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Abstract: Structured light fields have attracted much attention due to rich spatial degrees of freedom.
The tailoring of an arbitrary structured light field on demand is the precondition for the application
of structured light. Therefore, the computer holography method used to reconstruct a coherent
light field wavefront has been naturally applied for generating structured light. In this work, we
comprehensively demonstrate the principles and procedures of pure-phase computer-generated
holography (PP-CGH) and binary-amplitude computer-generated holography (BA-CGH) methods
for tailoring structured light, realized by two digitally programmable devices: liquid-crystal spatial
light modulators (Lc-SLM) and digital micromirror devices (DMD), respectively. Moreover, we first
compare the two approaches in detail and clarify the recipe to obtain a high tailoring accuracy and
efficiency, which will help researchers to better understand and utilize the holographic tailoring of
structured optical fields.

Keywords: structured light; computer-generated holography; beam shaping; spatial light modulators

1. Introduction

The spatial structure of light is a very important manipulation dimension of an optical
field, along with other physical degrees of freedom, such as time, amplitude, wavelength
(frequency), polarization and phase [1–3]. Thirty years ago, L. Allen pointed out that
vortex light beams carrying optical orbital angular momentum (OAM) led to a connection
between the OAM in quantum optics and the helical phase of the beam in physical optics [4].
The feature of optical OAM has attracted intense research on vortex beams [5,6], and has
triggered a flourish of development in the field of structured light [1,7–10]. In recent
years, structured beams have found important applications in optical communication,
optical trapping, imaging, optical sensing, etc. [11–14]. Those application scenarios, in
return, impose increasing highly demands on high-quality, flexible, robust and fast tailoring
techniques of structured light.

As a general tool to reconstruct a coherent light field wavefront, the computer holog-
raphy is naturally applied to tailor structured light fields [15–18]. Thanks to the recent
development of high-resolution, pixelated, programmable commercial spatial light modu-
lators, the combination of computer holography and spatial light modulators has opened
up a new and highly efficient route of structured light customization [19,20]. Specifi-
cally, the pure-phase computer-generated holography (PP-CGH) and binary-amplitude
computer-generated holography (BA-CGH) were implemented in two programmable de-
vices: liquid-crystal spatial light modulators (Lc-SLM) and digital micro-mirror devices
(DMD), respectively [21–24]. Various laser modes were created by the CGH method, in-
cluding the Laguerre–Gaussian beams, Ince–Gaussian beams and non-diffracting beams,
as well as cylindrically symmetric vector-vortex beams [24–28]. The CGH methods based
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on these two digital devices are widely used to tailor structured light due to their high
flexibility and excellent tailoring quality.

In this article, we describe the modulation principle and procedure of PP-CGH and BA-
CGH methods in detail. In addition, we theoretically analyze the relationship between the
tailoring accuracy and number of available pixels by taking vortex light as an example, and
point out the optimization route and modulation limit for the use of pixelated modulation
devices. Furthermore, to the best of our knowledge, we compare, for the first time, the
modulation efficiencies of two methods and clarify the reasons in detail. This work provides
a recipe for the tailoring of structured light using the CGH approach.

2. Materials and Methods

The Laguerre–Gaussian (LG) mode family that contains OAM is the most common
type of structured beams. We employed LG modes hereinafter to compare the digital CGH
methods based on Lc-SLM and DMD. The wave function of LG modes with zero radial
index can be indicated as [4,29]:
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2 is radius of Gaussian beam, ω0 is waist radius, zR = πω2/λ
is the Rayleigh length, λ is wavelength, r and φ are radial and angular coordinates in
the polar coordinate system, respectively, and k = 2π/λ and θGouy = tan−1(z/zR) are
wavenumber and Gouy phase, respectively. Notably, ` is the topological charge (TC) of
OAM beam, which contributes to the twisted phase. The LG modes have the most concise
phase structure at the beam waist (z = 0), which is favorable for the mode tailoring, and
can be reduced to:

LG`
0(r, 0) =

√
2

π|`|!
1

ω0

(√
2r

ω0

)|`|
exp

(
− r2

ω2
0

)
exp(i`φ) (2)

The intensity and phase pattern of OAM beams at beam waist plane are shown in
Figure 1. The sign ‘+’ and ‘−’ of TC (`) correspond to the phase growth along clockwise
and counterclockwise directions, respectively. Moreover, OAM beams with the same |`|
have same intensity distribution, and the beam radius is proportional to the square of the
beam quality factor.
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Figure 1. Intensity (top) and phase (bottom) pattern of LG mode with different TC (`).

