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Abstract: Macroscopic quantum superposition is an important embodiment of the core of the quan-
tum theory. The engineering of macroscopic quantum superposition states is the key to quantum
communication and quantum computation. Thus, we present a theoretical proposal to engineer
macroscopic quantum superposition (MQS) states of a Bose-Einstein condensate (BEC) via impurity
atoms. We firstly propose a deterministic generation scheme of transient multi-component MQS
states of the BEC via impurity catalysing. It is found that the structure of the generated transient
multi-component MQS states can be manipulated by the impurity number parity. Then, we illustrate
the influence of impurity number parity on MQS states through three aspects: generation of approxi-
mately orthogonal continuous-variable cat states, manipulation of non-classicality in phase space,
and switching of non-classical degree of BEC states. The influence of the BEC decoherence on the
generation of MQS states is discussed by the fidelity between actually generated states and target
states. Finally, the results show that the high-fidelity multi-component MQS states of the BEC can be
fast generated by increasing the coherent interaction strength between impurities and the BEC in an
open system.

Keywords: macroscopic quantum superposition; quantum communication; Bose-Einstein conden-
sate; impurity; catalysing

1. Introduction

It is an important feature of quantum physics that objects can exist in the form of
coherent superposition of different quantum states [1]. Such quantum superposition
is also an essential signal that distinguishes the quantum from the classical world [2].
Quantum physics has long been regarded as a theory describing the motion of objects at
microscopic scales. Thus, the superpositions of macroscopically distinct quantum states
have been a good prospect. This kind of quantum superposition states was previously
discussed by Schrödinger in his paradox and is often subsequently called Schrödinger’s cat
states [3]. Apart from fundamental tests of quantum mechanics [4–6], macroscopic quantum
superposition (MQS) states have been shown to enable quantum computation [7–11],
quantum metrology [12–14], quantum repeaters [15], and quantum teleportation [16]. Thus,
much attention has been paid to preparation, engineering, control, and detection of such
MQS states for several decades [17–22]. A Bose-Einstein condensate (BEC) [23–25] has
emerged as a pristine platform for studying MQS states due to the macroscopic nature
of its wave function and the tunability of the interatomic interaction at will. Several
approaches [26–38] have been suggested to produce such MQS states .

Recently, the physics of impurity-doped Bose-Einstein condensate (BEC) systems have
made great progress in experiments [39–43]. A BEC with immersed impurities provides
a totally new platform for studying quantum phenomena of the micro-macro hybrid quan-
tum systems, for instance, the impurity-induced Dicke quantum phase transition [44],
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macroscopic quantum resource [45–47], the BEC decoherence probe [48] and phase fluctua-
tions [49], and quantum decoherence speed limit [50].

The purpose of the present paper is to propose a theoretical scheme to engineer
MQS states of the BEC through the impurity atoms. We consider an impurity-doped BEC
system with N two-level impurity atoms, such as Rydberg atoms with the ground state
and excited Rydberg state being two energy levels, respectively [51,52]. Based on the
Rydberg impurity-doped BEC system, we will show how to deterministically create the
transient BEC multi-component MQS states by the dynamically decoupling of the impurity
atoms from the BEC. We indicate that MQS states of the BEC can be engineered via the
impurity atoms. We find that the impurity number parity has a significant impact on BEC
state parameters, phase space distribution as well as non-classical degree. In addition, the
increasing impurities-BEC interaction strength can reduce preparation time. In particular,
this will weaken the destructive effects of the environment on the quantum system for an
open system. Numerical results display that the fast generation [53] of high-fidelity MQS
states can be obtained.

The remainder of this paper is organized as follows. In Section 2, we introduce the
impurity-doped BEC model consisting of BEC and N identical Rydberg impurity atoms
and present the analytical solution of the impurity-doped BEC model. Section 3 shows
how to deterministically generate transient multi-component MQS states of the BEC. The
manipulation of impurity number parity on MQS states is presented in Section 4. Section 5
explains how the interaction between impurities and BEC induces the fast generation
of high-fidelity MQS states in an open system. Finally, Section 6 is devoted to some
concluding remarks.

