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Abstract: Coupled metallic-wedge nano-plasmonic (CWP) waveguides were predicted as the best
building blocks, which can realize ultra-compact and broadband integrated optical circuits (IOCs)
due to the localized near-field distributions at the dielectric/metal interfaces. Our simulation results
show that the manipulations of the near-field distribution and the near-field modal coupling in CWP
waveguides can effectively minimize the power loss by varying the wedge angles, which can avoid
the loss from the metallic structure and thereby improving the practical application in IOCs.

Keywords: plasmonic waveguides; wedge angle; propagation characteristics; modal coupling;
near-field coupling

1. Introduction

Surface plasmon polariton (SPP) is a bounded optical mode at the dielectric/metal
interface, which naturally localizes lightwaves at nanoscales and thereby increasing the
light-material interactions [1–3]. In other words, the intrinsic ohmic loss impedes the long-
range propagation in nanoplasmonic waveguides [4,5]. The power loss of nanoplasmonic
waveguides can be decreased by tailing the field distribution of the SPP waves, which
results in a trade-off between the modal size and power loss. Metallic V-shaped groove,
wedge and coupled wedges structures [6–9] have been proposed to overcome the optical
diffraction limit of waveguides while keeping the relatively low power losses, which is
mainly due to the folded electromagnetic fields near the metallic nano-trench structure [10].
To demonstrate that the power losses are sufficient low, the nanoplasmonic waveguide
based passive optical devices were investigated theoretically and experimentally [11–15].
In general, the insertion losses of SPP-based passive optical devices can be higher than
3 dB, which limited the practical application in integrated optical circuits (IOCs). Fortu-
nately, the nanoplasmonic waveguides were also used as sensors [16–18] even though
the intrinsic loss of metals cannot be avoided. It is noted that the figure of merit of plas-
monic sensors is related to the field distribution and modal confinement [19–21]. In other
words, it is worthwhile to control the near-field distribution and modal characteristics of
plasmonic waveguides.

At the dielectric/metal interface, the modal field of a SPP wave consists of two
opposite exponential decay functions along the normal vector of the metal surface. It can
be predicted that the penetration depths in the dielectric and metal determine the modal
size and power loss of the SPP wave, respectively. The penetration depths (1/Re[β1] and

Photonics 2022, 9, 663. https://doi.org/10.3390/photonics9090663 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics9090663
https://doi.org/10.3390/photonics9090663
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-3558-6035
https://orcid.org/0000-0002-1573-4280
https://orcid.org/0000-0003-1488-1649
https://doi.org/10.3390/photonics9090663
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics9090663?type=check_update&version=2


Photonics 2022, 9, 663 2 of 7

1/Re[β2]) are related to the permittivity values of the dielectric and metal, which can be
calculated by using the simple equation as follows:

βi = (ω/c)
√
−ε2

i /(ε1 + ε2), (1)

where ω is the angular frequency, c is the light speed in a vacuum, ε1 is the permittivity
of dielectric, ε2 is the permittivity of metal and subscript i can be 1 or 2. In the optical
telecommunication wavelength ranges, the real part of the permittivity values of noble
metals is far larger than that of the dielectric materials. Therefore, the weak and strong
dielectric responses result in the long penetration depth in the dielectric and the short
penetration depth in the metal, respectively. Fortunately, the effective dielectric responses
in dielectric materials and metals can be manipulated via the near-field optical coupling,
which results in the position-dependent wave impedance of the supported SPP wave at
nanoscales and thereby influencing the light-material interaction strength (power loss) [22].
The concept can be used to explain that why the power loss of SPP waves is related to the
metallic wave-guiding structure. In other words, it is possible to reduce the propagation loss
and increase the field confinement via manipulating the metallic wave-guiding structure.

In this study, we found that the near-field optical coupling [22] and modal coupling
both influence the spatial distortion of the modal field, which can be used to manipulate
power loss of the CWP waveguide. Our simulation results show that the lowest power
loss and modal index can be simultaneously obtained when the wedge angle of the CWP
waveguide decreases from 90◦ to 60◦. In other words, the proposed CWP waveguide is the
best building block for the realization of ultra-compact and broadband IOCs [23].

2. Simulation Layout and Methodology

The modal index, power loss and modal field distribution of the CWP waveguide
are calculated by using the finite-difference time-domain (FDTD) method, fast Fourier
transform technique and curving fitting process [9,22]. To effectively excite the fundamental
mode and higher order modes of the CWP waveguides, an electrical dipole is used to
effectively excite the SPP waves supported in the CWP waveguides. The perfectly matched
layers (10 layers) [22] are used as the efficient absorbing boundaries in order to minimize the
reflections from the outgoing electromagnetic waves at the six computational boundaries.
The excitation wavelength of the electrical dipole is fixed at 1550 nm, which is widely used
in the optical telecommunication wavelength range. Figure 1 presents the structure of the
CWP waveguide and the related physical sizes. The width and height of the CWP were
fixed at 600 nm and 1080 nm, respectively, which resulted in a longer propagation length
when the wedge angle was 90◦ [9]. The wedge angle is varied from 90◦ to 15◦. The metal is
Au, Ag, Cu or Al. The used conditions (gird sizes and time step) in the FDTD simulations
follow our previous report [22]. It is predicted that the optical modes and field distributions
of the SPP waves are related to the wedge angle, which can be used to manipulate the
power loss and modal index.
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3. Results and Discussion

