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Abstract: In this paper, the transmission mechanism of the spike information embedded in the low
frequency fluctuation (LFF) dynamic in a cascaded laser system is numerically demonstrated. In the
cascaded laser system, the LFF waveform is first generated by a drive laser with optical feedback
and is then injected into a response laser. The range of crucial system parameters that can make
the response laser generate the LFF dynamic is studied, and the effect of parameter mismatch on
the transmission of LFF dynamics is explored through a method of symbolic time-series analysis
and the index, such as the spike rate and the cross-correlation coefficient. The results show that the
mismatch of the pump current has a more significant influence on the transmission of LFF waveforms
than that of the internal physical parameter of the laser, such as the linewidth enhancement factor.
Moreover, increasing the injection strength can enhance the robustness of LFF transmission. As spikes
of the LFF dynamic generated by lasers with optical feedback is similar to the spike of neurons, the
results of this paper can help understanding the information transporting and processing inside the
photonic neurons.

Keywords: semiconductor laser; optical feedback; low frequency fluctuation (LFF); parameter mis-
match

1. Introduction

Semiconductor lasers with optical feedback can generate various nonlinear physical
phenomena and can be applied in secure communication, random number generation, lidar,
comprehensive sensing, and reservoir computing, etc. [1–7]. Moreover, the low frequency
fluctuation (LFF) dynamic induced by the optical feedback architecture has been found
to be a type of excitable behavior [8], which can be exploited for photonic neurons [9–13]
and neuromorphic computations such as pattern recognition, logic operations, and calcu-
lations [14–19]. In the LFF region, the laser output displays abrupt and irregular power
dropouts, and this type of spike has been proven to be similar to the spikes generated by
biological neuron models such as the FitzHugh–Nagumo (FHN) model [20]. As the optical
feedback scheme can avoid the optical isolator and is suitable for photonic integrated cir-
cuits (PICs), lasers with optical feedback are a promising candidate in the field of photonic
neural computing.

There have already been studies on LFF dynamics in the literature. A. Aragoneses
et al. implemented numerical simulations and experimental studies for the output signal
of a directly modulated optical feedback semiconductor laser with optical feedback and
investigated the external locking mechanism of the external modulation signal on the laser
output signal through timing analysis (event analysis) of the output waveform [21]. They
also proposed a minimal model to simulate the output of an optical feedback laser [22].
T. Sorrentino et al. investigated the pulse rate and pulse correlation of the output pulses
of a laser with optical feedback [23]. Moreover, the periodic locking mechanism of the
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external periodic signal on the output of the optical feedback laser has been studied [24,25].
According to [26], the study of photonic neurons will evolve to the transmission of spikes
in a photonic neural system composed of multiple photonic neurons. However, there are
few studies on the transmission of various spike information embedded in LFF dynamics.
Therefore, in this paper, the transmission of the LFF waveform in a cascaded laser system
consisting of a laser with optical feedback and another laser is studied, and the effects of
various system parameters on the output of the system are analyzed and discussed.

The reminder of this paper is organized as follows. In Section 2, the system structure,
theory model, and tools for describing the system output characteristics are introduced.
In Section 3, the effect of various system parameters on the transmission of LFF dynamics
is studied and analyzed. The discussion of the results and conclusions are provided in
Section 4.

2. Materials and Methods
2.1. System Architecture

Figure 1 shows the schematic diagram of a cascaded laser system composed of two
semiconductor lasers. One laser is subjected to optical feedback and it is named the drive
laser (LD-1 in Figure 1). The output of the drive laser is injected into the other laser, which
is called the response laser (LD-2 in Figure 1).
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Figure 1. Schematic illustration of two cascaded photonic neurals.

The Lang–Kobayashi (LK) model is always used to describe semiconductor lasers with
optical feedback, and the rate equations are as follows:
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where ED(t) and ER(t) in Equations (1) and (3) represent the slowly varying electric field
amplitude of the drive laser and response laser, respectively, and ND(t) and NR(t) in
Equations (2) and (4) denote the carrier density of two lasers, respectively. κD is the feedback
strength of the drive laser, and κR is the injection strength of the response laser. ID and IR
denote the pump current of two lasers, respectively, and αD and αR represent the linewidth
enhancement factor of the drive laser and response laser, respectively. βsp = 10−4 ns−1 is
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the noise strength, and ξ is a Gaussian distribution with zero mean and unit variance. The
physical meaning and values of the remaining parameters are shown in Table 1.