As a universal tailoring method for scalar structured lights, CGH approach relies on
pixelated spatial light modulation device in experiment. The transfer function of PP-CGH
hologram for Lc-SLM is given by [22,24]:
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TSLM(x, y) = exp{iΨ[A, Φ + 2π(u0x + v0y)]}

=
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where A ∈ [0, 1] and Φ ∈ [0, 2π] are normalized amplitude and phase of target structured
light field, J−1

1 is inverse of 1st Bessel function C ≈ 0.681 and u0 and v0 are the reciprocals
of the linear grating period in x and y directions, respectively.

Similarly, the transfer function of BA-CGH hologram for DMD is given by [23,25]:

TDMD(x, y) =
1
2
+

1
2

sign〈cos[Φ + 2π(u0x + v0y)] + cos{arcsin[A]}〉 (4)

Detailed derivations of Equations (3) and (4) can be found in Appendices A and B. By
calculating Equation (3) over a discrete complex amplitude of light field, a phase matrix
was obtained whose element corresponds to pixel position on the Lc-SLM screen. Then,
a PP-CGH hologram that creates LG beams could be generated. The same applies for
binary amplitude matrix of the DMD. The generation procedures of PP-CGH (top row) and
BA-CGH (bottom row) of LG10

0 are shown in Figure 2, which visually demonstrates the
calculation process of Equations (3) and (4).
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Figure 2. An example of constructing CGH hologram, (a–d) are construction method for PP-CGH
(where J−1

1 is inverse of 1st Bessel function), (e–h) are construction method for BA-CGH and (d,h)
are phase gray hologram and binary amplitude hologram of LG10

0 , respectively.

Note that the linear grating 2π(u0x + v0y) in Equations (3) and (4) is used to separate
the input light into different orders, as shown in Figure 3a,b. When a planar wave illumi-
nates the PP-CGH or BA-CGH of the target optical field LG10

0 as inserted in Figure 3c, the
far-field of modulated light has multiple spatially separated orders with different patterns,
as shown in Figure 3c. By extracting the +1 order, we obtained the desired LG10

0 beam, with
the simulated results shown in Figure 3d,e for PP-CGH and BA-CGH method, respectively.
To avoid the overlapping of target beam and other beams, one can increase the frequency
of diffraction grating and thus enlarge the spacing between diffraction orders.
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Figure 3. Schematic diagram of PP-CGH and BA-CGH for generating structured light. (a,b) show that
the input beam is modulated and diffracted into multiple orders for the binary amplitude hologram
and phase gray hologram, respectively. (c) shows the partially separated orders on the far-field
pattern of binary amplitude or phase gray diffracted hologram of LG10

0 mode by illuminating a plane
wavefront, while the intensity and phase of target beam are inserted in the upper left corner. (d,e)
shows the reconstructed intensity and phase by extracting the +1st diffraction order for PP-CGH and
BA-CGH, respectively.

3. Results and Discussion

In order to estimate the generation method of a structured light field, there are two
crucial issues to keep in mind. First, one should examine whether the target structured light
field can be generated perfectly, and, if not, how to obtain the highest possible tailoring
precision. Second, one should check the generation efficiency of a target structured light
field and the room for improvement. Hereinafter, we use LG`

0 modes as an example to
analyze and compare the results of PP-CGH and BA-CGH methods in details.

3.1. Precision of Holographic Tailoring

The methods based on BA-CGH and PP-CGH can perfectly tailor arbitrary scalar
structured light fields in theory. However, since the DMD and Lc-SLM are pixelated
devices, the finite limit of resolution degrades the quality of the reconstructed beam both in
the simulation and experiment. The complex amplitude correlation degree between the
reconstructed field and theoretical field can be used as an efficient indicator to evaluate the
reconstruction quality [30,31], as given by:

γ =

∫∫
E∗s (x, y)Et(x, y)dxdy√∫∫

|Es(x, y)|2dxdy
∫∫
|Et(x, y)|2dxdy

(5)

where Et(x, y) and Es(x, y) are theoretical and simulated light fields from reconstruction,
respectively, and sign ‘∗’ means the conjugate. γ = 0 indicates that both fields are orthogo-
nal, whereas γ = 1 indicates that they are identical. γ with a larger value implies a better
reconstruction quality.