2. The Impurities-Doped BEC Model

We consider an impurity-doped BEC system which consists of the BEC and N two-
level impurity atoms. We assume that the N fixed impurities are immersed in the BEC, and
the number of the impurities is much smaller than the number of the condensed atoms in
the BEC. Under these conditions, the interaction between impurity atoms can be neglected.
The Hamiltonian of the BEC in a trapping potential [23] is

HB =
∫

dxΨ†(x)
[
− 1

2m
∇2 + V(x) +

U
2

Ψ†(x)Ψ(x)
]

Ψ(x), (1)

where Ψ(x) is the BEC field operator, V(x) is the external trapping potential, U is the self-
interaction, and m is the mass of an atom. The condensate is assumed to be trapped in a deep
potential such that the BEC can be well described within the single-mode approximation
Ψ(x) ≈ aφ(x). Here a and φ(x) are the annihilator operator and the mode function of the
condensate, respectively. Then, the Hamiltonian of the confined BEC can be written as
a Kerr-type Hamiltonian

HB = ωba†a + λa†a†aa, (2)

where the mode frequency ωb and the coupling strength λ are defined as

ωb =
∫

dx
[
− 1

2m
|∇φ(x)|2 + V(x)|φ(x)|2

]
, (3)

λ =
U
2

∫
dx|φ(x)|4. (4)

The impurities interact with the BEC via coherent collisions. Thus, the impurities
Hamiltonian and impurity-BEC interaction Hamiltonian can be described as

HiB = ω0

N

∑
i=1

σi
z +

1
2

κ
N

∑
i=1

σi
za†a, (5)
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where σi
z is a Pauli operator of i-th impurity atom, ω0 is the transition frequency of impurity

atoms between ground and excited state, and κ is the interaction strength between the
impurities and BEC. We assume the free Hamiltonian H0 = (ωb − λ)a†a + ω0 ∑N

i=1 σi
z.

Making use of Equations (2) and (5), we can obtain the Hamiltonian of the total system in
the interaction picture as

HI = iu̇u† + u(HB + HiB)u† = λ
(

a†a
)2

+ κ Ĵza†a, (6)

where u = exp(iH0t) and we have introduced a collective operator of the N two-level
impurities

Jx =
1
2

N

∑
i=1

σi
x, Jy =

1
2

N

∑
i=1

σi
y, Jz =

1
2

N

∑
i=1

σi
z, (7)

which obey the following commutation relations of the su(2) algebra

[Jx, Jy] = i Jz, [Jy, Jz] = i Jx, [Jz, Jx] = i Jy, (8)

where J± = Jx ± i Jy is the ladder operator of the angular momentum.
The Hamiltonian (6) has the following eigenvalues and eigenstates

Enm = λn2 + κnm, |Ψ〉nm = |n〉 ⊗ |j, m〉, (9)

where |n〉 is a Fock state of the BEC with n = 0, 1, 2, · · · , ∞, and |j, m〉 is a common
eigenstate of the operators J2 and Jz with j = N/2, and m = −j,−j + 1,−j + 2, . . . j.

3. Deterministic Creation of MQS States
3.1. Creating Multi-Component MQS States

We consider the impurity atoms and the BEC are initially in a Greenberger-Horne-
Zeilinger (GHZ) state and a coherent state |α〉, respectively. The GHZ state of N impurity
atoms can be represented in terms of the basis of the angular momentum space as

|GHZ〉 =
1√
2
[|00 . . . 0〉+ |11 . . . 1〉]

=
1√
2
[|N/2,−N/2〉+ |N/2, N/2〉], (10)

where |N/2, N/2〉 and |N/2,−N/2〉 are the highest-weight and lowest-weight states in
the angular momentum representation of the su(2) algebra with j = N/2, respectively.

Then the initial state of the impurity-doped BEC system is given by

|Ψ(0)〉 = 1√
2
[|j,−j〉+ |j, j〉]⊗ |α〉, (11)

where j = N/2 and |α〉 = D(α)|0〉 with the displacement operator being given by D(α) =
exp(αa† − α∗a).