Table 1. Parameters and values.

Symbol Parameter Value

G Gain coefficient 1.5 × 104 m3/s
τn Carrier lifetime 2 × 10−9 s
τp Photon lifetime 2 × 10−12 s
N0 Carrier density at transparency 1.5 × 108 m−3

ε Gain saturation coefficient 0.05
τ Feedback delay time 1 × 10−9 s
V Active region volume 1.5 × 10−16 m3

As is well-known, with different system parameters, such as the pump current ID
and the feedback strength κD, the semiconductor laser with optical feedback can generate
rich dynamic behaviors. When ID is 15 mA, which is near the threshold (14.6 mA in our
model) and κD is small (10 ns−1 for instance), the output of the laser exhibits random
oscillations and belongs to the coherent collapse, as shown in Figure 2a. Moreover, when
ID is near the threshold and κD is relatively large (50 ns−1 for instance), the output of the
laser contains abrupt power dropouts, which have certain probabilistic characteristics, as
shown in Figure 2b. At this time, the output of the laser belongs to the LFF waveform. In
addition, when ID is higher than the threshold current (22 mA for instance), the output of
the laser belongs to the coherent collapse, no matter whether the feedback strength κD is
big or small, as shown in Figure 2c,d. Therefore, to generate the LFF dynamic, the pump
current should be near the threshold, and the feedback strength should be relatively large.
In the rest of this paper, ID is set to be 15 mA and κD is set to be 50 ns−1.
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Figure 2. Output of the drive laser with optical feedback under different system parameters.
(a) κD = 10 ns−1 and ID = 15 mA, (b) κD = 50 ns−1 and ID = 15 mA, (c) κD = 10 ns−1 and ID = 22 mA,
and (d) κD = 50 ns−1 and ID = 22 mA.



Photonics 2022, 9, 483 4 of 12

2.2. Tools

We analyzed the timing information of the spike sequence through an ordinal time-
series analysis [22]. Firstly, a pulse sequence with a length of N is divided into N-D vectors
of length D, as shown in Equation (5). ∆t(i) is the time interval of pulse i, and t(i) is the time
at which pulse i occurs.

∆t(i) = t(i)− t(i− 1). (5)

Based on the relative length of ∆t(i), each time interval is associated with a word
composed of D symbols. For example, when D = 2, two types of words exist. ∆t(i) < ∆t(i
+ 1) gives the word “01” and ∆t(i) > ∆t(i + 1) gives the word “10”. Table 2 shows ordinal
patterns for D = 3. Then, by counting the frequency of occurrence of the different words,
their probabilities are computed, as shown in Equation (6),

P1 =
n1

6
∑

j=1
nj

, (6)

where P1 is the probability of word 012, n1 is the number of the word 012, and the rest of
the words are calculated similarly.

Table 2. Ordinal patterns for D = 3.

Serial Number Word Relation Quantity

1 012 ∆t(i) < ∆t(i + 1) < ∆t(i + 2) n1
2 021 ∆t(i) < ∆t(i + 2) < ∆t(i + 1) n2
3 102 ∆t(i + 1) < ∆t(i) < ∆t(i + 2) n3
4 120 ∆t(i + 1) < ∆t(i + 2) < ∆t(i) n4
5 201 ∆t(i + 2) < ∆t(i) < ∆t(i + 1) n5
6 210 ∆t(i + 2) < ∆t(i + 1) < ∆t(i) n6

This symbolic transformation has the drawback that it disregards the information
about the precise duration of the inter-spike intervals (ISIs), but it has the advantage that
it keeps the information about the temporal correlations among them, i.e., correlations
in the timing of the optical spikes. Figure 3a shows the words extracted from the output
of the drive laser. When the feedback strength increases from 50 ns−1 to 100 ns−1, the
probabilities of all of the words occur certain degrees of oscillations. In particular, when
the feedback strength was within the region from 70 ns−1 to 80 ns−1, the probabilities of
words “012” (blue line) and “201” (light blue line) was lower than the average probability
(1/6), while the probabilities of other words were higher than 1/6. According to [27], this
phenomenon indicates that the laser may has an encoding effect on the feedback strength.
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In addition, the pulse rate can be used to analyze the output waveform of the system,
and it can be calculated by Equation (7), where s is the total number of ISIs.

rate =
s

s
∑

i=1
∆t(i)

. (7)

Figure 3b reflects the effect of the feedback strength on the pulse rate. The figure shows
that when the feedback strength is enhanced, the average pulse rate of the drive laser tends
to decrease, indicating that the greater the feedback strength the longer the pulse interval is.
This also means that the LFF dynamic has an encoding effect on the feedback strength [27].

