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Abstract: Research on enhancement green light emitter is important to obtain a perfect red-green-
blue (RGB) induced white light source. Unfortunately the present of mixed phase in deposition of
InGaN/GaN limited the potential LED efficiency. Therefore, we introduce a new method called as
Low Temperature Ammonia Treatment (LTAT) to eliminate the mixed phase and to enhance the
structure properties of InGaN/GaN. Two samples have been prepared, with LTAT (LED A) and
without LTAT (LED B). Both samples have been characterized using optical microscope (OM), Atomic
Force Microscope (AFM), X-ray rocking curve (XRC) and Electroluminescence (EL). On the structural
characterization, the OM results show the present 3D island on LED B sample while sample LED A
only shows 2D surface. The RMS surface roughness from AFM are 10.3 ± 0.4 nm and 13.5 ± 10.7 nm
for LED A and LED B respectively. XRC analysis proved the LED A with LTAT has a homogenous
XRD curve while LED B without LTAT has a mixed phase. The BSFs streak length measured as
1.42 nm−1 and 1.61 nm−1 for LED A and LED B respectively shows low crystallographic defect in
LED A compared to LED B. For the EL characteristic, LED A shows a single sharp peak near 538.2 nm
wavelength, while LED B shows a broad multi-peak profile at 435.7 nm, 480.6 nm and 520.5 nm.
The single sharp peak shows enhancement in green light emission when LTAT is applied during
deposition. Successful enhancement is structural and electroluminescence properties shows the
effectiveness of LTAT proposed in this work for perfect RGB.

Keywords: semipolar (11–22); InGaN/GaN; low temperature ammonia treatment (LTAT); green
emission; effective V/III

1. Introduction

Over the decades, green light emitter had been fascinated by the group of researchers
to unravel the “green gap” in realizing the perfect red-green-blue (RGB)-induced white
light source [1–4]. InGaN-based light emitting diodes (LEDs) have been the well-qualified
candidate for green-yellow spectral range emitter by tailoring the indium content in In-
GaN [5]. Ideally with more indium content incorporated into the multi-quantum wells
(MQWs), further redshift can be observed and therefore enable the blue to green-yellow
emission. However, the increasing indium composition in the conventional polar c-InGaN
results into deterioration of green LED efficiency due to strain-induced polarization which
also known as Quantum-confined Stark Effect (QCSE) [6]. Although the current state-of-
the-art for green-yellow light emitter grown on c-plane GaN using different novel methods
as reported in [7–9], yet in recent years, tremendous works have been focused on semipolar
InGaN LED, in particularly along the (11–22) plane owing to the reduced piezoelectric
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polarization and better indium incorporation which favor the growth of longer wavelength
LED [10–14].

It is well known that the performance of the InGaN-based LED has been improvised
with insertion of the InGaN/GaN superlattice structures (SLSs) as pre layer before the
growth of the active region [15–20]. By introducing the SLSs as the pre-layers before the first
quantum well (QW) growth, the luminescence and efficiency increases significantly with
the evidence that such superlattice structures can somehow attribute in the strain-relaxation
of QW [21]. Haller et al. had pointed out that the role of the SLSs is to trap the surface
defects and avoid them from further incorporate into the QW [22]. It is also reported that
the SLSs worked as the strain-relief layers that further reduce the internal polarization fields
in MQW [23]. Study of embedded SLSs between semipolar (11–22) Si-doped GaN and the
MQWs had been done and proved with a better light output performance as compared to
the one without SLSs [18].