Making use of Equations (6) and (9), due to the commutative relationship [(a†a)2, Ĵza†a] = 0,
the time evolution operator U(t) can be written in the following decoupling form:

U(t) = exp[−iτn̂2λ/κ] exp
[
−iτ Ĵzn̂

]
, (12)

where the scaled time τ = κt and then we can obtain the wave function of the impurity-
doped BEC system at a scaled time τ

|Ψ(τ)〉 = 1√
2

[
|Ψ(τ)−j,α〉 ⊗ |j,−j〉+ |Ψ(τ)+j,α〉 ⊗ |j, j〉

]
, (13)
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where we have introduced a impurity-dependent BEC state |Ψ(τ)±j,α〉, which can be
expressed as a form of a generalized coherent state [54–58]

|Ψ(τ)±j,α〉 = e−
1
2 |α|2

∞

∑
n=0

e−iτ(λ/κ)n2
(
αe∓iτ j)n

√
n!

|n〉. (14)

It is not difficult to find that the BEC matter field is entangled with impurities during
the dynamics evolution. It’s worth noting that the entanglement between BEC and impuri-
ties are periodic, and the BEC matter field will completely decoupled from the impurity
atoms at τ = 2kπ/N (k ∈ Z).

At time τ = 2π and j = N/2, we have exp(∓iτ j) = (−1)N , and the entanglement
between BEC and impurity atoms disappears. The state of the system becomes

|Ψ(τ = 2π)〉 = 1√
2
[|j,−j〉+ |j, j〉]⊗

∣∣∣Ψ(τ = 2π)N,α

〉
, (15)

where the impurities returns to its originally GHZ state and the state of the BEC reads

|Ψ(τ = 2π)N,α〉 = e−
1
2 |α|2

∞

∑
n=0

e−i2π(λ/κ)n2

[
α(−1)N

]n

√
n!

|n〉. (16)

|Ψ(τ = 2π)N,α〉 is the so-called Yurke-Stoler-like state [59,60], which can be recognized as
a variety of quantum superposition of Glauber coherent states for different values of λ/κ.
We define Π = (−1)N as the impurity number parity and λ/κ = 1/2P (P = 2, 3, 4, · · · , ∞).
Then, the phase function in Equation (16) can be written as a sum of P terms [61]

e−iπn2/P =
1√
P

P

∑
k=1

exp(iξk)

[
− exp

(
2ikπ

P

)]n
, (17)

where phase factor ξk is related to parameter P. For example: ξ1 = −π/4 and ξ2 = π/4
when P = 2, ξ1 = ξ2 = −π/6 and ξ3 = π/2 when P = 3. Obtaining the above results
requires solving a system of equations consisting of P equations. Thus, we can get the
specific value of ξk when the parameter P is determined by using Equation (17). There are
many mathematical processes involved. According with Equation (17), |Ψ(τ = 2π)N,α〉 is
superimposed by the coherent states of P components

|Ψ(τ = 2π)N,α〉1/2P =
1√
P

P

∑
k=1

exp(iξk)|−Πα exp(2ikπ/P)〉

=
1√
P

P

∑
k=1

exp(iξk)|Παk〉, (18)

where k is positive integer and αk = −α exp(2ikπ/P). |−Πα exp(2ikπ/P)〉 is a coher-
ent state with displacement −Πα exp(2ikπ/P). Obviously, the multi-component MQS
states can be obtained by adjusting the coupling ratio between self-interaction strength
in the BEC and the impurities-BEC interaction strength. For a large amplitude of the
initial coherent state of the BEC matter field mode, the quantum superposition states are
macroscopically distinguishable.

Thus, the preparation of BEC P-component MQS states needs to meet two precondi-
tions. Firstly, impurities need to be decoupled from BEC. This requires tκN = 2kπ(k ∈ Z)
according to Equations (13) and (14). We temporarily mark the moment of decoupling
between impurities and BEC as td for convenience of description. Secondly, at the spe-
cial decoupling moment td, the Kerr-interaction strength within the BEC needs to satisfy
tdλ = π/P (P = 2, 3, 4, · · · , ∞).
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Reviewing the preparation process of the above mentioned condensate P-component
MQS states, we find that the impurities in BEC play a quantum catalytic [62] role in
the context of interconversion of BEC quantum states. The catalytic effect of impurities is
reflected in the following two aspects. On the one hand, the state of impurity at time td is the
same as the initial state. That means the initial state |GHZ〉 of impurities, just like a catalyst
in a chemical process, does not change after dynamic evolution in certain parameter ranges.
On the other hand, one can shorten the actual preparation time by increasing impurities-
BEC interaction κ or impurity number N, and keeping the λ = π/tdP. Thus, the impurity
can accelerate the preparation of BEC P-component MQS states.

