ions. The composition
and structure of these complexes were confirmed by elemental analysis and mass spectrom-
etry. The synthesized compounds are amorphous powders due to their anisotropy and
long hydrocarbon substituents at molecular edges. The anisometric molecular structure
of such complexes was confirmed by previous quantum chemistry calculations and X-ray
diffraction characterization performed by the authors for similar Eu(III) complexes. These
powders demonstrate good solubility in nonpolar or low-polar organic solvents.
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Figure 1. Synthesis of tris(β-diketonate) lanthanide(III) complexes with 1,10-phenanthroline.

The solutions of these complexes in toluene (1 × 10–3 mol/L) were used to fabricate
films with the thickness of 100 ± 5 nm by spin coating [51]. We characterized optical
properties of both solutions and films that contained La(III) complexes. The maximums
of the UV/VIS absorption spectra obtained for the Ln(III) complexes dissolved in hexane
(c = 1 × 10−5 mol/L, Figure 2a) are similar to the maximums observed for the individual
ligands. Due to their structural features, these complexes allow production of homogeneous
films by the spin coating deposition from their solutions. These films are transparent in the
visible and near-infrared ranges (light transmission up to 99%) (Figure 2b).



Inorganics 2022, 10, 9 5 of 11Inorganics 2022, 10, x FOR PEER REVIEW 5 of 11 
 

 

  

(a) (b) 

Figure 2. (a) Absorption spectra of lanthanide(III) complexes and ligands dissolved in hexane with 

the concentration of 10−5 mol/L; (b) transmittance spectra of the films containing lanthanide(III) com-

plexes. 

To determine the energy levels of the ligand environment, we studied the lumines-

cent properties of the gadolinium Gd(III) complexes that were incorporated into thin films 

by spin coating at the temperature of liquid nitrogen (Т = 77 K) (Figure 3). A Gd3+ ion does 

not emit light because its first excited 6P7/2-level (32,000 cm−1) is above the lower triplet 

level of the majority of known organic ligands. According to the literature data, most β-

diketonate Gd(III) complexes exhibit only phosphorescence at 77 K due to their efficient 

intercombinational conversion [58]. The central ion does not exert a substantial impact on 

the excited energy levels of the ligands. Similar energy levels can be, therefore, observed 

for other Ln(III) ions. 

 

Figure 3. Luminescence spectrum of the films with the Gd(III) complexes at Т = 77 K. 

The experimental phosphorescence spectrum of Gd(III) allowed attainment of the 

value of the β-diketonate triplet level equal to approximately 20,200 cm−1. The triplet levels 

of the ligands and the emission transitions of the lanthanide ions are summarized in the 

energy level diagram that represents the energy transfer processes occurring in the syn-

thesized complexes. This diagram is shown in Figure 4. 

Figure 2. (a) Absorption spectra of lanthanide(III) complexes and ligands dissolved in hexane with the
concentration of 10−5 mol/L; (b) transmittance spectra of the films containing lanthanide(III) complexes.

To determine the energy levels of the ligand environment, we studied the luminescent
properties of the gadolinium Gd(III) complexes that were incorporated into thin films by
spin coating at the temperature of liquid nitrogen (T = 77 K) (Figure 3). A Gd3+ ion does
not emit light because its first excited 6P7/2-level (32,000 cm−1) is above the lower triplet
level of the majority of known organic ligands. According to the literature data, most
β-diketonate Gd(III) complexes exhibit only phosphorescence at 77 K due to their efficient
intercombinational conversion [58]. The central ion does not exert a substantial impact on
the excited energy levels of the ligands. Similar energy levels can be, therefore, observed
for other Ln(III) ions.
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Figure 3. Luminescence spectrum of the films with the Gd(III) complexes at T = 77 K.

The experimental phosphorescence spectrum of Gd(III) allowed attainment of the
value of the β-diketonate triplet level equal to approximately 20,200 cm−1. The triplet
levels of the ligands and the emission transitions of the lanthanide ions are summarized
in the energy level diagram that represents the energy transfer processes occurring in the
synthesized complexes. This diagram is shown in Figure 4.