Importantly, to alleviate the deterioration in reconstruction quality due to a limited
resolution, one can increase the number of effectively utilized pixels of the spatial light mod-
ulator. Figure 4 illustrates the azimuthal phase discretization of LG1

0, and the reconstructed
results under different available pixel numbers. The blue circles in Figure 4a mark the
sampling regions of a 40× 40 phase diagram at different radius proportions (25%, 50% and
80%). Figure 4b displays the corresponding discretized azimuthal phase of LG1

0, whereas
Figure 4c shows the intensity distribution with corresponding radii. Figure 4d shows the
reconstructed intensity and phase, with the value of γ shown in the upper left corner of
each subfigure. It can be seen that employing a more discretized azimuthal phase—that is,
more pixels are utilized in the light field—results in a more accurate reconstruction. The
complex amplitude correlation degree of the reconstructed field at 31, 62 and 100 pixels
are 0.86, 0.95 and 0.97, respectively. In addition, the OAM spectrum shown in Figure 4e
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demonstrates that the 80% aperture has the best performance in suppressing the other TC
(` 6= 1) components, leading to the least OAM inter-mode crosstalk. For a target light field
that is located closer to the coordinate origin, fewer pixels can be utilized, thereby suffering
from more severe deterioration in the reconstruction. As such, it is necessary to make full
use of available pixels when using the pixelated spatial light modulator.
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Figure 4. Schematic of reconstructed vortex beam under discretized azimuthal phase. (a) The phase
sampling in a finite resolution (40× 40) phase diagram, (b) the discretized azimuthal phase with
different pixels, (c) intensity of the vortex light field with different radii, where (d,e) are the intensity,
phase and OAM spectrum of the reconstructed field. (b1–e1, b2–e2 and b3–e3 correspond to the
optical field radius proportion of 25%, 50% and 80%, respectively, relative to the computational
aperture).

In addition to resolution, the phase structure of the beam itself also affects the modula-
tion quality. For a phase distribution with a more drastic phase change, a higher resolution
is required to reconstruct the light field. We calculated the complex amplitude correlation
degree of reconstructed field for nine LG`

0 modes [LG9
0, LG17

0 , LG25
0 , LG33

0 , LG41
0 , LG49

0 , LG57
0 ,

LG65
0 , LG63

0 ] in 10 types of resolution settings [40 × 40, 80 × 80, 120 × 120, 160 × 160,
200 × 200, 240 × 240, 280 × 280, 320 × 320, 360 × 360, 400 × 400]. The diameter of the vor-
tex light of different TCs is equal to 50% of the calculated surface size. Therefore, the num-
bers of available pixels corresponding to different resolutions are 1× 62, 2× 62, . . . , 9× 62
and 10× 62, respectively. The complex amplitude correlation degree γ in Figure 5 indicates
that, as the TC increases, the tailoring accuracy reduces at the same number of pixels,
whereas, for the same TC, enlarging the number of available pixels enhances the tailoring
accuracy. Note that γ has a nonlinear variation trend versus the number of available pixels
utilized. For the case of ` = 41, γ is always less than 10% with the available pixel number
below 310, then grows to 62% at 440 pixels, reaches 83% at 502 pixels and increases further
to 93% at 565 pixels. Thus, one may need 11, 13 and 14 available pixels in a 2π phase
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range to reconstruct the field with the value of γ over 70%, 80% and 90%, respectively. As
a result, it is estimated that a vortex beam with TC as high as 300 can be generated with
γ > 70% by fully utilizing a SLM resolution of 1920 × 1080 pixels. In addition, the complex
amplitude correlation degrees of PP-CGH and BA-CGH methods are almost the same for
all simulated cases, with the average difference less than 1%. In this regard, two devices
are interchangeable when only considering the tailoring quality of the beam field.
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Figure 5. The complex amplitude correlation degree of vortex beam versus different TCs and different
available pixel numbers for PP-CGH (a) and BA-CGH (b).

