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Abstract: Hyperspectral reconnaissance technology can realize three-dimensional reconnaissance by
using target space and spectral information, which effectively improves the efficiency of battlefield
reconnaissance. However, in order to obscure what is true and what is false to confuse the enemy,
camouflage technology is also developing. Hiding the target in the background environment and
setting false targets have become common camouflage procedures on the battlefield. The camou-
flaged target has very similar spatial and spectral characteristics to the real target, so the method of
identifying the camouflaged target according to the similarity threshold of the original spectral data
is no longer reliable. In order to solve the problem of high spectral similarity and low discrimination
between a camouflaged target and a real target in a hyperspectral image, a joint processing method of
spatial spectrum information is adopted in this paper. Firstly, the hyperspectral image is preprocessed,
and then the target area to be measured is determined. Finally, the dimensions of the determined
sensitive small area are reduced. Experiments show that this processing method can effectively
reduce the spectral similarity of true and false targets, increase the spectral difference of true and
false targets and improve the ability to identify true and false targets based on hyperspectral images.

Keywords: hyperspectral image; dimensionality reduction; camouflaged target

1. Introduction

Imaging spectrum technology is a new detection technology that comprehensively
uses spatial geometric information and spectral information. The hyperspectral image
obtained by using an imaging spectrometer can not only reflect the distribution of ground
objects in space but can also obtain the fine spectral characteristics of targets in the field of
view at the same time. The advantage of a hyperspectral image is that it breaks the limitation
of two-dimensional space, can obtain continuous narrow-band diagnostic spectral values
of substances in each pixel and effectively improves the accuracy and reliability of object
classification and recognition [1]. Hyperspectral images have the characteristics of a
three-dimensional data structure of a spatial spectral information combination, that is,
“Atlas integration”, and are widely used in mineral analysis, agriculture, military and
other fields [2–4].

In terms of military target reconnaissance, recognition and camouflage, hyperspectral
imaging technology can find military equipment according to the different spectral char-
acteristics of real targets and camouflaged targets and reverse the components of targets
through spectral characteristic curves to reveal false targets and their camouflage meth-
ods. However, with the rapid development of various high-tech camouflage technologies,
modern camouflage technology has the characteristics of strong concealment, high fidelity
and is convenient to carry. The spectral curve of existing camouflage material is very
similar to that of a real target. When the detection band of the imaging instrument and
the spectral resolution are limited, it is difficult to distinguish the true and false targets
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with high spectral similarity. In recent years, camouflage target detection algorithms based
on hyperspectral imaging technology have developed rapidly. Generally speaking, there
are two main developmental directions to solve the problem of identifying camouflaged
targets. One is to fully study the spectral characteristics of camouflaged targets, broaden
the spectral detection band and improve the spectral resolution level. Yan Y et al. car-
ried out experiments using visible light and near-infrared imaging spectrometers to study
the spectral characteristics of camouflaged targets in different bands and proposed to
comprehensively consider various factors to complete the camouflaged target detection
task [5]. The second is to make comprehensive use of spatial and spectral information and
use spectral dimension reduction or other preprocessing methods to increase the spectral
difference, so that the characteristics of camouflaged targets are exposed, which effectively
improves the detection efficiency of camouflaged targets. Shen Y et al. proposed a camou-
flage target detection algorithm that combines the constrained energy minimization (CEM)
algorithm and the improved maximum inter-class variance (OTSU) algorithm (t-OTSU).
They proposed to obtain the initial target detection results and adaptively segment the
target area. Furthermore, a target region extraction (ORE) algorithm is proposed to obtain
the complete target contour and improve the target detection ability of a multispectral
image (MSI) [6]. However, limited by imaging conditions and other factors, most of the
traditional target detection algorithms are aimed at hyperspectral images under remote
sensing imaging conditions. With the development of land-based combat platforms and
UAV imaging equipment, the spatial resolution of the acquired images has been greatly
improved, which provides an opportunity to quickly determine the target area. Therefore,
this paper proposes a hyperspectral image dimension reduction analysis method based on
a prior region to improve the spectral difference between a camouflaged target and a real
target. First, the basic theory used in this method is introduced, especially in the part of
prior target area acquisition, and the target detection technology based on deep learning is
combined; however, this is not the only way to obtain the target area to be measured. In
addition, this paper uses the imaging spectrometer and related equipment to carry out the
actual field experiment, and the experiment also confirms the effectiveness of this method.