Inorganics 2022, 10, 9 6 of 11

1 
 

 
Figure 4. Energy levels of the synthesized complexes.

We can see in this diagram that the triplet energy levels of the β-diketone and the
Lewis base are slightly higher than the resonance levels of virtually all the lanthanide ions
discussed in this work. Such properties should favor the transfer of energy (an antenna
effect) and efficient luminescence in the near-infrared range [59,60].

To evaluate applicability of the synthesized complexes to producing conversion coat-
ings for PC-LEDs, we obtained the luminescence spectra of the films by using a 408 nm
blue light emitting diode as the source of the excitation light. The emission spectra of the
Sm(III) complexes obtained at room temperature show the characteristic samarium ion
transition bands at the wavelengths of 800–1400 nm. The observed high-resolution peaks
represent the transitions from the 4G5/2 level of the excited state to the 6Hj sub-levels of the
main multiplet. The maximum intensities of the characteristic peaks at the wavelengths
of 887, 909, 927, 952, and 1036 nm correspond to the transitions from the 4G5/2 level of
the excited state to the 6FJ sub-levels of the main multiplet (J = 1/2, 3/2, 5/2, 7/2, and
9/2) (Figure 5a). The peaks at the wavelengths of 1130, 1210, and 1300 nm correspond to
the second harmonic of the transitions from the 4G5/2 level of the excited state to the 6HJ
sub-levels of the main multiplet (J = 5/2, 7/2, 9/2).

The emission spectrum of the Yb(III) complex contains several intensive lines at 976 nm
with the lifetime τ = 11 µs, which correspond to the Stark splitting of the 2F5/2→2F7/2
transition (Figure 5b) and fit the middle of the first biological transparency window
(λ = 700–1100 nm). In combination with a two-photon excitation technique, such com-
pounds of Yb(III) become attractive substances for biological research techniques [61].
The Nd(III) complex shows three luminescence peaks that correspond to the 4F3/2→4IJ
transitions (J = 9/2, 11/2, 13/2) with the lifetime τ = 9 µs (Figure 5c).

The luminescence spectra of the Er(III) complexes contain a single line corresponding
to the 4I13/2→4I15/2 transition at 1530 nm in the near-infrared range of the spectrum with the
lifetime τ = 3 µs (Figure 5d) that can be used in laser technologies and telecommunications.
The Pr(III) complex demonstrates a relatively low characteristic peak corresponding to the
1D2→3H4 transition at 1060 nm (Figure 5e). The Ho(III) complex exhibits a noise-level IR
luminescence. The spectra reveal that the luminescence intensity of the films that contain
the Yb(III) и Nd(III) complexes is almost two times higher than that of the films containing
the Er(III) and Sm(III) compounds and six times higher than the luminescence intensity
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of the films containing the Pr(III) complex. Therefore, the most intensive luminescence is
demonstrated by the compounds that contain Yb(III), Er(III), or Nd(III) ions.

This work, therefore, demonstrates a potential of using Yb(III), Er(III) and Nd(III)
complexes as components of highly efficient light-transforming NIR coatings for PC light
emitting diodes.
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3. Materials and Methods
3.1. Materials

Praseodymium(III) chloride hexahydrate (99.9%), neodymium(III) chloride hexahy-
drate (99.9%), samarium(III) chloride hexahydrate (99.99%), gadolinium(III) chloride hex-
ahydrate (99.999%), holmium(III) chloride hexahydrate (99.9%), erbium(III) chloride hex-
ahydrate (99.9%), ytterbium(III) chloride hexahydrate (99.9%), and 1,10-phenanthroline
(99%) were purchased from Sigma-Aldrich.

