
Citation: Wang, H.; Wang, J.; Yang,

H.; Deng, G.; Yang, Q.; Niu, R.; Gou,

Y. The Effect of Non-Uniform

Irradiation on Laser Photovoltaics:

Experiments and Simulations.

Photonics 2022, 9, 493.

https://doi.org10.3390/

photonics9070493

Received: 31 May 2022

Accepted: 12 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Communication

The Effect of Non-Uniform Irradiation on Laser Photovoltaics:
Experiments and Simulations
Hao Wang 1, Jun Wang 1,2,*, Huomu Yang 1, Guoliang Deng 1, Qingdong Yang 1, Ruijun Niu 1 and Yudan Gou 1

1 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China;
wanghao6@stu.scu.edu.cn (H.W.); scuyhm@scu.edu.cn (H.Y.); gdeng@scu.edu.cn (G.D.);
yangqingdong@stu.scu.edu.cn (Q.Y.); niuruijun@stu.scu.edu.cn (R.N.); gouyudan@scu.edu.cn (Y.G.)

2 Suzhou Everbright Photonics Co., Ltd., Suzhou 215000, China
* Correspondence: wjdz@scu.edu.cn

Abstract: Laser wireless power transmission (LWPT) has various applications for mobile devices and
specific equipment under extreme conditions. The light spot received by laser photovoltaics is usually
non-uniform, resulting in system efficiency reduction. The output characteristics of 1 × 1 cm2 GaAs
laser photovoltaics were measured under various illuminated areas. The experimental results showed
that the efficiency decreased from 40.8% at the full irradiated area to 26.7% at 1/10 irradiated area.
Furthermore, the drop in short-circuit current was the main factor for decreasing the efficiency. A
three-dimensional (3D) finite element model was used to investigate this factor. The simulation results
indicated that non-uniform irradiation could increase the total non-radiative recombination rate. The
recombination rate of the absorption region increased from 6.0 × 1020 cm−3/s to 2.5 × 1021 cm−3/s,
reducing the short-circuit current.

Keywords: non-uniform illumination; GaAs laser photovoltaics; laser wireless power transmission

1. Introduction

Laser wireless power transmission (LWPT) has the outstanding advantages of high
transmission power density, high immunity to electromagnetic interference, and good
mobile flexibility, which is suitable for continuous power supply for mobile devices such as
unmanned aerial vehicles, airships, and robots [1–4]. Unlike PV devices, which transform
sunlight into electricity, laser photovoltaics convert monochromatic light into electrical
power. The laser beam is often non-uniformly irradiated on the laser photovoltaics, limiting
the system conversion efficiency. As the basic unit of the laser receiving system, the output
performance of laser photovoltaics determines the overall system efficiency. Therefore, it is
of great scientific and practical value to study the effects of non-uniform illumination on
laser photovoltaics output performance.

In fact, laser power transmission systems primarily use two transmission media: one
that transmits optical power via optical fibers (power-over-fiber) and the other, which
transmits optical power through free space or the atmosphere (wireless systems). Carlos
Algora et al. provided a theoretical model for GaAs laser photovoltaics under non-uniform
irradiation [5]. Their research revealed that non-uniform irradiation decreased laser photo-
voltaics conversion efficiency by increasing series resistance. Christopher E. Valdivia et al.
changed the uniformity of the spot by modulating the full width at half maxima (FWHM)
of the Gaussian beam [6]. He discovered that non-uniform irradiation degraded laser
photovoltaics performance, primarily caused by fill factor reduction due to lateral current
spreading. Yuki Komuro et al. also reported that non-uniform luminous flux distribution
decreased photovoltaic conversion efficiency by reducing the fill factor [7]. Furthermore, in-
creased lateral spreading resistance resulted in a decrease in fill factor. Although numerous
studies were conducted on the effect of spot uniformity on laser photovoltaics, the majority
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of them used optical fibers to transmit a Gaussian beam to the whole surface of laser photo-
voltaics and then adjusted the FWHM of the laser beam. However, changing the FWHM
of the Gaussian beam is mainly suitable for the application of power-over-fiber [8,9]. The
laser spot received by the laser photovoltaics is not Gaussian in wireless systems, and laser
spots may deviate from the laser photovoltaics center, resulting in extremely non-uniform
irradiation on laser photovoltaics [10].