Meanwhile, the performance of the LFF transmission is evaluated by the correlation
coefficient between the output waveforms of the drive and response laser, and it can be
defined as

CC =
〈[PD(t)− 〈PD(t)〉][PR(t)− 〈PR(t)〉]〉√〈∣∣∣[PD(t)− 〈PD(t)〉]

2
∣∣∣〉√〈∣∣∣[PR(t)− 〈PR(t)〉]

2
∣∣∣〉 , (8)

where PD(t) and PR(t) represent the power of the driver laser and response laser, respectively,
and 〈·〉 represents the time average. When CC = 1, the output waveforms of both lasers are
identical, and CC is less than 1 if there is a deviation between the output of the lasers.

3. Results
3.1. Effect of System Parameters on the Output of the Response Laser

Firstly, the range of the parameter that can make the response laser generate the LFF
dynamic is investigated. The pump current of the response laser IR is used as an example.
During the simulation, κD is set to be 50 ns−1 and ID is set to be 15 mA, 16 mA, and
17 mA, respectively. For all of these ID values, the drive laser can generate LFF dynamics.
Meanwhile, the injection strength κR is set to be 50 ns−1. When IR is smaller than ID, the
response laser can generate the LFF waveform, as shown in Figure 4a–c. Then, when IR is
equal to ID, the response laser can also output the LFF dynamic, as shown in Figure 4d–f.
However, when IR is larger than ID, the response laser no longer displays irregular power
dropouts. This means that the output of the response laser does not belong to the LFF
region when IR > ID. In addition, the range of κR is also explored. When κR is near,
equal, or higher than κD, the response laser can generate the LFF waveform, as shown in
Figure 5b–d. However, when κR is smaller than κD, the response laser cannot generate
the LFF dynamic, as shown in Figure 5a. Figure 6 clearly demonstrates the influence of
parameter relationships on the output of the response laser. When IR ≤ ID or κR ≥ κD, the
LFF dynamic from the drive laser can be transmitted to the response laser, and when IR >
ID or κR < κD, the transmission is failed.
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3.2. Influence of System Parameter Mismatch on the Transmission of LFF Waveforms

In practice, it is difficult to guarantee that both lasers have identical parameters. Thus,
in this section, the effect of the mismatch of various physical parameters on the system
performance is investigated.

The pump current is studied as the external operating parameter. Firstly, the error of
the word probability between the drive and response laser is defined as follows,

d =
|PR − PD|

PD
, (9)

where d represents the event probability error, and PR and PD are the probability of a
specific word of the response laser and drive laser, respectively.
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From Figure 7a, certain transmission errors occur for all words when IR is smaller
than ID. When IR is between 14.75 mA and 14.8 mA, the transmission of word 021 has the
biggest error, and when IR is larger than 14.85 mA, the transmission of word 210 always
has the largest error. When IR gradually increases to 15 mA, all of the errors converge
to the zero point, indicating that the LFF waveform from the drive laser is successfully
transmitted to the response laser. In addition, from Figure 7b, the red and black lines are
rateD and rateR, respectively, and rateD is fixed at 41.97 MHz. The pulse rate of the response
laser increases gradually with the injection current and increases rapidly when the IR is
14.5 mA and 14.6 mA, indicating that the rateR is greatly influenced by the injection current
at this time. When IR increases from 14.7 mA to 15 mA, the curve increases smoothly to
41.97 MHz. What is more, Figure 7c shows the overall increase in the correlation coefficient
CC with the increasing current.
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The mismatch of the internal physical parameters, such as the linewidth enhancement
factor α, can also induce a derivation on the LFF transmission. From Figure 8a, the trans-
mission of the word 021 always has a large error when αR is not equal to 5. For instance,
the error is larger than 0.7 when αR is 4.8 and 5.2, and reaches the largest value when αR
is larger than 5.8. Meanwhile, the transmission of word 210 also always has a large error
in the whole range of αR. In addition, the error of the transmission of word 012 is always
small and less than 0.3. In Figure 8b, rateR increases rapidly and gradually approaches
rateD when αR increases from 4.2 to 5, while in the range 5 to 6, rateR decreases steadily
and gradually deviates from rateD. This means that when αR is smaller than αD, the LFF
dynamic from the drive laser can hardly be mapped to the response laser. While for αR >
αD, the LFF dynamic can be better transmitted. This can also be proven by the correlation
coefficient. In Figure 8c, CC changes steeply when αR increases from 4.2 to 5, indicating
that the LFF transmission is seriously affected in this region. When αR > αD, the system
is more sluggish to parameter mismatch. These phenomena are consistent with the trend
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of the spike rate. Thus, αR < αD will cause a greater error in the transmission of the LFF
waveform.
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As the mismatch of linewidth enhancement factor and the pump current of the re-
sponse laser can both induce an effect on the output LFF waveforms, to quantify which
external operating parameter has a more significant effect on the transmission of the system,
the mismatch is analyzed using the mismatch degree, which is defined in Equation (10),