3.2. Characterization Techniques

CHN elemental microanalysis was performed with a Delta V Plus isotope mass spec-
trometer (Thermo Fisher Scientific, Braunschweig, Germany). X-ray fluorescence analysis
was performed with a Bruker M4 «Tornado» spectrometer. The mass spectra data were
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obtained by a Bruker Esquire LC-Ion Trap Mass Spectrometer. Absorption and transmis-
sion spectra were measured by a Perkin–Elmer Lambda-35 UV/Vis spectrophotometer.
Luminescence spectra of the produced films were recorded by an Ocean optics NIR Quest
512 spectrofluorimeter (Bridge Tronic Global Inc, Costa Mesa, CA, USA). The excitation
wavelength was set to 408 nm.

3.3. Synthesis of Complexes

The 1-[4-(4-propylcyclohexyl)phenyl]-octane-1,3-dione ligand was synthesized accord-
ing to the modified procedures reported in the literature [52,62].

Ln(III) complexes [63] were synthesized according to the following general procedure:
ethanol solutions of LnCl3 × 6H2O (Ln = Pr, Nd, Sm, Gd, Ho, Er or Yb) (0.1 mmol)
were added dropwise to a stirred hot ethanol solution that contained β-diketone (1-[4-(4-
propylcyclohexyl)phenyl]-octane-1,3-dione) (0.3 mmol), 1,10-Phenanthroline (0.1 mmol),
and KOH (0.35 mmol). The resulting light-yellow precipitates were filtered from their
solutions, washed by hot alcohol, and dried under vacuum. The dry product was dissolved
in toluene, filtered again, and dried under vacuum (Table 2).

Table 2. The results of the analysis of synthesized Ln(III) complexes.

Lanthanide Ion Yield, %

Elemental

ESI-MS (m/z)C, % H, % N, % O, % Ln, %

Calcd. Found Calcd. Found Calcd. Found Calcd. Found Calcd. Found

Pr 75 72.30 72.01 8.01 8.17 2.08 2.05 7.13 7.22 10.47 10.45 1368 (M + Na)+

Nd 73 72.12 71.98 7.99 8.06 2.08 2.05 7.12 7.26 10.69 10.81 1370 (M + Na)+

Sm 78 71.79 71.59 7.96 8.12 2.07 2.04 7.08 7.23 11.10 11.47 1377 (M + Na)+

Gd 74 71.43 71.25 7.92 8.15 2.06 2.04 7.05 7.27 11.55 11.63 1385 (M + Na)+

Ho 71 71.03 70.87 7.87 8.11 2.05 2.02 7.01 7.42 12.04 12.16 1391 (M + Na)+

Er 72 70.91 70.78 7.86 8.05 2.04 2.02 7.00 7.22 12.19 12.03 1394 (M + Na)+

Yb 73 70.61 70.48 7.83 8.02 2.03 2.01 6.97 7.16 12.56 12.41 1399 (M + Na)+

4. Conclusions

This paper reports synthesis of new anisotropic lanthanide(III) complexes that possess
near-infrared luminescence properties. Due to their structural features, these complexes can
be incorporated into homogeneous films by spin coating deposition from their solutions.
The resulting films are transparent in the visible and near-infrared ranges (transmission
up to 99%). The synthesized Yb(III), Er(III) and Nd(III) compounds demonstrate efficient
luminescence in the near-infrared range. By varying lanthanide(III) ions, we can control
emission wavelengths of the produced films. Thus, this work demonstrates a possibility to
use Yb(III), Er(III) and Nd(III) complexes for making highly efficient light-transforming
NIR coatings for PC light emitting diodes. The emission bandwidth of the Yb(III) and
Nd(III) complexes is within the biological transparency window (λ = 700–1100 nm). There-
fore, these complexes are attractive for biomedical applications such as performing a
comprehensive study of thick tissues of the majority of living organisms. In its turn, the
luminescence emission of the Er(III) compounds fits the third transparency window of
optic fibers (λ ≈ 1550 nm) and highlights potential applications of such compounds in the
telecommunications industry.
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