Wireless systems’ inherent problems, such as transmission loss through the environ-
ment, human eye safety issues, and accurate alignment between light transmitter and
receiver, have led to little research. Some application scenarios are extremely important,
such as power supply for sensitive electrical equipment in areas of high electromagnetic
noise (nuclear plants) [9]. To simulate the above wireless systems, we tested the output
characteristics of laser photovoltaics under non-uniform illumination. Luminous flux dis-
tribution on laser photovoltaics was changed by modulating the baffle position. Therefore,
the purpose of this work is to analyze the fundamental reason for laser photovoltaics
performance degradation caused by the non-uniform spot.

2. Experimental Method and Results
2.1. Experimental Scheme

We used homemade 808 nm single-junction GaAs laser photovoltaics (area: 1 × 1 cm2),
combined with a temperature-controlled platform for the experiments, and the test platform
is shown in Figure 1.
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Figure 1. The test platform of laser photovoltaics.

The laser beam was generated by an 808 nm semiconductor laser, and the output
power was always set to 1 W. After fiber transmission, the beam entered the fiber collimator
and became the Gaussian spot. Then, the homogenizer converted the Gaussian spot into
a square flat-topped spot with nearly uniform energy distribution, as shown in Figure 2.
Finally, the laser beam was illuminated on the surface of the laser photovoltaics through a
45-degree reflector.

As shown in Figure 3, the irradiated area of the laser photovoltaics ranged from 100%
to 10% by controlling the displacement platform. The I–V curves of the laser photovoltaics
under different irradiated areas were tested by the four-probe technique using a Keithley
2400 digital source meter.
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2.2. Experimental Results and Discussion

To avoid experimental variation, multiple chips on the same wafer were selected for
the experiments. Figure 4 shows the I–V curves of the laser photovoltaics measured under
different irradiated area percentages.

Photonics 2022, 9, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 2. Light spot intensity distribution after homogenization. 

As shown in Figure 3, the irradiated area of the laser photovoltaics ranged from 100% 
to 10% by controlling the displacement platform. The I−V curves of the laser photovoltaics 
under different irradiated areas were tested by the four−probe technique using a Keithley 
2400 digital source meter.  

 
Figure 3. Test laser photovoltaics under different area irradiation percentages; (a) 20% irradiation; 
(b) 50% irradiation; (c) 90% irradiation. 

2.2. Experimental Results and Discussion 
To avoid experimental variation, multiple chips on the same wafer were selected for 

the experiments. Figure 4 shows the I−V curves of the laser photovoltaics measured under 
different irradiated area percentages. 

 
Figure 4. I−V curves under different illumination area percentages. 

The parameters, such as open−circuit voltage (Voc), short−circuit current (Isc), fill fac-
tor(FF), and maximum output power (Pm), were extracted from the I−V curves of multiple 
laser photovoltaics with different irradiated areas and plotted as box and whisker chart in 

Figure 4. I–V curves under different illumination area percentages.



Photonics 2022, 9, 493 4 of 10

The parameters, such as open-circuit voltage (Voc), short-circuit current (Isc), fill fac-
tor(FF), and maximum output power (Pm), were extracted from the I–V curves of multiple
laser photovoltaics with different irradiated areas and plotted as box and whisker chart
in Figure 5. Figure 5a showed that the Isc decreased from 0.436 A at 100% illuminated
area to 0.032 A at 10% illuminated area. Moreover, Isc varied linearly with the irradiation
percentage, mainly because it is proportional to the incident light intensity. Figure 5b
illustrated that the variation of Pm with illumination area corresponded to the variation of
Isc; Figure 5c showed that the Voc increased from 0.99 V at 10% illuminated area to 1.07 V
at 100% illuminated area. Besides, the Voc increased logarithmically with the increase of
irradiation percentage, mainly due to the logarithmic relationship between Voc and Isc,
as follows:

Voc =
nkT

q
ln
(

1 +
Iph

I0

)
(1)

where, n is the ideal factor, taken between 1 and 2. k is the Boltzmann constant, T is the
temperature, q is the electron charge, Iph is the photogenerated current, and I0 is the reverse
saturation current of the equivalent diode. Figure 5d showed that the FF decreased from
84% at 100% illuminated area to 78% at 10% illuminated area. It could be explained that
non-uniform irradiation caused a rise in series resistance, reducing FF [11,12].
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area irradiation (a) Isc; (b) Pm; (c) FF; (d) Voc. The box defines the 25th and 75th percentiles and the
median value of the set, the hollow square is the mean value, and the whiskers show the range.
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The incident laser power is reduced as the irradiated area decreases, lowering the
efficiency. Therefore, we performed another set of control experiments to distinguish
between the FF drop caused by non-uniform illumination vs that caused by the lower
intensity illumination. In this experiment, a laser photovoltaic was randomly selected. First,
as shown in Figure 6a, with a “full spot irradiation”, we tested the output characteristics
of laser photovoltaics when the power is changed from 100 mw to 1000 mw under full
spot irradiation. Then, as shown in Figure 6a with “scaled irradiation”, we tested the
output characteristics of laser photovoltaics under 1 W/cm2 when the irradiation area
varied from 10% to 100%. As shown in Figure 6a, FF reduction in “full spot irradiation”
only includes the factor of the lower intensity illumination, whereas FF reduction in
“scaled irradiation” includes two factors, non-uniform irradiation, and lower intensity
illumination; the difference between the two curves at the same power is FF drop caused
by non-uniformity. The larger the unilluminated region, the greater the reduction in FF.
Figure 6b showed that the efficiency decreased from 40.8% at the full irradiated area to
26.7% at 1/10 irradiated area, a reduction of 14.1%, resulting from a combination of the
reduced incident laser power and non-uniform irradiation. Comparing Figure 6b with
Figure 5c,d, it was found that variations in conversion efficiency corresponded to variations
in Voc and FF. In other words, the main factors decreasing laser photovoltaics conversion
efficiency were Voc and FF, which is consistent with the efficiency calculation equation:

η =
Pm

Pin
=

Im ∗Vm

Pin
=

Isc ∗Voc

Pin
∗ FF (2)

Photonics 2022, 9, x FOR PEER REVIEW 5 of 10 
 

 

includes the factor of the lower intensity illumination, whereas FF reduction in “scaled 
irradiation” includes two factors, non−uniform irradiation, and lower intensity illumina-
tion; the difference between the two curves at the same power is FF drop caused by 
non−uniformity. The larger the unilluminated region, the greater the reduction in FF. Fig-
ure 6b showed that the efficiency decreased from 40.8% at the full irradiated area to 26.7% 
at 1/10 irradiated area, a reduction of 14.1%, resulting from a combination of the reduced 
incident laser power and non−uniform irradiation. Comparing Figure 6b with Figure 5c,d, 
it was found that variations in conversion efficiency corresponded to variations in Voc and 
FF. In other words, the main factors decreasing laser photovoltaics conversion efficiency 
were Voc and FF, which is consistent with the efficiency calculation equation: 

m m m sc oc

in in in

P I V I V
FF

P P P
η ∗ ∗

= = = ∗  (2)

However, further analysis showed that the Voc was a function of the Isc, as shown in 
(1), and that the FF variation was caused by the series resistance, which affected the Isc 
[13]. We calculated the variation in series resistance by means of fitting and presented the 
value of series resistance in Table 1. The fitting method for calculated series resistance is 
described in Ref. [8] in detail. 

Table 1. Series resistance of laser photovoltaics under different laser illumination scales. 

Laser Illumination Scale 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 
series resistance (Ω) 0.32 0.44 0.46 0.49 0.69 0.74 1.02 1.54 2.23 5.17 

As a result, the most important reason for decreasing efficiency was the reduction of 
the Isc. To explain this experimental phenomenon, we developed a 3D model and analyzed 
the fundamental reason for the drop in Isc.  

 
Figure 6. A comparison of the output characteristics of laser photovoltaics under different irradia-
tion methods; (a) Fill factor; (b) Efficiency. 

3. Results Simulation Results and Discussion 
3.1. Theoretical Models for Numerical Simulations 

We used APSYS software to simulate the effect of non−uniform irradiation on the 
output performance of laser photovoltaics. The software contains typical physical models 
such as the heterojunction model, tunneling model, hydrodynamic model, and quantum 
mechanical fluctuation model, covering basic equations such as Poisson’s equation, cur-
rent continuity equation, hot carrier energy transport equation, quantum mechanical fluc-
tuation equation, and heat flow equation. The I−V characteristics of laser photovoltaics 
can be obtained by solving the Poisson equation and the current continuity equation un-
der certain boundary conditions [14]. The Poisson equation is as follows [14]: 

Figure 6. A comparison of the output characteristics of laser photovoltaics under different irradiation
methods; (a) Fill factor; (b) Efficiency.