3.2. Creating a Pair of Approximately Orthogonal Cat States

In the field of continuous-variable (CV) quantum information processing [11,63,64],
one can encode logical qubits by the harmonic oscillator states. A CV quantum code is
then a subspace of the oscillator Hilbert space that is used to protect quantum information
against errors. Thus, the generation of a pair of CV orthogonal basic vectors in harmonic
oscillator space is of great significance. According to Equation (18), one can obtain a pair of
approximately orthogonal cat states by changing the impurity number parity Π. We denote
the quantum state of Equation (18) as |Ψ(τ = 2π)odd(even),α〉1/2P when N is odd(even)
number. The inner product between |Ψ(τ = 2π)odd,α〉1/2P and |Ψ(τ = 2π)even,α〉1/2P is

∣∣∣1/2P
〈
Ψ(τ = 2π)even,α

∣∣Ψ(τ = 2π)odd,α
〉

1/2P

∣∣∣

=
e−|α|

2

P

∣∣∣∣∣
P

∑
k,s=1

ei[ξk−ξs−|α|2 sin θ]e−|α|
2 cos θ

∣∣∣∣∣, (19)

where P, k, and s are positive integers. θ is defined as 2π(k− s)/P. According to the right
side of Equation (19), we can get a variety of inner product results for different values of P.

For example, if P = 2, Equation (19) takes the form

e−iπn2/2 =
1
2
(1− i) +

1
2
(1 + i)(−1)n. (20)

Then, |Ψ(τ = 2π)N,α〉1/4 can be rewritten as

|Ψ(τ = 2π)N,α〉1/4 =
1− i

2
|Πα〉+ 1 + i

2
|−Πα〉. (21)

Equation (21) is a superposition of two Glauber coherent states with the opposite
direction in the phase space, i.e., the two-component MQS states of BEC. The inner product
between

∣∣Ψ(τ = 2π)odd,α
〉

1/4 and |Ψ(τ = 2π)even,α〉1/4 is

∣∣∣∣1/4

〈
Ψ(τ = 2π)even,α

∣∣∣∣Ψ(τ = 2π)odd,α

〉
1/4

∣∣∣∣ = e−2|α|2 . (22)

For α = 4, we have e−2α2
= 1.266 × 10−14 such that

∣∣Ψ(τ = 2π)odd,α
〉

1/4 and
|Ψ(τ = 2π)even,α〉1/4 can be considered approximately orthogonal cat states. Thus, we
can encode qubit logical states |0〉 =

∣∣Ψ(τ = 2π)odd,α
〉

1/4 and |1〉 = |Ψ(τ = 2π)even,α〉1/4
for α ≥ 4.

When P = 4, we have

e−iπn2/4 =
1
2

e−i(π/4)[1− (−1)n]+ 1
2
(−i)n[1 + (−1)n]. (23)
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In this case, a four-component MQS state is obtained

|Ψ(τ = 2π)N,α〉1/8 =
1
2

e−i(π/4)[|Πα〉 − |−Πα〉]

+
1
2
[| − iΠα〉+ |iΠα〉]. (24)

The inner product between
∣∣Ψ(τ = 2π)odd,α

〉
1/8 and |Ψ(τ = 2π)even,α〉1/8 is

∣∣∣∣1/8

〈
Ψ(τ = 2π)even,α

∣∣∣∣Ψ(τ = 2π)odd,α

〉
1/8

∣∣∣∣ = e−2|α|2 . (25)

Obviously, for large α, the MQS states of the same component corresponding to
different impurities number parities are approximately orthogonal. Thus, one can generate
a pair of approximately orthogonal CV cat states by changing the impurity number parity
in our situation.

