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Abstract: Conventional photonic bandgaps (PBGs) for linear polarization waves strongly depend
on the incident angle. Usually, PBGs will shift toward short wavelengths (i.e., blue-shifted gaps) as
the incident angle increases, which limits their applications. In some practices, the manipulation of
PBGs for circular polarization waves is also important. Here, the manipulation of PBGs for circular
polarization waves is theoretically investigated. We propose one-dimensional photonic crystals
(1DPCs) containing anisotropic chiral metamaterials which exhibit hyperbolic dispersion for left
circular polarization (LCP) wave and elliptical dispersion for right circular polarization (RCP) wave.
Based on the phase variation compensation effect between anisotropic chiral metamaterials and
dielectrics, we can design arbitrary PBGs including zero-shifted and red-shifted PBGs for LCP wave.
However, the PBGs remain blue-shifted for RCP wave. Therefore, we can design a high-efficiency
wide-angle polarization selector based on the chiral PBGs. Our work extends the manipulation of
PBGs for circular polarization waves, which has a broad range of potential applications, including
omnidirectional reflection, splitting wave and enhancing photonic spin Hall effect.

Keywords: photonic crystals; chiral photonic bandgaps; anisotropic chiral metamaterials; circular
polarization waves

1. Introduction

Photonic crystals (PCs) are artificial microstructures with periodic spatial modulation
of electromagnetic parameters including permittivity, permeability or chiral parameter.
The most typical characteristic of PCs is photonic bandgaps (PBGs) which forbid the prop-
agation of electromagnetic waves within a given range of frequencies [1]. PBGs have
attracted tremendous attention due to their many fascinating applications [2–5]. How-
ever, conventional all-dielectric photonic crystals have one shortcoming that the PBGs are
angle-dependent. In some applications, zero-shifted PBGs, i.e., PBGs that will not shift as
the incident angle changes, are needed. The emergence of metamaterials [6,7] or metasur-
faces [8,9] has provided us with the possibility to design unconventional PBGs. In 2003,
researchers realized zero-shifted PBGs in 1DPCs consisting of alternative dielectrics and
negative-index metamaterials for linear polarization waves (transverse magnetic (TM) and
transverse electric (TE) waves) [10,11]. The zero-shifted PBGs originate from an all-angle
phase compensation effect between positive-index dielectric and negative-index metamate-
rial [11]. Nevertheless, it is a challenge to fabricate the negative-index metamaterials in the
near-infrared or visible ranges.

On the other hand, another kind of artificial anisotropic material called hyperbolic
metamaterial (HMM) has been intensively investigated [12–15]. HMMs possess a unique
ability to manipulate light-matter interaction due to their special iso-frequency curves,
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which can be utilized for spontaneous emission control [16,17], super-resolution imag-
ing [18,19], sensing [20,21] and wavefront control [22,23]. Generally, HMMs can be mim-
icked by metal-dielectric multilayers with a subwavelength unit cell in the near-infrared
or visible ranges [12,13]. Some natural materials also exhibit hyperbolic dispersion, such
as hexagonal boron nitride (hBN) [24], α-phase molybdenum trioxide (α-MoO3) [25], and
other van der Waals materials [26,27]. Usually, HMMs can be classified into two types: a
dielectric-type (Type I) HMM with ε‖ > 0 and ε⊥ < 0 and a metal-type (Type II) HMM
with ε‖ < 0 and ε⊥ > 0 [12,14]. The dielectric-type HMM can also realize negative refrac-
tion [12]. Recently, based on the all-angle phase variation compensation effect, researchers
have theoretically and experimentally realized zero-shifted PBGs in 1DPCs containing
dielectric-type HMMs for TM waves [28,29]. The zero-shifted PBG can be utilized to design
an omnidirectional reflector or absorber [30,31]. Later, researchers realized red-shifted
PBGs (gap shifts toward long wavelength as the incident angle increases) in 1DPCs contain-
ing dielectric-type HMMs [32]. The red-shifted PBG can be used for biosensors [21] and
polarization beam splitters for TM and TE waves [32].