However, further analysis showed that the Voc was a function of the Isc, as shown
in (1), and that the FF variation was caused by the series resistance, which affected the
Isc [13]. We calculated the variation in series resistance by means of fitting and presented
the value of series resistance in Table 1. The fitting method for calculated series resistance
is described in Ref. [8] in detail.

Table 1. Series resistance of laser photovoltaics under different laser illumination scales.

Laser Illumination Scale 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

series resistance (Ω) 0.32 0.44 0.46 0.49 0.69 0.74 1.02 1.54 2.23 5.17

As a result, the most important reason for decreasing efficiency was the reduction of
the Isc. To explain this experimental phenomenon, we developed a 3D model and analyzed
the fundamental reason for the drop in Isc.
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3. Results Simulation Results and Discussion
3.1. Theoretical Models for Numerical Simulations

We used APSYS software to simulate the effect of non-uniform irradiation on the
output performance of laser photovoltaics. The software contains typical physical models
such as the heterojunction model, tunneling model, hydrodynamic model, and quantum
mechanical fluctuation model, covering basic equations such as Poisson’s equation, current
continuity equation, hot carrier energy transport equation, quantum mechanical fluctuation
equation, and heat flow equation. The I–V characteristics of laser photovoltaics can be
obtained by solving the Poisson equation and the current continuity equation under certain
boundary conditions [14]. The Poisson equation is as follows [14]:

−∇
(

ε0εdc
q
∇V

)
= −n + p + ND(1− fD)− NA fA + ∑

j
Ntj

(
δj − ftj

)
(3)

In the above equation, V is the electric potential, ε0 is the vacuum permittivity, εdc is
the low-frequency permittivity, q is the electron charge, n is the electron concentration, p is
the hole concentration, ND is the shallow donor density, NA is the shallow acceptor density,
fD is the donor energy level, fA is the occupancy probability of the acceptor energy level,
Ntj is the density of the jth deep trap level, ftj is the occupancy probability of the jth deep
trap level, δj is 1 for donor-like traps and 0 for acceptor-like traps. The current continuity
equations for electrons and holes are expressed as [14]:

∇ · Jn −∑
j

Rtj
n − Rsp − Rst − Rau + Gopt(t) =

∂n
∂t

+ ND
∂ fD
∂t

(4)

∇ · Jp −∑
j

Rtj
p − Rsp − Rst − Rau + Gopt(t) = −

∂p
∂t

+ NA
∂ fA
∂t

(5)

where Jn and Jp represent the current densities of electrons and holes, respectively; Rtj
n and

Rtj
p are the electron and hole recombination rates per unit volume through the jth deep

trap respectively; Gopt is the photon generation rate; Rsp, Rau and Rst are the spontaneous
recombination rate, the Auger recombination rate and the stimulated recombination rate
per unit volume, respectively.

3.2. Simulation Details

The 3D laser photovoltaics model was developed to simulate the effect of non-uniform
irradiation on the output performance of laser photovoltaics. The model used a typical
laser photovoltaics structure [15,16], which is shown in Figure 7. Table 2 listed the doping
and thickness of the structure. The antireflection coating (ARC) layer consisted of 60 nm
SiO2 and 90 nm TiO2, which could minimize reflectivity under illumination with an 808 nm
laser beam. The Base and Emitter layers formed the absorption region, absorbing incident
photons and separating photogenerated carriers. The Window and BSF layers formed
diffusion barriers with the Base and Emitter layers, which could inhibit the diffusion and
reduce the recombination rate of minority carriers at the interface. The Cap layer was
highly doped GaAs, which formed a good ohmic contact with the upper metal layer.
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Table 2. The thickness and doping of laser photovoltaics.