4. Engineering MQS States in Phase Space
4.1. Wigner Function of MQS States

The non-classicality of the MQS states also can be manipulated by the impurities num-
ber parity. We find that the Wigner function [65,66] distribution of

∣∣Ψ(τ = 2π)odd,α
〉

1/2P
is differs from |Ψ(τ = 2π)even,α〉1/2P by π phase in phase space. Firstly, taking the two-
component MQS state Equation (21) as an example, we analytically and graphically show
the effect of impurities number parity on non-classicality by calculating Wigner function.
The Wigner function has turned out to be remarkably useful in quantum physics, particu-
larly in the characterization and visualization of nonclassical fields. The negativity of the
Wigner function for a quantum state represents its non-classicality. The Wigner function is
defined by

W(z) =
2
π

Tr
[

D̂†(z)ρD̂(z)P̂
]
, (26)

where ρ is the density operator of BEC in our situation, D̂(z) = exp
(
zâ† − z∗ â

)
and

P̂ = (−1)â† â are the displacement operator and the parity operator, respectively.
The Wigner function of the two-component MQS state Equation (21) can be expressed

as the sum of classical term and quantum interference term [67,68]

W(z) = WC(z) + WQ(z). (27)

For two-component MQS state Equation (21), the classical term is the sum of the
independent Wigner functions of two Glauber coherent states |Πα〉 and |−Πα〉

WC(z) =
1
2
[W1(z, Πα) + W2(z,−Πα)]. (28)

W1(z, Πα) and W2(z,−Πα) are expressed as

W1(z, Πα) =
2
π

exp
(
− 2
∣∣∣z−Πα

∣∣∣
2
)

, (29)

W2(z,−Πα) =
2
π

exp
(
− 2
∣∣∣z + Πα

∣∣∣
2
)

. (30)

From Equations (29) and (30), we can see that the classical part of Equation (21)’s
Wigner function consists of two Gaussian peaks, which centers are z1 = Πα and z2 = −Πα,
respectively. It can be found that the points z1 and z2 are symmetrical about the origin. As
the impurity number parity parameter Π changes, the positions of the two Gaussian peaks
will be transformed symmetrically about the origin.
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The quantum interference term in the Wigner function of the MQS state Equation (21)
consists of a cross term in the Wigner function, it can be expressed as

WQ(z) = W21(z;−Πα, Πα), (31)

where W21(z;−Πα, Πα) is specifically expressed as

W21(z;−Πα, Πα) =
2
π

exp
[
−2
(

x2 + y2
)]

(32)

× sin[4Π(xαy − yαx)].

We have defined x = Re(z),y = Im(z) and αx = Re(α),αy = Im(α). Quantum inter-
ference term Equation (31) depends on the phase superposition of two Glauber coherent
states exp(−iπ/4)|Πα〉/

√
2 and exp(iπ/4)|−Πα〉/

√
2 in Equation (21). The Wigner func-

tion of Equation (21) is the sum of Equations (28) and (31), which is not positive definite,
and the negativity comes from the quantum interference term. The change of the impurity
number parity parameter Π causes the quantum interference mode in the phase space to
produce a symmetrical transformation about the origin. Combined with the influence of Π
on the classical part of the state Equation (21)’s Wigner function, it is found that the change
of Π will induce the distribution of the quantum state Equation (21) in the phase space to
produce a rotation of π angle.

In Figure 1, we have plotted the interference fringes of Equation (31) in a certain region
of the phase space. One can find that the negative value and the positive value area in the
phase space will be exchanged when the parity parameter Π changes.
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The inner product between
∣∣Ψ(τ = 2π)odd,α

〉
1/8 and |Ψ(τ = 2π)even,α〉1/8 is

∣∣∣∣1/8
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Figure 1. The quantum interference part of the Wigner function of quantum state Equation (21). The
initial-state parameter of the BEC is α = 5. The impurity number parity are chosen as (a) Π = 1 and
(b) Π = −1.

The Wigner function of the two-component MQS state Equation (21) can be expressed
as the sum of classical term and quantum interference term [69,70]

W(z) = WC(z) + WQ(z). (27)

Figure 1. The quantum interference part of the Wigner function of quantum state Equation (21). The
initial-state parameter of the BEC is α = 5. The impurity number parity are chosen as (a) Π = 1 and
(b) Π = −1.