Despite all advantages of SLSs mentioned above, it is found that during the growth of
semipolar (11–22) InGaN on n-GaN, grown SLSs tend to form unstable mixed phase (10–13)
crystallites. According to Zhao et al. [18], prior to growth SLSs, the high growth temperature
(1050 ◦C) of n type GaN is ramped down to a lower temperature < 800 ◦C. This makes
high kinetic barrier for breaking the N-H bond consequently the N precursor generation
by ammonia cracking became less efficient even though a larger flow of ammonia is
induced [24]. Therefore, it is urgency to produce N-rich ambient which essential for
InGaN growth without the present of impurities phaseiu. In this work, our group had
observed that ramping down the temperature followed by a Low Temperature Ammonia
Treatment (LTAT) where we only let the ammonia gas flow for several minutes. During
this process, there is no growth of layer is deposited. The sample that goes LTAT shows an
improved results which this had never been reported by others. Thus, in this manuscript,
the effect of low temperature ammonia treatment prior to the growth of semipolar (11–22)
InGaN/GaN SLSs on the structural and electroluminescence properties of the LED is
discussed comprehensively.

2. Materials and Methods

Semipolar (11–22) InGaN/GaN-based LED structure was grown on m-plane sapphire
substrate via lateral flow metalorganic vapor deposition (MOCVD) (SR-2000, Taiyo Nippon
Sanso Corp., Tokyo, Japan). Trimethylgallium (TMG), triethylgallium (TEG), trimethy-
laluminium (TMA), trimethylindium (TMI) and ammonia (NH3) were used as the III-V
precursor sources, while disilane gas (Si2H6) and bis-cyclopentadienyl magnesium (Cp2Mg)
were used as the dopant sources for n-type and p-type GaN respectively. The growth pro-
cess started with hydrogen cleaning of the substrate inside the reactor at high temperature
of 1125 ◦C followed by the surface nitridation at 1050 ◦C. The detailed growth to achieve
a higher crystal and surface quality semipolar (11–22) GaN template using AlN buffer
layer with AlN/GaN multi-layers (MLs) is reported elsewhere [25]. To proceed with the
LED structure, 3 µm of Si-doped GaN was grown on the GaN template. At this point, the
single crystallinity of (11–22) GaN was confirmed for all the samples and then 10 pairs of
3 nm/3 nm InGaN/GaN SLSs were grown. Prior to the SLS growth, the growth tempera-
ture was stepped down to 725 ◦C and after the temperature was stable, LTAT was carried
out by flowing 6.5 slm of NH3 for 14 min without growth any layer. Next, active layers
containing 6 pairs of 4 nm/15 nm InGaN/GaN MQWs were grown with TEG: TMI molar
ratio of 1:2 succeeded by the growth of 200 nm of Mg-doped and 10 nm of heavily Mg-
doped GaN. The reactor pressure was maintained at 13.3 kPa throughout the whole growth
process. Here, the LED sample with LTAT was denoted as LED A. For comparison purpose,
another LED (LED B) was grown using the identical growth parameters and continuous
growth without LTAT. The schematic diagram of the LED structure, growth temperature
profile and the ammonia flow profile were illustrated in Figure 1, together with the LTAT
step is highlighted in red in the figure. Both LED samples were characterized via Optical
Microscopy (OM) (Olympus BX53) and Atomic Force Microscopy (AFM) (TOSCATM 400,
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Anton Paar GmbH, Graz, Austria) for surface morphology study, High Resolution X-ray
Diffraction (HRXRD) (SmartLab, Rigaku Corp., Tokyo, Japan) including 2θ/ω scan, X-ray
rocking curve (XRC) on- and off-axis scan, and reciprocal space mapping (RSM) for crystal
quality analysis. Prior to the Electroluminescence (EL) analysis, the samples were heated in
the furnace at 650 ◦C for 15 min in air ambient with the purpose of Mg acceptors activation.
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Figure 1. Schematic diagram, growth temperature profile and ammonia flow profile for the semipolar
(11–22) InGaN/GaN-based LED structure, and * indicating the LTAT step with ammonia treatment
(LED A: with LTAT; LED B: without LTAT).

3. Results

Figure 2a,b illustrated optical images for samples LED A and LED B respectively. From
the images, it is clearly seen 2D surface of sample LED A while the present of 3D islands on
the surface of LED B. This 3D island occurred because the lack of N atoms since the cracking
efficiency of ammonia dropped rapidly during the transition of growth temperature even
though a high flow of ammonia is given. This contributed to the present of mixed phase
GaN that favor the growth of 3D island semipolar (11–22) InGaN. It is worth noting in
Figure 2b the 3D islands showed an oriental twinning, that the growth directions were
180◦ with each other results from the present of mixed phase which also reported by Ploch
et al. [26]. The present of 3D island in LED B is considered as defect localization spot which
will deteriorate the performance of LED B.

