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Abstract: In this letter, we report a mid-wavelength infrared (MWIR) planar photodetector based on
InAs/InAs1−xSbx type-II superlattices (T2SLs) that has a cut-off wavelength of 4.3 µm at 77 K. The
superlattice for the device was grown by molecular beam epitaxy while the planar device structure
was achieved by Zinc diffusion process in a metal–organic chemical vapor deposition reactor. At 77 K,
the peak responsivity and the corresponding quantum efficiency had the value of 1.42 A/W and
48% respectively at 3.7 µm under −20 mV for the MWIR planar photodetector. At 77 K, the MWIR
planar photodetector exhibits a dark current density of 2.0 × 10−5 A/cm2 and the R0A value of
~3.0 × 102 Ω·cm2 under −20 mV, which yielded a specific detectivity of 4.0 × 1011 cm·Hz1/2/W
at 3.7 µm. At 150 K, the planar device showed a dark current density of 6.4 × 10−5 A/cm2 and
a quantum efficiency of 49% at ~3.7 µm under −20 mV, which yielded a specific detectivity of
2.0 × 1011 cm·Hz1/2/W.

Keywords: mid-wavelength infrared photodetector; planar structure; Zinc diffusion; Antimony-based
superlattice

1. Introduction

There is an increasing need for the MWIR photodetectors and focal plane arrays (FPAs)
with high sensitivity for numerous applications spanning from medicine, astronomy to
defense systems [1–7].

The state-of-the-art commercial MWIR photodetectors utilize an HgCdTe material
system while it suffers from several limitations such as low yields, limited array size,
high cost and material fragility [8,9]. In recent years, the strain-balanced Antimony-based
superlattices such as InAs/InAsSb T2SLs have received a lot of attention and experienced
vigorous development, since the material system has wide detection wavelengths, which
makes it a strong candidate for infrared photodetectors [10–14].

Up to now, most Antimony-based superlattices photodetectors are based on fully
etched mesa-isolated structure. In the processing of such a nonplanarity structure, the
passivation via depositing of a dielectric coating on the mesa sidewalls is needed to sup-
press the surface leakage currents [15–18]. Small bandgaps semiconductors are especially
sensitive to the surface leakage currents. Thus, the passivation process in the fabrication
of high sensitivity mesa-isolated MWIR infrared photodetectors is essential to reduce the
dark currents. However, the need for the deep mesa etch requirement to isolate the pixels
and subsequently, passivation processing is one of the major limiting factors to develop
the small-pixel-pitch focal plane arrays (FPAs) [19]. The surface leakage currents reduc-
tion is more difficult when the FPA pixel pitch is of several micrometers where the large
perimeter/area ratio leads to a large leakage current [20,21].

One solution to this issue is using novel planar designs without the mesa-sidewalls
instead of a mesa-isolated structure. Since the junction interface is buried in the planar struc-
ture, there is less requirement for surface passivation to reduce the leakage currents. Planar
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photodiodes can further reduce manufacturing costs, through simpler device processing
and higher yield compared to a mesa etched device. Two methods can be used to fabricate
the planar photodiodes: diffusion and ion-implantation. Direct ion-implantation on the sur-
face of T2SL material can be destructive to T2SL structure. Therefore, the use of a diffusion
process to introduce the selective area doping is more suitable, which is also less damaging
to the T2SL structure and less expensive compared to ion-implantation. Although the
planar photodetectors based on HgCdTe, InP, InAsSb, InSb and GeSn bulk materials have
been reported before, few T2SLs-based planar devices have been demonstrated [22–29].
These T2SLs-based planar photodetectors showed promising performance results but still
need to be further improved [30–32]. In this letter, we report a mid-wavelength infrared
planar photodetector based on InAs/InAs1−xSbx type-II superlattice using Zinc diffusion.
The active layer for the photodetector was first grown by a Solid Source Molecular Beam
Epitaxy reactor to achieve high quality material. Then, the samples were sent to a EMCORE
metal–organic chemical vapor deposition (MOCVD) reactor to perform Zn diffusion.