For multi-component cases, the Wigner function of state Equation (18) can be ex-
pressed as

Wk(z; Παk) =
2
π

exp
(
− 2
∣∣∣x−Παx

k + i
(

y−Πα
y
k

)∣∣∣
2
)

, (33)

Wjk
(
z; Παj, Παk

)
=

2
π

exp


−2

∣∣∣∣∣x−Π
αx

k + αx
j

2
+ i

(
y−Π

α
y
k + α

y
j

2

)∣∣∣∣∣

2


× cos
[
2Π
(

xα
y
k − yαx

k

)
− 2Π

(
xα

y
j − yαx

j

)
+ ξk − ξ j + αx

k α
y
j − α

y
k αx

j

]
, (34)
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W(z; Πα1, · · · , ΠαP) =
1
P




P

∑
k=1

Wk(z; Παk) + 2
P

∑
j,k=1
j>k

Wjk
(
z; Παj, Παk

)

, (35)

where αx
k(j) = Re

[
αk(j)

]
and α

y
k(j) = Im

[
αk(j)

]
. Through a series of tedious mathematical

calculations, according with Equations (33)–(35), we first found that the transformation of Π
will induces the distribution of the MQS states in the phase space to produce a rotation of π
angle for any number of superposition components. Especially in the two-component case,
one can discover the peaks or deeps displacement of the quantum interference fringes in
the Wigner function takes place with an increasing number of impurities. The fundamental
reason behind it is that the change in the parity of the impurity atom number causes the
quantum interference fringes to rotate by the angle π around the origin of the phase space.

Secondly, according to Equations (34) and (35), we found that the number of inter-
ference terms in the Wigner function is related to the impurity-BEC coupling strength κ
when the kerr nonlinearity strength λ inside the BEC is fixed. Specifically, P-component
MQS state has P(P− 1)/2 interference terms. Each interference term will form an obvi-
ous interference region within a certain phase space region. Thus, the value of P can be
determined by the number of interference regions in the phase space. Then, the value of
κ can be obtained by the ratio λ/κ = 1/2P, where λ can be treated as a constant. Hence,
the quantum interference patterns are very sensitive to the number of impurity atoms and
impurity-BEC coupling strength. In this sense, the quantum interference patterns in the
phase space provide a possible way to probe the parity of the impurity atom number in the
BEC and impurity-BEC coupling strength.

4.2. The Transition between Classic Mixed and Quantum Superposition

The transformation between classic and quantum is a fundamental problem of quan-
tum theory. In this section, we will show that the switching of impurity number parity Π
induces the transition of the BEC’s state between classic mixed and quantum superposition.
The state of BEC at time t can be obtained by tracing out the impurity part from the wave
function |Ψ(t)〉, which is the wave function of impurities-doped BEC system at time t. Then
the BEC state at time t is given by

ρB(τ) =
1
2

e−|α|
2

∞

∑
n,m=0

eiθnmτ βnβ∗m + β∗nβm
√

n!m!
|n〉〈m|, (36)

where we have defined the scaled time τ = κt and parameter θnm and β as following

θnm =
λ

κ

(
m2 − n2

)
, (37)

β = α exp(iτN/2). (38)

Firstly, we assume that the scaled time τ = π and self-interaction strength λ = 0.5κ in
the BEC. Then, the density operator ρB(τ) can be rewritten as

ρB(π) =
1
2

e−|α|
2

∞

∑
n,m=0

ei π
2 (m2−n2)

(
αei πN

2

)n(
αe−i πN

2

)m
+ c.c.

√
n!m!

|n〉〈m|. (39)

If N is odd number, N can be rewritten as N = 2k + 1 (k ∈N), ρB(π) can be simpli-
fied as

ρodd
B (π) =

1
2
(|iα〉〈iα|+ |−iα〉〈−iα|). (40)
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When N is even number, N can be rewritten as N = 2k (k ∈N), ρB(π) can be simpli-
fied as

ρeven
B (π) = |Ψeven

B (π)〉〈Ψeven
B (π)|, (41)

and

|Ψeven
B (π)〉 = 1

2

[
(1− i)

∣∣∣(−1)kα
〉
+ (1 + i)

∣∣∣(−1)k+1α
〉]

, (42)

where superscript odd(even) of ρ
odd(even)
B (π) expresses that the quantity of impurity atoms

N is an odd(even) number. One can find that ρodd
B (π) is a classical mixed state, while

ρeven
B (π) is a pure two-component MQS state. The difference in preconditions between

ρodd
B (π) and ρeven

B (π) only is the difference of parity of impurities N. Thus, the parity
switching of quantity N of impurities induces the transition between MQS states and
classical mixed states in this case.