Figure 2c,d show the 5 × 5 µm AFM images quantitatively explained the surface
morphology of the samples. Characteristic “arrowhead” features were observed for both
LED samples where the striations were seldom related to the difference in growth rate for
multiple facets in semipolar GaN [27]. For accuracy, measurements were taken on several
spots of the sample. The RMS roughness for sample LED A and B was 10.3 ± 0.4 nm and
13.5 ± 10.7 nm respectively. The peak-to-valley value revealed a tremendous difference
for sample LED A and LED B, which the values were 76 ± 3.5 nm and 147 ± 146.9 nm
respectively. The RMS roughness and peak-to-valley value of LED A showed consistent
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value while it is observed differently in each spot of LED B due to high 3D island density.
The AFM results supported the finding in OM results and also justified the surface enhance-
ment via LTAT in sample LED A. During a low temperature growth of the active region
and regardless of the high V/III ambient, the effective V/III is indeed inadequate during
the active region growth. With LTAT, the effective V/III can be increased as more N atoms
can be dissociated and efficiently enhanced the surface morphology [28].
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Figure 2. Optical microscope (OM) under 100×magnification and 5 × 5 µm AFM images for LED
sample (a,c) LED A and (b,d) LED B. The red arrows indicated the mixed phase orientation twinning
of (10–13) GaN where the growth directions formed 180◦.

Figure 3a,b depicted the 2θ/ω scan parallel to [1–100] and [−1–123] direction re-
spectively for sample LED A and LED B. (11–22) GaN peak was recorded at ~69◦, while
the peak fringes ranged from 70–74◦ indicated the AlN/GaN multilayers (MLs) from the
(11–22) GaN template for both samples. Sapphire (30–30) peak was observed (~68◦) along
[1–100] scan for both samples, while it is invisible along [−1–123] direction scan due to
the tilt between [0001]sapphire and [−1–123]GaN [29]. The lower angle side of GaN peak
indicated the InGaN/GaN satellite peaks, where the two peaks at position ~64.5◦ and ~67◦

originated from the InGaN/GaN SLSs as observed along [1–100] scan for both samples.
Along [−1–123] scan, a peak corresponding to the SLSs (~67◦) is observed for LED A while
no SLSs peak is detected in LED B. From the simulation results (not shown here), the
indium composition in SLS and MQW was ~6% and ~30% respectively for both samples,
however the fringes in Figure 3b were obviously observed in sample LED A as compared
to LED B which means that the abruptness of the InGaN/GaN layers in LED A were
better than LED B. It was well noticed that the existence of peak at ~63.5◦ in LED B which
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was corresponding to the mixed phase (10–13) GaN as been noticed in the OM results in
Figure 2b [30].
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poor abruptness between the InGaN well and GaN barrier layer. This supported the ob-
servation from OM, AFM and XRD results where proved that the low temperature am-
monia treatment efficiently improved the abruptness between layers and indium content 
homogeneity as observed in LED A. From the chromaticity diagram, LED A located at the 
green region with color coordinate of (0.304, 0.582) while LED B located at a blueish wave-
length region at (0.217, 0.255), stated that a better emission at fixed wavelength towards 
green can be achieved by LTAT prior the active region growth when comparing with 
standard green in sRGB which has the coordinate of (0.30, 0.60) [36]. As the indium con-
tent in realizing green light emission is quite high in this experiment (>25%), it suffers 
from unstable phases and lead to phase separation and indium inhomogeneity [37]. 