2. Materials and Methods

The material was grown on a 2-inch Te-doped n-type (1017 cm−3) GaSb (100) substrate
at 385 ◦C using an Intevac Modular Gen II solid source MBE system. The growth started
with a 200 nm GaSb buffer layer to stabilize the sample surface after deoxidation. Then, the
active layer consisting of 2 µm unintentional doped InAs/InAs1−xSbx T2SL was grown.
The superlattice design for the active layer in this work is 10/2 MLs InAs/InAs0.5Sb0.5
which has MWIR detection ability. It is also practical to form a p-n junction using Zn
diffusion in InAs/InAs0.5Sb0.5 T2SL since the previous study showed that the InAs/InAsSb
T2SLs are unintentionally doped n-type and the Zn is an efficient p-type dopant [33,34].
The intrinsic concentration of the as-grown unintentional doped InAs/InAsSb T2SL was
evaluated to be ~5–9 × 1015 cm−3 by the Hall measurement using a InAs/InAsSb T2SL
sample with the same structure grown on the GaAs substrate.

After MBE growth and material quality assessment, the sample was fabricated into the
planar photodetectors. Figure 1a presents schematic diagram of the planar photodetector
fabrication processes. At first, an 800 nm-thick silicon oxide (SiO2) layer was deposited
on the sample surface via plasma enhanced chemical vapor deposition (PECVD) using a
plasma of SiH4 and N2O gases for the diffusion mask. The diffusion window was then
patterned using standard UV photolithography followed by dry etching of SiO2 layer
using CF4: Ar+ plasma in an electron cyclotron resonance-reactive ion etching (ECR-RIE)
system. Afterwards, the Zn diffusion process was carried out in an EMCORE metal–organic
chemical vapor deposition (MOCVD) reactor at the diffusion temperature of 430 ◦C and
the fixed reactor pressure of 60 Torr. Diethylzinc (DEZn) was used as the Zn source along
with hydrogen as a carrier gas. The molar flow rate of the diethylzinc was maintained
at 15 µmol/min, with a fixed diffusion time of 15 min. During the diffusion, AsH3 was
used to prevent As desorption from the top T2SL layer. The sample was characterized
by high resolution x-ray diffraction (HR-XRD) to investigate and compare the material
quality before and after the Zn diffusion, as shown in Figure 1b. The two XRD scan
curves show no main difference, indicating there was no observable material quality
degradation after Zn diffusion. The satellite peaks in the HR-XRD scan show the overall
periods of the active region is 37 Å, which is in good agreement with the theoretical
designs. The lattice mismatch between the active layer and the GaSb substrate is ~1800 ppm.
Afterwards, Ti/Au (400/1500 Å) was deposited using an electron beam evaporator for
metal contacts. A standard mesa-isolated photodiode was also processed from the same
wafer to have a meaningful comparison. The sample was first Zn-diffused to form a p-n
junction in the MOCVD reactor at the same condition with the planar device. After that, the
sample was fabricated into the mesa-isolated photodetectors via our standard mesa-isolated
photodetector processing steps and the processing details can be found elsewhere [12].
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shown in Figure 2b. Although the combination of dry etch and wet etch was used for mesa 
isolation to remove the residue and regenerate a smoother sidewall, the surface recon-
struction and/or surface states exist on the mesa sidewalls due to the abrupt termination 
of the crystal lattice, which can lead to the surface leakage currents [35]. In the planer 
photodetector, no mesa sidewalls are observed since the T2SL sample was not etched 
which gives more stability towards any degradation as the superlattice layers are not ex-
posed. 

Figure 1. (a) Schematic diagram of fabrication processes for the Zn-diffused planar photodetector
based on InAs/InAsSb T2SL. (b) HR-XRD scan curve of the as-grown (black) and Zn-diffused (red)
InAs/InAsSb T2SL on GaSb substrate.

3. Results

After fabrication, the T2SL planar photodetectors were characterized by the scanning
electron microscope (SEM) and compared to the conventional fully etched mesa-isolated
T2SL photodetectors. Figure 2a,b shows the difference of the planar device and mesa-
isolated device via the SEM images. Both photodetectors are circular with diameters of
300 µm. The mesa sidewall for the fully etched mesa-isolated photodetector was marked,
as shown in Figure 2b. Although the combination of dry etch and wet etch was used for
mesa isolation to remove the residue and regenerate a smoother sidewall, the surface recon-
struction and/or surface states exist on the mesa sidewalls due to the abrupt termination
of the crystal lattice, which can lead to the surface leakage currents [35]. In the planer
photodetector, no mesa sidewalls are observed since the T2SL sample was not etched which
gives more stability towards any degradation as the superlattice layers are not exposed.