3.2. Efficiency of Holographic Tailoring

In this subsection, we focus on the modulation efficiency of two methods. As stated
above, the digital holographic tailoring methods require the illumination of a planar light
wave on the CGH hologram. The efficiency of holographic tailoring can be expressed as
the energy of +1st order (target beam, in Figure 3c) P+1 divided by the energy of the input
planar wave within the computational aperture Pin:

ηmod =
P+1

Pin
(6)

where mod denotes PP and BA for PP-CGH and BA-CGH methods, respectively.
We calculated the holographic tailoring efficiency for vortex light (TC = 0 to 10) at a

spatial resolution of 400× 400, where the beam spot radius covers 628 azimuthal pixels on
the spatial light modulator. In this condition, the complex amplitude correlation degrees
for all tailored vortex optical fields exceed 95%. The tailoring efficiencies of PP-CGH and
BA-CGH in Figure 6a,b demonstrate that the efficiency increases with TC for both PP-CGH
and BA-CGH methods; and PP-CGH has a tailoring efficiency that is three times as large as
that of BA-CGH for all cases with different TCs.

Furthermore, we show that the energy of target field PA(x,y), where A(x, y) are
amplitude-normalized LG`

0 modes, reduces rapidly as the TC reduces, as illustrated in
Figure 6c, where the ratio is the energy of the target field divided by the energy of the input
planar wave (consistent) within the computational aperture. In addition, it is interesting
that the extraction efficiency (P+1/PA(x,y)) is consistent against varying TC, as shown in
Figure 6d, which suggests that the tailoring efficiency depends mainly on the intensity
distribution of the target light field itself when using the holographic modulated tailoring
of PP-CGH and BA-CGH. It is shown that approximately 30% and 10% of energy within
the covering area of the target beam on the modulator can be converted to the target light
field at the far field, using PP-CGH and BA-CGH methods, respectively.
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Figure 6. Tailored efficiency of holographic generation for vortex beams. (a) Bar chart of tailoring
efficiency for PP-CGH and BA-CGH methods, (b) ratio of tailoring efficiencies of two methods, (c) the
ratio of target light field energy to energy within the computational aperture and (d) extraction
efficiency of target light field for PP-CGH and BA-CGH methods.

The discrepancy between the two methods in term of the tailoring efficiency can be well
explained by reviewing the structured light tailoring principles. Figure 7a,e illustrate the
intensity and phase distribution of the target beam (` = 10). Figure 7b–d are the modulated
normalized light field distribution of input light, zero order and +1st order in the PP-CGH
method, respectively. Figure 7c shows that 68% of the energy of the input light is directly
tailored in the covering region of the target beam on the modulator. Then, 45% of the
tailored energy is distributed to +1st order (the target beam), whereas the other 45% is
located at the −1st order and the other 10% is located at the higher order. In total, the
reconstructed beam obtains 100%× 68%× 45% ≈ 30% of the energy of the target area (as
shown in Figure 7d). In contrast, Figure 7f–g are the normalized distribution of modulated
light, zero order and +1st order in the BA-CGH method, respectively. Only half the energy of
the input light within the target area is modulated due to 0/1 grating, as shown in Figure 7f.
Then, approximately 50% of the modulated energy remains at zero order, whereas the other
45% is equally divided into the +1st order (target beam) and −1st order, and the other 10% is
located at the higher order, as indicated in Figure 7g. In total, the reconstructed beam obtains
100%× 50%× 50%× 45% ≈ 11% of the energy of the target area, as shown in Figure 7d. In
this regard, to achieve a higher tailoring efficiency, we need to cover the modulation area with
the target light field as much as possible, or make the input light match the size of the target
light field to distribute more energy into the target beam.



Photonics 2022, 9, 506 8 of 12

Input (modulated) Zero order +1 orderTarget field
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Figure 7. Schematic of tailoring of vortex beams (` = 10) with PP-CGH and BA-CGH methods,
(a) energy of target is 100%, (b–d) and (e–g) are the modulated normalized light field distribution
of input light, 0th order, and +1st order in the PP-CGH and BA-CGH method, respectively, while
extraction efficiencies (inserted in upper right coner) of PP-CGH method and BA-CGH method are
30% and 11%, respectively.

3.3. Discussion

The above analysis indicates that the two methods have a similar tailoring quality.
However, in terms of the modulation efficiency, the efficiency of BA-CGH is only ap-
proximately one third that of PP-CGH. In addition, the devices for realizing PP-CGH
and BA-CGH tailoring have their own characteristics in terms of cost, modulation speed,
wavelength and polarization, as compared in Table 1. It is shown that structured light
tailoring with an amplitude binary mask in DMD has a much faster modulation speed
and moderately lower cost, which is beneficial to wider application scenarios. In addition,
there are other parameters characterizing the digital devices, e.g., in the case of Lc-SLM:
diffraction efficiency, number of gray levels/phase levels that can be addressed and fill
factor; and, in the case of DMD: diffraction efficiency and fill factor, which can mildly
influence the tailoring performance.