Figure 3. (a,b) 2θ/ω scan for sample LED A and B along [1–100] and [−1–123] direction, with red
circle indicating the mixed phase (10–13) GaN; (c) On-axis rocking curve FWHM plotted as the
function of azimuthal angle; (d) Off-axis rocking curve FWHM of the (10–11), (11–20) and (0002)
plane plotted as the function of azimuthal angle, also the reciprocal space mapping (RSM) of (e)
(21–3l) reflection (l = 0, 1, 2 and 3) with orange arrow indicating the [0001] direction (BSF streak
direction) and (f) (21–33) reflection with red arrow indicating the BSF streak length.



Photonics 2022, 9, 646 6 of 10

To analyze the crystal quality of the samples, X-ray rocking curve (XRC)ω-scan was
performed on (11–22), together with the FWHM results plotted in Figure 3c. From the
on-axis scan in Figure 3c, m-shaped plots were observed for both LED samples, yet the
FWHM of LED A is lower than LED B with FWHM reduction of ~11% along [−1–123]
direction (ϕ = 0◦) and ~12% along [1–100] direction (ϕ = 90◦). The drop in FWHM of (11–22)
on-axis scan was primarily due to the reduction in threading dislocations (TDs) density and
mosaic tilt in the sample [31]. The off-axis scan in Figure 3d shows the FWHM of (10–11),
(11–20) and (0002) for both samples. The off-axis (10–11) and (11–20) rocking curves are
broadened by perfect dislocations and prismatic stacking faults (PSFs) respectively, while
the broadening of (0002) along c-axis corresponded to partial dislocations (PDs) and/or
perfect dislocations [32]. LED A had all the off-axis FWHMs narrowed down by ~20% as
compared to LED B, which means LTAT could remarkably improves the crystalline quality
of the LED structure [33]. Further analyses are done by calculating basal stacking faults
(BSFs) streak that represent order of stacking planes is interrupted in the crystallographic
defect. In this analysis, reciprocal space mapping (RSM) was performed at reflection (21–1l)
(l = 0, 1, 2 and 3) for sample LED A and B as illustrated in Figure 3e. The orange arrow
in the RSM plot (Figure 3e) indicated the direction [0001], where the BSFs streak was
aligned [34]. The BSFs streak (21–33) was chosen for further analysis as shown in Figure 3f,
the BSFs streak length shown in red arrow is calculated for both samples, that measured
as 1.42 nm−1 and 1.61 nm−1 for LED A and LED B respectively. LED A revealed a shorter
streak length as compared to LED B which indicated a reduction in BSFs. This further
justified the crystalline quality enhancement through LTAT in LED A. From the crystal
quality analysis, it is believed that the generation of mixed phase (10–13) crystallite due
to limited active nitrogen species induced the 3D islands growth. As the growth mode
changing from 2D to 3D, strain was released and more defects and dislocations were
generated, which may cause an unabrupt interlayer in the active region [35].

Figure 4 shows the electroluminescence (EL) spectra and the corresponding CIE colour
coordinates (CIE 1931 chromaticity diagram) for both LED samples under an injection cur-
rent of 20 mA. LED A showed a single sharp peak near 538.2 nm wavelength with FWHM
of 77.9 nm, while LED B showed a broad multi-peak profile at 435.7 nm, 480.6 nm and
520.5 nm with FWHM 37.3 nm, 43.9 nm and 119.5 nm respectively. The broad multi-peak
profile showed that a composition inhomogeneity in the MQW of LED B due to the poor
abruptness between the InGaN well and GaN barrier layer. This supported the observation
from OM, AFM and XRD results where proved that the low temperature ammonia treat-
ment efficiently improved the abruptness between layers and indium content homogeneity
as observed in LED A. From the chromaticity diagram, LED A located at the green region
with color coordinate of (0.304, 0.582) while LED B located at a blueish wavelength region
at (0.217, 0.255), stated that a better emission at fixed wavelength towards green can be
achieved by LTAT prior the active region growth when comparing with standard green
in sRGB which has the coordinate of (0.30, 0.60) [36]. As the indium content in realizing
green light emission is quite high in this experiment (>25%), it suffers from unstable phases
and lead to phase separation and indium inhomogeneity [37]. Through the low tempera-
ture ammonia treatment, it effectively suppressed the problems as mentioned above and
enhanced a single wavelength green emission.