Both the processed planar and mesa-isolated samples were then wire-bonded onto
a 68-pin leadless chip carrier (LCC) and loaded into a cryostat for electrical and optical
performance characterizations. The electrical performance was first measured by the semi-
conductor parameter analyzer. Figure 3a shows the current-voltage (I–V) characteristics
for the MWIR planar photodetector with a diameter of 320 µm at a different temperature
from 77 K to 300 K. Under an applied bias voltage of −20 mV, the planar device shows a
dark current density of 2.0 × 10−5 A/cm2 at 77 K and 6.4 × 10−5 A/cm2 at 150 K, corre-
sponding to the differential-resistance-area product value of ~3.0 × 102 Ω·cm2 at 77 K and
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~60.2 Ω·cm2 at 150 K, respectively. The Arrhenius plot of the differential resistance area
product at zero bias (R0A) with respect to the inverse of temperature is shown in Figure 3b.
This indicates that the dark current is dominated by different mechanisms in different
temperature regimes [36]. From 77 to 140 K, the activation energy of 27 meV indicates that
the device performance is limited by the temperature-insensitive defect-related leakage.
From 140 to 200 K, the dominant mechanism starts to become generation recombination
with an activation energy of 100 meV. Above 200 K, the planar detector is diffusion limited
with an activation energy of 300 meV which is very close to the expected bandgap of the
MWIR InAs/InAs1−xSbx superlattices at 200 K. As shown in Figure 3c, the dark current
density of the planar photodetector at 150 K is more than two orders of magnitude lower
than the mesa-isolated device, which has a dark current density of 0.024 A/cm2 under
−20 mV. The improvement in dark current density for the MWIR planar device is attributed
to the effective suppression of recombination mechanism at the sidewall surface, which can
reduce the surface leakage currents.

Photonics 2022, 9, x FOR PEER REVIEW 4 of 9 
 

 

 

Figure 2. (a) Scanning electron microscope (SEM) image of the planar photodetectors. (b) SEM im-

age of the conventional fully etched mesa-isolated T2SL photodetector where the mesa sidewall was 

marked. 

Both the processed planar and mesa-isolated samples were then wire-bonded onto a 

68-pin leadless chip carrier (LCC) and loaded into a cryostat for electrical and optical per-

formance characterizations. The electrical performance was first measured by the semi-

conductor parameter analyzer. Figure 3a shows the current-voltage (I–V) characteristics 

for the MWIR planar photodetector with a diameter of 320 μm at a different temperature 

from 77 K to 300 K. Under an applied bias voltage of −20 mV, the planar device shows a 

dark current density of 2.0 × 10−5 A/cm2 at 77 K and 6.4 × 10−5 A/cm2 at 150 K, corresponding 

to the differential-resistance-area product value of ~3.0 × 102 Ω∙cm2 at 77 K and ~60.2 Ω∙cm2 

at 150 K, respectively. The Arrhenius plot of the differential resistance area product at zero 

bias (R0A) with respect to the inverse of temperature is shown in Figure 3b. This indicates 

that the dark current is dominated by different mechanisms in different temperature re-

gimes [36]. From 77 to 140 K, the activation energy of 27 meV indicates that the device 

performance is limited by the temperature-insensitive defect-related leakage. From 140 to 

200K, the dominant mechanism starts to become generation recombination with an acti-

vation energy of 100 meV. Above 200 K, the planar detector is diffusion limited with an 

activation energy of 300meV which is very close to the expected bandgap of the MWIR 

InAs/InAs1−xSbx superlattices at 200 K. As shown in Figure 3c, the dark current density of 

the planar photodetector at 150 K is more than two orders of magnitude lower than the 

mesa-isolated device, which has a dark current density of 0.024 A/cm2 under −20 mV. The 

improvement in dark current density for the MWIR planar device is attributed to the ef-

fective suppression of recombination mechanism at the sidewall surface, which can re-

duce the surface leakage currents. 
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was marked.