Figure 2 presents the normalized instantaneous electric field distributions along the
propagation direction of the CWP waveguides with the different wedge angles from 90◦

to 15◦. In the spatial range from 0 µm to 5 µm, the random variations in the amplitude
originate from the interference between the guided mode and non-guided mode [24].
Therefore, the power loss and modal index of the CWP waveguide can be obtained by
analyzing the electric field distribution from 5 µm to 40 µm (see Figure S1). When the wedge
angle of the CWP waveguide is higher than 60◦, the peak intensities of the x-directed electric
filed (EX) exponential decay along the propagation direction, which can be used to calculate
the power loss of the waveguides. When the wedge angle of the CWP waveguide is lower
than 45◦, the interference beats can be observed in the instantaneous EX distributions,
which indicates that the fundamental mode and higher order modes can be simultaneously
supported in the sharp CWP waveguides. In other words, the strength of the interference
beats can be used to evaluate the modal overlap between CWP modes. In addition, the
coupled fundamental mode and higher order mode has a reduced propagation loss due
to the decreased modal index (field confinement) when the wedge angle is 15◦. Figure 3
presents the power loss and modal index of the fundamental mode supported in the CWP
waveguide with the different wedge angles from 90◦ to 15◦. The trend of the power loss
values is similar to the trend of the modal index values, which indicates that the stronger
field confinement effect (larger modal index) corresponds to the higher power loss from
the metal.
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Figure 3. Propagation characteristics of the CWP waveguide with the different wedge angles from
90◦ to 15◦. (a) Power loss; (b) Modal index. Metal is Au.

Figure 4 presents the modal distributions of the CWP waveguide with the different
wedge angles from 90◦ to 15◦. The modal fields are extended from the two corners in the
top region to the bottom region when the wedge angle decreases from 90◦ to 60◦. The
trend in the field confinements is consistent with the trends in the power loss and modal
index values when the wedge angles decrease from 90◦ to 60◦ (see Figure 3). There is a
significant change in the modal field from an extended field distribution to a localized field
distribution when the wedge angle decreases from 60◦ to 45◦, which can be used to explain
the large increase in the modal index from 1.03 to 1.11. In contrast, the modal fields are
more concentrated at the top corners when the wedge angle decreases from 45◦ to 15◦. It is
noted that the modal fields of the CWP waveguides near the side walls are more distorted
in the smaller wedge angles, which means that modal fields consist of the fundamental
mode and higher order modes. The spatial distortion of modal fields near the side walls
(see Figure 4c–f) is proportional to the strength of the interference beats in the distributions
of instantaneously EX of the CWP waveguide (see Figure 2c–f). In other words, the spatial
distortion of fields near the side walls can be used to confirm the existence of higher order
modes in the CWP waveguides [25]. The strength of modal fields near the side walls
increases with the decrease in the wedge angle from 45◦ to 15◦, which means that the modal
fields can be delocalized by decreasing the wedge angle and thereby reducing the modal
index of the CWP waveguides. It is noted that the mode mainly distributes in the top region
when the wedge angle is 60◦ (see Figure 4c). To evaluate the spatial distortion of modal
field near the top corners and side walls, the differential of electric energy density of the
CWP waveguide is plotted in Figure 5. Figure 6 presents the differential of electric energy
density in the whole region and the region of top corners. Then trend of the differential
of electric energy density values in the top corners region is proportional to the trend of
the power loss values of the CWP waveguides (see Figure 3a), which indicates that the
stronger field localization (spatial distortion of modal field) near the top corners results in
the higher power loss. When the wedge angles are larger and smaller than 60◦, the CWP
waveguide can support a fundamental mode and a hybrid mode, respectively. It can be
concluded that 60◦ is close to the transition wedge angle for the generation of the higher
order modes in the CWP waveguide. In other words, the interplay between the near-field
optical coupling and the modal coupling [26–28] can be used to explain the lowest power
loss of the CWP waveguide at the transition wedge angle.
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Figure 5. The differential of electric energy density of the CWP waveguide with the different wedge
angles from 90◦ to 15◦. (a) 90◦; (b) 75◦; (c) 60◦; (d) 45◦; (e) 30◦; (f) 15◦. Metal is Au. The length of
scale bar is 600 nm.
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Figure 7 presents the power loss values and modal index values of the CWP waveg-
uides for the different metals (Al, Cu, Ag and Au). The modal index and power loss are
mainly related to the real part of dielectric constant and the extinction coefficient of the
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used metals, respectively. At the wavelength of 1550 nm, the real part of dielectric constant
and the extinction coefficient of Al, Cu, Ag and Au are −232.67 (15.33), −109.04 (10.45),
−103.32 (10.17) and −93.07 (9.66), respectively [29]. In other words, the low negative
dielectric response and small extinction coefficient are the desired parameters for the used
metallic material in the CWP waveguide in order to satisfy the requirements of modal field
confinement at nanoscales and long-range propagation simultaneously.
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4. Conclusions

In summary, we have theoretically investigated the interplay between the near-field
optical coupling and the modal coupling of the coupled metallic-wedge nano-plasmonic
(CWP) waveguide with the different wedge angles at the wavelength of 1550 nm. At
the transition wedge angle of 60◦, the lowest power loss of the CWP waveguide can be
explained as due to the lowest modal index and the lowest spatial distortion. In addition,
power loss and modal index of the CWP waveguide are intrinsically related to the extinction
coefficient and dielectric response of the used metal.
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