Table 1. Comparison of Lc-SLM and DMD for structured light tailor.

Modulator Lc-SLM DMD

Traits

Low refresh rate (50–500 Hz);
polarization-sensitive;
wavelength-sensitive;

temperature-sensitive; relatively high
efficiency(≤20%); expensive

High refresh rate (10 kHz–30 kHz);
polarization-insensitive;
wavelength-insensitive;

temperature-insensitive; low
efficiency(≤5%); relatively cheap

4. Conclusions

In summary, we have comprehensively demonstrated the structured light tailoring
methods for PP-CGH and BA-CGH and the corresponding tailoring accuracy and efficiency.
In theory, both methods can theoretically tailor arbitrary structured light perfectly. However,
in practical applications, pixelated modulation devices introduce tailoring error and loss.
We theoretically summarize the relationship between the tailoring accuracy and modulated
pixel for the example of a vortex beam, and point out the optimization route and tailoring
limit for the use of pixelated modulation devices. In addition, we demonstrate that PP-CGH
has a tailoring efficiency three times that of BA-CGH. We conclude that one should always
make the target beam cover as many pixels as possible on the modulator plane to obtain a
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higher tailoring accuracy and efficiency. This analysis will help researchers better use the
digital holography method to achieve customized structured optical fields.
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Appendix A. Generation of Pure Phase Holograms

Mathematically, a scalar structured light consists of spatially non-uniform amplitude
and phase components, as expressed by:

E(x, y) = A(x, y) exp[iΦ(x, y)] (A1)

where A(x, y) ∈ [0, 1] are the normalized amplitude function, Φ(x, y) ∈ [−π, π] are the
phase function. Thus, the complex amplitude values of the target optical field E(x, y) fall
into a set of complex numbers with a modulus equal to or less than 1. The transmission
function of a pure phase hologram depends entirely on the amplitude A(x, y) and phase
functions Φ(x, y), which are described as Ψ[A(x, y), Φ(x, y)]. Then, the Fourier series
expansion of a plane wave modulated by a phase hologram can be expressed as:

M(x, y) = exp{iΨ[A(x, y), Φ(x, y)]} =
∞
∑

q=−∞
cA

q exp[iqΦ(x, y)]

cA
q = 1

2π

π∫
−π

M(x, y) exp[−iqΦ(x, y)]dΦ
(A2)

where cA
q are coefficients of Fourier series, the phase function of the target field obtained

in the +1st order Fourier series. Therefore, we can obtain the complete target field when
the +1st order Fourier series coefficients satisfies cA

1 = CA (C is an arbitrary number).
Substituting this condition into Equation (A2), we have:

CA =
1

2π

π∫
−π

exp[iΨ(A, Φ)− iΦ]dΦ (A3)

Since the left side of the equation is a real function, the complex integral expansion of the
right side has:

π∫
−π

sin[iΨ(A, Φ)− iΦ]dΦ = 0

π∫
−π

cos[iΨ(A, Φ)− iΦ]dΦ =2πCA
(A4)
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In this way, one know that the pure phase hologram Ψ[A(x, y), Φ(x, y)] is oddly
symmetric with variable Φ. Therefore, we can assume that the pure phase hologram is
Ψ(A, Φ) = sin Φ× f (A). Re-substituting this assumption into Equation (A2), we obtain

cA
q =

1
2π

∞∫
−∞

exp{iΨ[sin Φ× f (A)]− iqΦ}dΦ (A5)

The coefficients of the Fourier series can be derived as cq
A=Jq[ f (A)], where Jq is the

qth Bessel function and the +1st order coefficients can be derived as cA
1 =CA, leading to

the maximum value of C satisfying A = J1[ f (A)]/C is approximately C = 0.582. Thus,
the amplitude function can be expressed as f (A) = J−1(CA), and the phase hologram is
obtained as

Ψ[A(x, y), Φ(x, y)] = sin ΦJ−1
1 (CA) (A6)

Here, we have obtained the target field at +1st order Fourier series. However, all diffraction
orders are spatially overlapping. A simple way to separate the target beam from the
other orders is to add different spatial frequencies into different orders, which is shown as
follows:

MSLM(x, y) = exp{iΨ[A, Φ + 2π(u0x + v0y)]}

=
∞

∑
q=−∞

cA
q exp[iqΦ(x, y)] exp[iq(u0x + v0y)]

= exp
{

i sin[Φ + 2π(u0x + v0y)]J−1
1 (CA)

} (A7)

It can be seen in the above equation that, when a linear grating is superimposed on the
phase function, each of the Fourier terms in the expansion corresponds to a linear grating
with an integer multiple of the relative initial linear grating period, respectively, meaning
that each Fourier term corresponds to a separate transmission direction. Therefore, we can
extract the +1st order that contains the components of the target beam.