Then, the planar and mesa-etched T2SL photodetectors with the diameters of 300 µm
without anti-reflection (AR) coating were illuminated from the top to characterize the
optical response using a calibrated 1000 ◦C blackbody source and a Bruker IFS 66 Fourier
transform infrared (FTIR) spectrometer. The results, as shown in Figure 4, confirm the
100% cut-off wavelength of the MWIR planar photodetector at ~4.3 µm at 77 K and ~4.5 µm
at 150 K, which is in agreement with the theoretical design. The quantum efficiency of both
devices shows zero bias dependency at 77 K and 150 K. This indicates good material quality
where the photogenerated carriers have a long diffusion length to reach the depletion
region and then form the photocurrent. At 77 K, the quantum efficiency (QE) of the planar
device reaches 48% at ~3.7 µm under −20 mV, corresponding to a responsivity of 1.42 A/W.
The QE of planar photodetector in the MWIR range at 77 K is higher than the mesa-isolated
device which has a QE of 34% at ~3.7 µm under −20 mV. At 150 K, the QE for the planar
and mesa-isolated device is 49% and 37% at ~3.7 µm under −20 mV. At 150 K, the presented
MWIR planar photodetector shows an improved QE and optical responsivity than the
previously reported MOCVD grown Zn-diffused planar photodetector with a peak QE
of 25% and responsivity value of 0.78 A/W at 3.84 µm and the ion-implanted planar
photodetectors with a QE of 31.5% and peak responsivity of 0.84 A/W at 3.35 µm [31,32].
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The large improvement in the optical response may be due to two reasons. First, the
T2SLs grown by MBE have better material quality than the MOCVD grown materials.
Second, the newly designed 10/2 InAs/InAsSb T2SL for our planar photodetector has a
significantly larger absorption coefficient due to its smaller superlattice period compared
with the 10/12 InAs/InAsSb T2SL used for the previously reported MOCVD grown planar
photodetector [31].
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To provide an overall evaluation considering both electrical and optical performance,
the specific detectivity D∗ of the MWIR planar and the mesa-isolated photodetectors was
calculated using following equation,

D∗ = Ri

(
2qJ +

4kbT
R × A

)− 1
2

(1)

where D∗ is the detectivity, Ri is the optical responsivity, J is the dark current density, kb
is the Boltzmann constant, T is the temperature and R × A is the differential resistance
area product. The calculated detectivity spectrum for both samples at 77 K and 150 K
is shown in Figure 5. At 77 K, the MWIR planar T2SLs-based photodetector exhibited a
peak detectivity of 4.0 × 1011 cm·Hz1/2/W at the wavelength of 3.7 µm under −20 mV,
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which is more than one order of magnitude higher than the mesa-isolated device with
the detectivity of 1.2 × 1010 cm·Hz1/2/W at 3.7 µm. At 150 K, the peak detectivity for
the planar photodetector and mesa-isolated photodetector is 2.0 × 1011 cm·Hz1/2/W and
6.9 × 109 cm·Hz1/2/W, respectively, which also showed a large improvement for the planar
device. The detectivity value for the planar MWIR T2SL photodetector has little change
over a broad range of wavelengths from 2.5 µm to 4.0 µm at both 77 K and 150 K, indicating
its potential for the imaging application. The planar device’s detectivity performance can
be expected to be further improved by using proper barrier device structure design to
reduce the dark current.
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Figure 5. The comparison between the specific detectivity (D∗) spectral for the MWIR planar pho-
todetector and mesa-isolated photodetector under −20 mV at 77 K (up) and 150 K (down).

4. Conclusions

In summary, a mid-wavelength infrared planar photodetector based on InAs/InAs1−xSbx
T2SL grown by molecular beam epitaxy has been demonstrated. The planar design for the
device was achieved by Zn diffusion in a metal organic chemical vapor deposition reactor.
At 77 K, the planar photodetector shows a cut-off wavelength at 4.3 µm and exhibits a
peak responsivity of 1.42 A/W at 3.7 µm under −20 mV, corresponding to a quantum
efficiency of 48% without anti-reflection coating. The photodetector was found to exhibit a
specific detectivity of 4.0 × 1011 cm·Hz1/2/W at 3.7 µm, with a dark current density, and
the differential-resistance-area product of 2.0 × 10−5 A/cm2 and ~3.0 × 102 Ω·cm2, respec-
tively, under a −20 mV bias at 77 K. The cut-off wavelength for the planar photodetector
extends to 4.5 µm at 150 K and the peak QE reaches 49% at 3.7 µm under −20 mV bias. At
150 K, the planar photodetector shows a specific detectivity of 2.0 × 1011 cm·Hz1/2/W at
3.7 µm with a dark current density of 6.4 × 10−5 A/cm2 under an applied bias of −20 mV.
The device performance of the planar photodetector showed better electrical and optical
performance than the mesa-isolated photodetector at both 77 K and 150 K. In order to give
better prospect and comparison, Table 1 shows the performance comparison between the
planar photodetector and mesa-isolated photodetector at 150 K.

Table 1. Performance comparison between the planar MWIR photodetector and mesa-isolated
photodetector at 150 K.

Device Dark Current Density (A/cm2) QE Specific Detectivity (cm·Hz1/2/W)
PLANAR 6.4 × 10−5 49% 2.0 × 1011

MESA 2.4 × 10−2 37% 6.9 × 109
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