In order to show more clearly the influence of the parity of impurity number N on
the BEC state C-Q(Classic-Quantum) transformation, we will calculate the degree of non-
classicality for the states Equations (40) and (42). According to [69,70], the non-classicality
for some states can be precisely quantified by the volume V of the negative part of the
Wigner function. And V is defined by the following integral formula

V =
1
2

∫ ∫
dqdp[|W(p, q)| −W(p, q)], (43)

where q and p are position and momentum, respectively.
Here, in Figure 2, we plot the negative volume V as a function of the BEC initial

coherent state parameter α for different parity of N by using numerical evaluation to
complete it. "even" and "odd" in the legend indicate that the number of impurity atoms N
is even number and odd number, respectively. Figure 2 clearly shows that the non-classical
degree of Equation (40) disappears when N is an odd number. This quantity vanishes
whenever the Wigner function is positive. However, when N takes an even number, the
non-classical degree of Equation (42) gradually increases with the increase of α until limit
value V = 0.32. In Figure 3, we plot the Wigner function of quantum state Equations (42)
and (40). One can easily find that the Wigner function in Figure 3a has some negative parts,
which corresponds to the non-classical nature of the state Equation (42). However, the
Wigner function of Equation (40) in Figure 3b is positive semidefinite, which is attributed
to the fact that state Equation (40) is a classical mixed state. The existence of non-classical
degree is an intuitive manifestation of the characteristics of quantum superposition. To
a certain extent, the parity of impurity number can determine the degree to which the BEC
wave function deviates from the classic world.

0 1 2 3 4 5 6
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0.1
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0.3

N
e

g
a

ti
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m

e
 V   even

  odd

Figure 2. Negative volumes V of Wigner function of ρeven
B (π) and ρodd

B (π) as a function of the
parameter α. The number of impurity atoms N are even number and odd number corresponding to
red solid and blue dashed line.
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Figure 3. The Wigner function of quantum state Equations (42) and (40) plotted with different values
of impurity atom number N. The initial-state parameter of the BEC is α = 3. The number N of
impurity atoms in figure (a,b) are even number and odd number, respectively.

5. Fast Generation of High-Fidelity MQS States in Open Systems

No quantum system is totally isolated. The interaction between the quantum system
and the environment will occur in dynamic evolution. Then, this interaction will cause
decoherence in the quantum system. In this section, we take into account the influence of
the BEC decoherence on the generation of MQS states. In the present case, we assume the
weak environment coupling and the Born-Markov approximation. The BEC is connected
with a vacuum bath. The dominant decoherence source of the BEC is the atom loss due to
inelastic collisions. When the BEC decoherence is considered, the dynamic evolution of the
system is described by the master equation [48,71–73]

ρ̇ = − i
h̄
[H, ρ] + L(ρ), (44)

where the superoperator L(ρ) is given by

L(ρ) = γ

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
, (45)

and γ is the decay factor of the BEC, a is the BEC annihilation operator. The master equation
and the reduced density operator ρB(t) = Trimpurity[ρ(t)] of the BEC matter field both can
be calculated by Qutip [74,75].

In order to further confirm the degree of deviation of the generated state from the
target state caused by BEC decoherence, the fidelity between the generated BEC state ρB
and the target state |Ψ(τ = 2π)N,α〉 is introduced by

F =
〈

Ψ(τ = 2π)N,α

∣∣∣ρB

∣∣∣Ψ(τ = 2π)N,α

〉
. (46)

Figure 4 shows that the fidelity between the generated state ρB and the target state
|Ψ(τ = 2π)N,α〉 will decreases with the increase of decay factor γ. So, the increase of the
parameter γ is not conducive to the generation of the target MQS states. Given the negative
effect of the environment on the generation of target MQS states, we will propose a scheme
to reduce the influence of BEC decoherence so that the MQS states can be generated closer
to the target states.

Taking the generation of the two-component MQS state as example, the preconditions
of generating two-component MQS state Equation (21) are scaled time τ = κt = 2π and
ratio λ/κ = 1/4 in our case. One can find that the increase of impurities-BEC interaction κ
and keeping the ratio λ/κ = 1/4 can shorten the actual time, which is required to generate
Equation (21). The significantly shortened generation time allows us to achieve such states,
which will be closer to the target state, within a typical coherence time of the system under
BEC decoherence. After a certain numerical evaluation, Figure 5 shows that the increasing
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of κ can effectively enhance the fidelity between target state Equation (21) and the generated
BEC state ρB(2π/κ) when BEC decoherence is considered.