Appendix B. Generation of Binary Amplitude Holograms

In contrast to the pure phase hologram of Lc-SLM, the binary amplitude hologram
construction of DMD is directly related to the classical holographic method. We start
from the holographic technique, which is centered on the interference pattern between the
reference light wave (tilted plane wave, R(x, y) = R exp(−i2πx/T)) and the object light
wave (target light field, E(x, y) = A(x, y) exp[iΦ(x, y)]). The method of reconstructing the
target light field is to illuminate the interference hologram by a reference beam, so that the
diffracted beam contains components of the target optical field. The transmittance function
of the interference hologram is

t(x, y) = |R(x, y) + E(x, y)|2

= |exp(−i2πx/T) + A(x, y)exp[iΦ(x, y)]|2

= R2 + E2(x, y) + 2RA(x, y) cos[2πx/T + Φ(x, y)]

(A8)

The third term in Equation (A8) contains all of the information of the reference light
and target light, which can be used for the target field reconstruction. The amplitude
function 2RA(x, y) cos[2πx/T+Φ(x, y)] is binarized by a zero threshold that the negative
and positive values are reset as 0 and 1, respectively. The binary amplitude hologram is
given by

T1(x, y) =
{

1, cos[2πx/T+Φ(x, y)] ≥ 0
0, cos[2πx/T+Φ(x, y)] < 0

(A9)

where the information of the amplitude of the target beam in the amplitude function is lost.
In principle, the phase and amplitude of the light can be modulated simultaneously by
adjusting the local parameters of the binary amplitude hologram. While keeping the spatial
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periodicity of the binary amplitude hologram constant, the target amplitude is introduced
as the bias term of the binary amplitude hologram to obtain the target amplitude and
phase results in the diffracted beam. We set the target amplitude dependent function
f [A(x, y)] = cos[πq(x, y)] as the bias function in Equation (A9), which can be rewritten as

T2(x, y) =
{

1, cos[2πx/T+Φ(x, y)]−cos[πq(x, y)] ≥ 0
0, cos[2πx/T+Φ(x, y)]−cos[πq(x, y)] < 0

(A10)

The Fourier series of the binary amplitude hologram in Equation (A10) is expressed as

T2(x, y) =
∞

∑
m=−∞

[
sin πmq(x, y)

πm

]
exp

{
jm
[
2πx

/
T+Φ(x, y)

]}
(A11)

where the phase part of the +1st order Fourier series is exactly the same as the target func-
tion, and the corresponding +1st order coefficient is sin[πq(x, y)]/πm. If sin[πq(x, y)]/π =
CA(x, y), which is a constant condition. At this point, it is possible to obtain the target com-
plex amplitude light field at the +1st order Fourier series, and the corresponding bias func-
tion can be written as cos[πq(x, y)] cos{arcsin[A(x, y)]} for C=1/π. Thus, Equation (A9)
can be rewritten as

T2(x, y) =
{

1, cos[2πx/T+Φ(x, y)]−cos{arcsin[A(x, y)]} ≥ 0
0, cos[2πx/T+Φ(x, y)]−cos{arcsin[A(x, y)]} < 0

(A12)

In this method, the phase and amplitude of the target optical field are recorded by the
position and width of the stripe along the tilted reference optical wave direction. The hard
threshold in Equation (A12) is expressed as a symbolic function of

1
2
+

1
2

sign(x) =
{

1, x ≥ 0
0, x < 0

(A13)

Thus, the transmission function of the binary hologram of the DMD can be further
expressed as

TDMD(x, y) =
1
2
+

1
2

sign〈cos[Φ + 2π(u0x + v0y)] + cos{arcsin[A(x, y)]}〉 (A14)

where u0x + v0y represents any direction of the tilted reference optical wave. The binary
amplitude modulation of DMD in Equation (A14) is similar to the pure phase modulation
of SLM in Equation (A7), where the target optical field can be obtained by the +1st order
diffraction of the Fourier series of the binary amplitude hologram.
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