Mismatch(γ) =

∣∣γR − γD
∣∣

γD , (10)

where γR and γD represent the external parameters of the response laser and the drive
laser, respectively. As can be seen in Figure 9a, the red line is always higher than the black
line, which means that the mismatch of the linewidth enhancement factor always has a
limited impact on the system transmission, while the mismatch of the pump current IR
can cause a more serious decrease in CC. This can also be proven by the difference in the
average spike rate Diff, which is defined in Equation (11),

Di f f = |rateR − rateD|, (11)

where rateR and rateD represent the average spike rate of the response and the drive laser,
respectively. A larger Diff means a greater difference between the output of the drive laser
and the response laser. From Figure 9b, the red line is always lower than the black line,
which means that the mismatch in pump current IR can lead to a more severe increase in
Diff. Therefore, the system transmission is more sensitive to the current mismatch, and
to ensure the effectiveness of the transmission, efforts should be made to ensure that the
pump current of the drive and response laser should be as consistent as possible.
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Figure 9. Effect of external parameter mismatch on (a) the correlation coefficient and (b) the difference
of the average spike rate.

From the above results, it can be found that parameter mismatch significantly influ-
ences the transmission quality. To discover methods that can guarantee LFF transmission,
we investigated the influence of injection strength κR on CC when the parameters of two
lasers are mismatched. In Figure 10, the red line denotes αD = 5 and αR = 6, while the rest
of the parameters are the same. Similarly, the black line represents that ID = 15 mA and
IR = 14.6 mA. From this figure, CC increases with κR for both mismatch conditions. The
difference in the average spike rate also decreases when the injection strength is enhanced,
as shown in Figure 10b. These results mean that increasing the strength can enhance the
robustness of the LFF transmission, even though the parameters of the two lasers are
different.
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4. Discussion

In this paper, the transmission of the spike information, such as the spike rate and the
probability of symbolic patterns embedded in the LFF dynamics in a cascaded laser system,
are numerically demonstrated. In the last decades, there have been works studying the LFF
synchronization in an open-loop configuration [28,29]. Most works utilize CC to measure
the performance of LFF synchronization. However, when using the laser with optical
feedback as a photonic neuron, CC is insufficient to describe the spike information because
it can hardly reflect the timing of the spikes of LFF dynamics. Therefore, we analyzed
the transmission of the LFF dynamic through both CC and the timing of spikes such as
the spike rate and the probabilities of symbolic patterns. Firstly, the results show that the
performance of the LFF transmission can be improved through increasing the injection
strength, which is identical to the existing numerical and experimental results. Moreover,
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we find that to make the response laser generate the LFF dynamic, the injection strength
should be larger than the feedback strength of the drive laser, and the pump current of the
response laser should be smaller than that of the drive laser. Meanwhile, the mismatch
of the pump current always has a more significant influence on the transmission of LFF
waveforms than the internal physical parameters. For the transmission of the timing of
spikes, we find that when there is a mismatch of the system parameters, the spike rate of
the response laser is smaller than that of the drive laser. In addition, the symbolic pattern
210 always has a large transmission error when the parameters are mismatched. As the LFF
waveform of the semiconductor laser is similar to what is produced by the neuron, and
the results of this paper are beneficial for the practical application of photonic neurons and
offer promising prospects for brain-like optical information transmission. Future work will
focus on the LFF waveform of other laser systems, such as mutually coupled laser systems.
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