Figure 4. (Color online) The fidelity F as a function of γ at time t = 2π/κ. The other parameters are
the same as Figure 1.
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The enhancement of the impurity-BEC interaction can reduce the actual time, which is
required to generate the MQS state. The physical mechanism behind it is that the period of
entanglement between impurities and BEC is inversely proportional to κ when the quantity
of impurity is fixed. Therefore, the increase of κ will lead to the advance of decoupling.
Firstly, accelerating decoupling is conducive to the fast generation of MQS states. Secondly,
the influence of the environment on the quantum system is a kind of accumulative effect in
quantum system dynamic evolution processes. The fast generation [53] of MQS states can
reduce the negative effect of the environment as far as possible. Thus, the quantum state ρB
will be accomplished faster and approach the target state |Ψ(τ = 2π)N,α〉 closer along with
the enhancing of κ. It is worth noting that the results in Figure 5 are independent of the
number N of impurity atoms. Because we have assumed in the previous discussion that
the time point of the completely decoupling between the BEC and the impurity is τ = 2π,
which is independent of the number N of impurity atoms. Since Figure 5 is obtained by
numerical calculation, we need to give a certain value of N to ensure the normal operation
of the program. Here, we assume N = 1. However, the acceleration of system dynamics
evolution can lead to the MQS live for a shorter time. Overcoming this flaw will also be
one of the problems we need to solve in the future.

Figure 6 shows that the fidelity F is periodic in closed system. The points of t = π/4
and t = 5π/4 are the moment of decoupling between impurity and BEC, where the fidelity
F = 1. This means that the distance between the target state and the generated state is zero
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at time t = π/4 and t = 5π/4. As the decoherence parameter γ increaseing, the overall
fidelity between the target and the generated states decreases in open system. Especially,
the fidelity at time t = 5π/4 is much lower than t = π/4 due to the accumulation effect
of the external environment. Thus, the fast generation of MQS states is beneficial to
improve fidelity.

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π
t

0

0.2

0.4

0.6

0.8

1.0
F

γ=0
γ=0.01
γ=0.02

Figure 6. The fidelity F as a function of time t at κ = 8. The other parameters are α = 10, λ/κ = 1/4,
and γ = 0 (red solid line), 0.01 (blue dashed line), 0.02 (green dotdashed line).

6. Conclusions

We have studied the engineering of MQS states in an impurities-doped BEC system,
which consists of BEC and N identical two-level immersed impurities. In our scheme, the
interaction between impurities and BEC is a kind of coherent collision. When the initial
states of impurities and BEC are GHZ state and coherent state, respectively, they are entan-
gled periodically in the process of dynamic evolution. After a full period, the entanglement
disappears, and the BEC is deterministically prepared in transient multi-component MQS
states. The number of superposition components of the MQS states is determined by the
ratio of the Kerr-type interaction within the BEC and the interaction between the impurities
and BEC. Macroscopic quantum superposition in other kerr-type systems [76,77] is one of
our future research directions. However, there are certain difficulties in preparing BEC to
coherent state at present. We look forward to overcoming this difficulty in the future.

The immersion of impurities provides a new controllable degree of freedom for the
manipulation of the MQS states. Firstly, a pair of approximately orthogonal CV cat states
can be prepared by changing the impurity number parity. Secondly, we have analytically
calculated the Wigner function of the BEC MQS states. The transformation of impurity
number parity will induces the distribution of the MQS states in the phase space to produce
a rotation of π angle for any number of superposition components. Thirdly, we have
numerically calculated the degree of non-classicality by the negative volume of the Wigner
function. The parity of the impurity number is the switch of the nonclassical degree of the
BEC state. The switching of impurity number parity induces the transition of the BEC state
between classic mixed and quantum superposition.

In the open system, the generation of MQS states is hindered. Due to the influence
of the environment, the fidelity between the actually generated state and the target state
will get worse. However, the interaction of impurities-BEC can reduce the influence of
the environment so that the robustness of the system is enhanced. Specifically, not only
is the fidelity improved, but also the preparation time is shortened with the increase of
impurity-BEC interaction strength. Our results obtained in the present paper provides
a versatile route to engineering MQS states of the BEC system through impurities.
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