2. Materials and Methods
2.1. Data Dimensionality Reduction and Principal Component Analysis

There are many bands in hyperspectral images, and there must be a certain correlation
between adjacent bands, resulting in obvious data redundancy. In order to solve the
problems of large amounts of data and the high correlation of image bands, dimension
reduction processing is usually needed before target detection and classification. Data
dimensionality reduction refers to using fewer spectral data variables to replace the original
variables. The dimensionality reduced data can still reflect the information of the original
data and is more conducive to understanding and processing [7]. Hyperspectral data
dimensionality reduction can be divided into two: spectral feature selection and spectral
feature extraction. Spectral feature selection refers to using a subset of the original spectral
band information as the feature space after dimensionality reduction. This subset can
strengthen those spectral bands with strong separability and remove the bands with strong
correlation. Compared with spectral feature selection, spectral feature extraction can
extract a low-dimensional subspace (not a combination of simple feature selection) from
the original high-dimensional space by transformation, so that the distribution of data in
this space can describe the original data in an optimal sense. On the whole, the method of
spectral feature extraction for spectral data dimensionality reduction is simple and easy,
and the automation level is high in practical applications, so it is more widely used.

Principal component analysis (PCA) is the most basic and commonly used spectral
data dimensionality reduction method. This method uses eigenvalues to determine mean-
ingful principal component images and selects principal components corresponding to
larger eigenvalues to achieve data dimensionality reduction. See reference [8] for the defi-
nition and solution process of principal component analysis. From a mathematical point of
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view, PCA is a method of linear transformation and reorganization; from a geometric point
of view, PCA is a processing method that rotates the multi-dimensional coordinate system
to maximize the sample variance. Taking two-dimensional space as an example, as shown
in Figure 1, it is the schematic diagram of the PCA method.
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However, with the continuous development of imaging technology, the spatial size of
hyperspectral images is increasing, and the spatial resolution is also improving significantly.
Although the dimensionality reduction of the whole hyperspectral image can preserve the
original information to the greatest extent, there will still be the problem of indistinguishable
pixels with high spectral similarity. If a region to be analyzed can be preset or a smaller
region can be determined by target detection, dimension reduction can be carried out in
this region. Nevertheless, taking the two-dimensional space as an example, as shown in
Figure 2, in terms of increasing the spectral difference in a specific region, the method of
spectral dimension reduction based on the region to be measured must be better than the
method of dimension reduction for the whole hyperspectral image.
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2.2. Target Detection Technology

Target detection refers to the accurate positioning and classification of targets. It is
important content in the field of computer vision and has important research value in video
tracking, unmanned driving and so on [9,10]. The traditional target detection process is
shown in Figure 3. This kind of algorithm mainly completes the model establishment by
manually extracting features. Common features include a histogram of oriented gradient
(HOG) and scale invariant feature transform (SIFT). After the feature extraction model is
established, the classification task of support vector machine is carried out. However, due
to the limitations of the feature model, the efficiency and accuracy of the whole detection
process are low. With the establishment of large-scale data sets and the development of
deep convolution neural network models in the field of image processing, target detection
based on deep learning continues to develop, which is mainly divided into a two-stage
target detection algorithm and a single-stage target detection algorithm. The two-stage
target detection algorithm first extracts a candidate frame from an image, and then classifies
and regresses the candidate region to obtain the detection results. The detection accuracy is
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high, but the detection speed is slow. The single-stage target detection algorithm uses the
depth neural network to directly calculate the image and generate the detection results. The
detection speed is fast, but the detection accuracy is low. Compared with the traditional
target detection algorithm, the target detection algorithm based on deep learning relies on
the deep learning of many data samples to train the network structure parameters. With
the support of large data samples, it has better applicability to the changes in the target
and background.
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Figure 3. Traditional target detection algorithm.

The Faster R-CNN algorithm is a typical two-stage target detection algorithm. The
algorithm flow is shown in Figure 4. The Faster R-CNN algorithm adds a region pro-
posal network (RPN) based on Faster R-CNN. The candidate window network extracts
the candidate box by setting anchors of different scales, replaces the traditional candidate
box generation methods such as selective search, realizes the end-to-end training of the
network and improves the network computing speed [11]. Faster R-CNN has the advan-
tages of a simple principle and method and high detection accuracy. It is widely used in
various fields.
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Although the target detection technology based on two-dimensional imaging has made
rapid developments in feature extraction and detection speed, it is difficult to break through
the limitation of two-dimensional space. Regarding the recognition of true and false targets,
these target detection algorithms still have the thinking formula of “similarity is the same
thing”, which cannot recognize the true and false targets. For example, when detecting
military targets, it is difficult to distinguish between inflatable armored vehicles and real
armored vehicles. Therefore, the corresponding tasks can be completed by combining
spectral information with space target detection. In the experiment in this paper, the target
detection algorithm based on Faster R-CNN only provides a way to determine the target
area to be measured. It is worth mentioning that when determining the target area to be
measured, the target with an obvious shape can be determined by using the target detection
algorithm, but this is not unique. It can also be determined by using the spectral matching
method and other prior information.