Layer Material Doping Type Doping (cm−3) Thickness (nm)

Buffer GaAs p+ 5.00 × 1018 1000
BSF AlxGa(1−x)As(x = 30%) p+ 5.00 × 1018 50
Base GaAs p 1.00 × 1017 3500

Emitter GaAs n 2.00 × 1018 500
Window InxGa(1−x)P(x = 49%) n+ 5.00 × 1018 50

Cap GaAs n++ 5.00 × 1019 200
ARC 90 nm TiO2 + 60 nmSiO2 (R = 0.8%)

3.3. Simulation Results and Analysis

Figure 8 compared the simulated and measured I–V characteristics. Figure 8a is
500 mW irradiated on 0.5 cm2 area, Figure 8b is 500 mW irradiated on 1 cm2 area. Under
the same incident power, the current under 50% illumination is 207 mA, which is much
lower than the current under full-spot illumination, 227 mA. However, the Voc varies
slightly. The model matched the output characteristics well.
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full-spot illumination.

Figure 8 showed that the FF of the simulation result was slightly higher than that of
the experimental result. This is because the model used simplified boundary conditions to
represent the electrical characteristics of contact. It excluded metal light absorption and
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resistance. For photovoltaic devices, the metal-semiconductor contact generates series
resistance, lowering the FF. The optical thickness of the ARC layer may deviate from the
theoretical value, which reduces the photogenerated current. Therefore, the simulation
result of Isc was slightly higher than the experimental result.

The experimental results showed that the primary factor of significant conversion
efficiency decrease was the reduction in Isc. Therefore, we analyzed the Isc variation with
non-uniform illumination by studying the longitudinal carrier generation and recombina-
tion on the cross-section parallel to the direction of the incident light. The cross-section was
shown with the red dashed line in Figure 9.
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Figure 9. The cross-section of the laser photovoltaic in the YZ direction.

Figure 10 shows the carrier recombination rate and the distribution of photogenerated
carriers on the cross-section under two different irradiation conditions; one is 500 mW
irradiated on 0.5 cm2 area, and the other is 500 mW irradiated on 1 cm2 area. Comparing
Figure 10a,c, it was found that the unilluminated area hardly generated photogenerated
carriers. In addition, photogenerated carriers were generated faster under 50% area illu-
mination than under 100% area illumination. Comparing Figure 10b,d, the overall carrier
recombination rate was higher under 50% area illumination, around 2.5 × 1021 cm−3/s.
This is because more carriers were generated in a smaller area, and the carrier recombination
rate increased as the number of carriers increased. More carriers failed to be transported
through the electrodes to the external circuit; therefore, the Isc of the laser photovoltaics was
as low as 207 mA in Figure 8a, with a conversion efficiency of 36.8% in Figure 6b. On the
other side, the carrier recombination rate was relatively low under 100% area illumination,
being around 6.0× 1020 cm−3/s. The Isc of laser photovoltaics was relatively high, reaching
227 mA in Figure 8b, with a conversion efficiency of 39.1% in Figure 6b. When the laser
photovoltaics was illuminated non-uniformly, the unilluminated area could be equated
to a dark diode in the equivalent circuit model [17,18]. Additionally, the unilluminated
region had no photogenerated carriers and consumed photogenerated current, reducing Isc.
Therefore, the conversion efficiency of laser photovoltaics decreased. We also predicted
that the performance of the laser photovoltaics would be further degraded by non-uniform
irradiation when the incident power was further increased.
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4. Conclusions

An experiment was carried out for the LWPT application situation in which the
laser photovoltaics was non-uniformly irradiated. Experimental results demonstrated that
incident laser beam uniformity had a considerable influence on the conversion efficiency
of laser photovoltaics, with an efficiency variation of up to 14.1%. The 3D model was
developed to simulate the effect of non-uniform irradiation on the output performance
of laser photovoltaics. Based on the experimental and simulation results, we concluded
that the decrease in Isc was the main factor for the decrease in efficiency under non-
uniform illumination. Furthermore, non-uniform illumination increased the overall carrier
recombination rate. When the laser photovoltaics was illuminated non-uniformly, the
dark area could be equated to a dark diode in the equivalent circuit model, which had no
photogenerated carriers and consumed photogenerated current.

Author Contributions: Conceptualization, R.N.; Formal analysis, J.W.; Investigation, H.W., Q.Y. and
Y.G.; Project administration, H.Y.; Resources, J.W. and G.D.; Software, H.W. and Y.G.; Supervision,
J.W.; Writing—original draft, H.W. All authors have read and agreed to the published version of
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