Photonics 2022, 9, 646 7 of 10

Photonics 2022, 9, 646 7 of 11 
 

 

Through the low temperature ammonia treatment, it effectively suppressed the problems 
as mentioned above and enhanced a single wavelength green emission. 

 

Figure 4. (a) EL spectra with the inset images of light emission, (b) corresponding CIE color coordi-
nates based on the CIE 1931 chromaticity diagram, of sample LED A and B measured under direct 
injection current of 20 mA. 

4. Discussions 
In the growth of semipolar (11–22) GaN, ammonia treatment (nitridation) plays a 

vital role in determining the dominant growth phase of the crystallites, which (11–22), 
(10–13) and (10–10) are the common orientation grown on m-plane sapphire substrate de-
pending on the ammonia treatment process [26,38]. For the growth temperature of high 
indium-content InGaN, which ranges 650–850 °C, the cracking efficiency reduces tremen-
dously which suppress the breaking of N-H bonds and causing an inadequate amount of 
N precursors [24,39]. As the growth temperature decreases during the active region 
growth whereby a high indium content is required for longer wavelength emission, am-
monia treatment became more crucial and here the LTAT is introduced. As discussed in 
results section, the LTAT reveals an enhancement in structural and electroluminescence 
properties of green light emission for semipolar (1122) InGaN/GaN based grown on m 
plane sapphire. 

Therefore, it is important to understand the mechanism of LTAT as illustrated in Fig-
ure 5. In the deposition without LTAT, as the growth temperature is reduced, the cracking 
of ammonia becomes less efficient and lead to a reduction in effective V/III on the surface 
of n-GaN and further produce a mixed phase as been proved from our XRD results, and 
also demonstrated in others [38,40,41] XRD results present of mixed phase crystallites. 
While Liu et al. and Foronda et al. [42,43] observed that different V/III will promote dif-
ferent growth preference for (11–22) and (10–13) crystallite. With less N species on the n-
GaN surface, (10–13) mixed phase crystallites started to dominate the growth and propa-
gated along the growth direction. This resulted in the 3D islands growth which showed 
twinning orientation as revealed in the OM results where these had also observed in [26] 
without further discussion to eliminate the issue. The induced 3D islands were believed 
to be the defect generation center and caused the unabrupt InGaN/GaN interface with 
indium inhomogeneity, although some of the defects were terminated with the help of 
SLS layers. Due to indium inhomogeneity in the quantum wells as illustrated in quantum 
well band energy diagram without LTAT, it will then produce different localization state 
with different energy as also describe in [35]. The electron-hole pairs will then recombine 
with different wavelength emission which as observed in LED B. 

In this paper, LTAT is introduced to eliminate the mixed phase and overcome the 
structure defect. By refer to Figure 5, sample with LTAT, the effective V/III has been im-
proved by flowing ammonia for a period of time as an N-rich ambient is formed during 
LTAT. Although the cracking efficiency is very low at low temperature, LTAT is believed 
to help in generate more N-precursors for an N-rich ambient. Since active region is 

Figure 4. (a) EL spectra with the inset images of light emission, (b) corresponding CIE color coordi-
nates based on the CIE 1931 chromaticity diagram, of sample LED A and B measured under direct
injection current of 20 mA.

4. Discussions

In the growth of semipolar (11–22) GaN, ammonia treatment (nitridation) plays a
vital role in determining the dominant growth phase of the crystallites, which (11–22),
(10–13) and (10–10) are the common orientation grown on m-plane sapphire substrate
depending on the ammonia treatment process [26,38]. For the growth temperature of
high indium-content InGaN, which ranges 650–850 ◦C, the cracking efficiency reduces
tremendously which suppress the breaking of N-H bonds and causing an inadequate
amount of N precursors [24,39]. As the growth temperature decreases during the active
region growth whereby a high indium content is required for longer wavelength emission,
ammonia treatment became more crucial and here the LTAT is introduced. As discussed
in results section, the LTAT reveals an enhancement in structural and electroluminescence
properties of green light emission for semipolar (1122) InGaN/GaN based grown on m
plane sapphire.