2.3. Method

In order to solve the problem that it is difficult to distinguish between a camouflaged
target and a real target due to the high similarity between shapes and spectra, a method
of comprehensive utilization of spatial shape information and spectrum information is
proposed in this paper. Firstly, the original hyperspectral data were obtained by using an
imaging spectrometer; secondly, the first principal component of the image was extracted
by global principal component analysis; finally, the spatial distribution of ground objects in
the image was analyzed. In the first principal component image, the target area to be tested
was found by a manual selection or a target detection algorithm, the principal component
analysis was performed again in the small area to reduce the dimension and the target type
was distinguished by the similarity of the target to be tested in the selected n principal
component images in the small area. The specific process is shown in Figure 5.
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image region.

3. Experimental Results and Analysis

In order to make the experiment more convincing, it is necessary to use typical military
targets and corresponding false targets for experiments. However, the detailed spectral
information for military materials is secret. Therefore, this paper completes the training
of a network structure by using the pictures of a model Mengshi off-road vehicle to prove
that the true and false targets in hyperspectral images can frame the area to be measured
by using the shape information. When verifying the method proposed in this paper, two
groups of experiments are carried out to verify the proposed method. Two methods are
adopted to determine the area to be measured. One is to determine the area to be measured
by manual framing and select grass and camouflage clothing as the true and false targets.
The other method uses Faster R-CNN to determine the area to be tested and selects jungle
and camouflage warrior models as the true and false targets. Since the focus of this paper
is to verify the effectiveness of the region dimension reduction method in camouflaged
target recognition, and there are many ways to obtain the prior region, it is possible to
design and carry out experiments in this way without involving secrets. Through this series
of experiments, it is proved that the small area dimension reduction method based on a
hyperspectral image can more effectively identify true and false targets.

3.1. Data Preparation
3.1.1. Acquisition of Hyperspectral Images

In this experiment, a His-300 imaging spectrometer based on an acousto-optical
tunable filter (ATOF) is used. A series of equipment are shown in Figure 6. The imaging
range is 440 nm–810 nm of the visible band, and the band interval is 4 nm. Before shooting,
adjust the aperture and gain to enable the best imaging state for the spectrometer and
use an image size of 1002 × 1002 pixels. The schematic diagram of the shooting scene is
shown in Figure 7. The purpose is to obtain the hyperspectral image containing the spectral
information of the ground object.
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3.1.2. Data Expansion and Model Training

Target detection technology based on deep learning needs a lot of a prior training data.
However, the number of hyperspectral images obtained by using an imaging spectrometer
is very limited, so it is necessary to expand the data of hyperspectral images. There are
many ways to expand the image data. See reference [12] for details. The expanded data
set in this paper mainly includes the following parts: (i) the captured hyperspectral image;
(ii) grayscale image containing target; (iii) the image obtained after clipping, rotation and
noise processing. The composition of the data set is shown in Figure 8.

Photonics 2022, 9, x FOR PEER REVIEW 6 of 11 
 

 

 

Figure 6. Imaging spectrometer. 

 

Figure 7. Schematic diagram of shooting scene. 

3.1.2. Data Expansion and Model Training 

Target detection technology based on deep learning needs a lot of a prior training 

data. However, the number of hyperspectral images obtained by using an imaging spec-

trometer is very limited, so it is necessary to expand the data of hyperspectral images. 

There are many ways to expand the image data. See reference [12] for details. The ex-

panded data set in this paper mainly includes the following parts: (i) the captured hyper-

spectral image; (ii) grayscale image containing target; (iii) the image obtained after clip-

ping, rotation and noise processing. The composition of the data set is shown in Figure 8. 

 

Figure 8. Composition of hyperspectral image data set. 

The expanded image data is trained by using the Faster R-CNN network model. A 

total of 600 images are trained. The first principal component image is used for testing, 

and the test results are shown in Figure 9. Limited by the number and type of training 

data, the detection effect is not very good, but it is enough to prove that hyperspectral 

images can be used for military target location and recognition and can frame a small area 

containing targets according to their shape information. 

Figure 8. Composition of hyperspectral image data set.