Therefore, it is important to understand the mechanism of LTAT as illustrated in
Figure 5. In the deposition without LTAT, as the growth temperature is reduced, the
cracking of ammonia becomes less efficient and lead to a reduction in effective V/III on
the surface of n-GaN and further produce a mixed phase as been proved from our XRD
results, and also demonstrated in others [38,40,41] XRD results present of mixed phase
crystallites. While Liu et al. and Foronda et al. [42,43] observed that different V/III will
promote different growth preference for (11–22) and (10–13) crystallite. With less N species
on the n-GaN surface, (10–13) mixed phase crystallites started to dominate the growth
and propagated along the growth direction. This resulted in the 3D islands growth which
showed twinning orientation as revealed in the OM results where these had also observed
in [26] without further discussion to eliminate the issue. The induced 3D islands were
believed to be the defect generation center and caused the unabrupt InGaN/GaN interface
with indium inhomogeneity, although some of the defects were terminated with the help of
SLS layers. Due to indium inhomogeneity in the quantum wells as illustrated in quantum
well band energy diagram without LTAT, it will then produce different localization state
with different energy as also describe in [35]. The electron-hole pairs will then recombine
with different wavelength emission which as observed in LED B.

In this paper, LTAT is introduced to eliminate the mixed phase and overcome the
structure defect. By refer to Figure 5, sample with LTAT, the effective V/III has been
improved by flowing ammonia for a period of time as an N-rich ambient is formed during
LTAT. Although the cracking efficiency is very low at low temperature, LTAT is believed to
help in generate more N-precursors for an N-rich ambient. Since active region is preferably
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grown on N-rich condition, grow of mixed phase (10–13) crystallites were able to be
suppressed and a 2D (11–22) InGaN/GaN growth is promoted. This can be seen in the
OM and AFM results which a smoother surface morphology was obtained without any 3D
islands. With abrupt interlayers and less defects and dislocation generated, indium can be
incorporated into the quantum well evenly throughout the layer as shown in the Figure 5
energy band diagram, the smooth and consistent well to ensure a single wavelength
emission as revealed in our EL spectra. All things considered, LTAT plays significant role
in achieving a better crystal quality and surface morphology for active region growth, and
thus provides a novel enhancement technique for growing semipolar (11–22) green emitter
which had not been reported by others.
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5. Conclusions

In this study, the growth of semipolar (11–22) InGaN/GaN-based LED structures were
performed, and the effect of LTAT on structural and electroluminescence properties were
investigated. From the OM and AFM results, sample LED B (without LTAT) possessed a
rough surface with emerging mixed phase (10–13) twinning 3D islands, which cause the
surface to have high RMS roughness and peak-to-valley value. It is suggested that LTAT
in LED A can enhanced the effective V/III and improved the 2D growth of the semipolar
(11–22) active region as shown in LED A. Through XRD analysis, the 2θ/ω scan again
proved the existence of (10–13) mixed phase crystallites and less obvious fringes were
observed in LED B indicated that the unabrupt layers were formed. The X-ray rocking
curves suggested an enhancement in crystal quality for LED A in terms of reduction in TDs,
mosaic tilt, partial/perfect dislocations and PSFs while RSM proved a reduction in BSF
densities via the decrement in BSF streak length along [0001] direction. Via the EL spectra,
LED A showed a single peak while LED B revealed a multi-peak profile which justified
the indium inhomogeneity due to poor interfaces in the active region. Also, the EL results
showed that LTAT enhanced green wavelength emission as a single green wavelength was
observed in LED A. With all the results and analysis, a mechanism model is proposed
which LTAT improved the effective V/III and suppressed the growth of (10–13) crystallites.
Thus, LTAT is believed to enhance structural properties and improve green light emission,
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although further optimization of parameters for LTAT such as ammonia flow rate and time
is needed for a better green emission light.
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