The expanded image data is trained by using the Faster R-CNN network model. A
total of 600 images are trained. The first principal component image is used for testing, and
the test results are shown in Figure 9. Limited by the number and type of training data, the
detection effect is not very good, but it is enough to prove that hyperspectral images can
be used for military target location and recognition and can frame a small area containing
targets according to their shape information.
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3.2. Further Experiment

The key to this method is to verify that the dimensionality reduction method in a
small area can increase the discrimination of different types of targets. The first group of
experiments used camouflage clothing and grass to simulate two types of targets. The gray
scale of the experimental scene is shown in Figure 10. The scene is relatively complex. In
the second group of experiments, jungle and camouflage warrior models are taken as two
types of targets to be tested. The gray scale of the experimental scene is shown in Figure 11.
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(b) Grayscale image of the experimental scene under a 769 nm channel.
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Figure 11. Grayscale images of experimental scenes under different wavelength channels in the
second group of experiments. (a) Grayscale image of the experimental scene under a 609 nm channel.
(b) Grayscale image of the experimental scene under a 769 nm channel.

In the first group of experiments, there was a person wearing camouflage in the target
area, and this area was marked as A. In the second group of experiments, there was a
military vehicle in the target area, and this area was marked as B. It is obvious that the
degree of target visibility is different in different wavelength bands, especially around
555 nm. Camouflage clothing and dry grass cannot be distinguished. Select the pixel area
containing camouflage clothing and grass in area A, and select the pixel area containing
jungle and vehicle in area B to obtain the curve containing spectral information, as shown
in Figure 12.

For the first group of experiments, the target area is artificially calibrated. Firstly, a
PCA is performed on the whole image to obtain the first three principal component images,
as shown in Figure 13. Secondly, a PCA is performed for area A to be tested. The first three
principal components of area A are shown in Figure 14.
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Figure 12. Spectral information curves of different objects. (a) Spectral information curves of
Camouflage clothing and grassland. (b) Spectral information curves of Mengshi car model and bush.
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Figure 13. The first three principal component images after the PCA of the whole image in the first
set of experiments. (a) The first principal component image, (b) The second principal component
image, (c) The third principal component image.
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Figure 14. The first three principal component images of area A to be tested after PCA. (a) The first
principal component image of area A, (b) The second principal component image of area A, (c) The
third principal component image of area A.

The area to be measured in the second group of experiments is obtained according
to the coordinate information in the target detection results. The first three principal
component images obtained by the PCA method are shown in Figure 15. Subsequently, a
PCA is performed on area B to be measured, and the first three principal components of
area B are shown in Figure 16.
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The commonly used curve similarity evaluation index parameters are used to measure
the spectral similarity of two objects at the same pixel position after processing. The
spectral angle metric (SAM) method [13] is a typical similarity measurement method based
on projection. Its value corresponds to the cosine angle between the two curves, reflecting
the shape difference between spectral curves. Root mean square error (RMSE) [14] is a
typical distance-based similarity measurement method, which reflects the difference of
spectral vector size between the two places. The two methods are used to evaluate the
similarity of the original image data, the data after the PCA of the whole image and the
data after the PCA of the area to be tested. The results of the first group of experiments are
shown in Table 1. The results of the second group of experiments are shown in Table 2.

Table 1. Similarity comparison between camouflage clothing and grassland.

Based on Raw
Image Data

The Whole Image
after PCA

The Area to Be
Measured after PCA

SAM 0.1151 0.3501 0.8393
RMSE 247.170 890.171 2169.599

Table 2. Similarity comparison between the Mengshi car model and bush.

Based on Raw
Image Data

The Whole Image
after PCA

The Area to Be
Measured after PCA

SAM 0.1255 0.4258 0.9107
RMSE 268.503 951.987 2387.971

On the one hand, compared with the model vehicle in the forest, the similarity between
the camouflage clothing and the grassland is higher, and the camouflage effect is better.
On the other hand, the smaller the value of SAM and RMSE, the higher the similarity of
the curve. Experiments show that the PCA of the whole image and the PCA of the area
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to be measured can reduce the similarity between different ground object types. The PCA
processing of the area to be measured can more effectively reduce the spectral similarity of
true and false targets and improve the spectral difference between ground objects.

4. Conclusions

The advantage of hyperspectral imaging technology is that it can classify and detect
targets according to the diagnostic spectral information of ground objects. However,
the development of camouflage materials reduces the difference between the shape and
spectrum of true and false targets. In order to solve the problem of high spectral similarity
between camouflaged objects and real objects, this paper proposes a method of spectral
dimensionality reduction based on the area to be measured. There are many ways to
determine the area to be measured. For the true and false targets with obvious shape
features, the target detection technology can be used. For those whose shape features
are not obvious enough, the specific area can be selected manually, or the target area can
be determined using other ways. From the experimental results, the camouflaged target
recognition method based on hyperspectral image regional dimension reduction analysis
proposed in this paper can effectively reduce the spectral similarity of true and false targets.
This method provides a new idea for true and false target recognition in the future.
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