The above works are restricted to the manipulation of PBGs for linear polarization
waves. In some practices, the manipulation of PBGs for circular polarization waves is also
important. In fact, it is possible to manipulate PBGs for circular polarization waves if we
introduce chiral metamaterials into 1DPCs. Chiral materials possess the unique electro-
magnetic response known as optical activity. The chirality originates from the coupling
between an electric field and magnetic field, and the electromagnetic coupling strength is
denoted as κ. One can obtain the refractive index

√
εµ + κ for a right circular polarization

(RCP) wave and the refractive index
√

εµ− κ for a left circular polarization (LCP) wave.
As a result, chiral materials provide another way to achieve negative refraction in the
case of κ >

√
εµ [33,34]. However, usually the chiral response is very weak for natu-

ral materials. Recently, researchers have used metamaterials or metasurfaces to enhance
the chiral response [35], which greatly boosts chiro-optical activity [36,37] and circular
dichroism [38–40]. The enhanced chirality is very useful in biological detection [41,42],
sensing [43,44] and other applications [45,46]. It is expected that 1DPCs with chiral metama-
terials would also control the propagation of light. In 2014, Cao et al. revealed blue-shifted
chiral PBGs in 1DPCs containing negative-index chiral metamaterials [47]. Their work
demonstrates the possibility for the manipulation of chiral PBGs (the PBGs are different for
RCP and LCP waves, respectively) in 1DPCs.

In this paper, we propose another kind of 1DPCs containing anisotropic chiral metama-
terials (ACMs). Besides blue-shifted chiral PBGs, we also obtain zero-shifted and red-shifted
PBGs for the LCP wave, which will greatly extend the applications of chiral PBGs. Firstly,
we introduce the chiral parameter κ into anisotropic media and realize the topological
transition of dispersion for the LCP wave, in which the iso-frequency curves change from a
closed ellipse to an open hyperbola [48–50]. Then, based on the phase variation compen-
sation effect between ACMs and dielectrics [28,29,32], we design arbitrary chiral PBGs in
1DPCs. We obtain zero-shifted or red-shifted PBGs for the LCP wave and blue-shifted PBGs
for the RCP wave. As a result, we can design a high-efficiency wide-angle polarization
selector for circular polarization waves. Our work may facilitate the applications of splitting
wave [32], omnidirectional reflection and absorption [30,31] and enhance the photonic spin
Hall effect [51,52]. Finally, we draw our conclusions.

2. Theory Analysis

We considered 1DPCs composed of alternative ACMs and dielectrics, as shown in
Figure 1. The whole structure is denoted by (AB)N where A and B represent the ACM and
the dielectric with the thickness of dA and dB, respectively. The N represents the periodic
number. The ACMs can be described by the constitutive relations [53]

D = εE + iκH
B = µH− iκE

(1)
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where ε = diag
[
εx, εy, εz

]
, µ = diag

[
µx, µy, µz

]
and κ represents chiral parameter.

Figure 1. Schematic illustration of 1DPCs composed of ACMs and dielectrics. (A) and (B) represent
an ACM and a dielectric, respectively.

The dispersion equation for ACMs and dielectrics can be expressed as [28,50]

k2
x

ρ±
+ k2

Az = k2
t and k2

x + k2
Bz = εBk2

0 (2)

where

ρ± =
1
2

[
εAz
εAx

+
µAz
µAx
±

√
(

εAz
εAx
− µAz

µAx
)

2
+ 4

κ2

εAxµAx

]
and

k2
t =

(
ω
c
)2

εAxµAx

(3)

In Equation (2), εB denotes the permittivity of dielectric. In Equation (3), the “ + ” and
“− ” represent RCP and LCP waves, respectively. In practice, a dielectric slab with metallic
inclusions [49,50,54] or metallic units [55] would mimic an ACM layer. If the metallic units
are electric resonant units, the ACM will be nonmagnetic and µAx = µAz = 1. The effective
permittivity components and κ of ACM could be described as [55]

εAx = εb,

εAz = εb −
Feω2

(ω2 −ω2
e + iγeω)

and

κ = 1− Fκω2

(ω2 −ω2
κ + iγκω)

(4)

In Equation (4), we choose εb = 3, Fe = Fκ = 0.3, ωe = ωκ = 5× 1015 Hz, γe = γκ =
6.2× 1013 Hz. Figure 2a,b give the real and imaginary parts of εAz and κ as a function of
wavelength, respectively. In our paper, the dielectric is selected as silicon. In the wavelength
range from 400 to 610 nm, the refractive index of silicon (denoted by nSi) is also complex
and dispersive. We use the refractive index of silicon from reference [56], which is shown
in Figure 2c.
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Figure 2. The real and imaginary parts of (a) εAz, (b) κ and (c) nSi as a function of wavelength,
respectively.

Next, we discussed the topological transition of iso-frequency curves by changing the
value of κ. Usually, the iso-frequency curves of dielectrics are elliptical for RCP and LCP
waves. However, according to Equations (2) and (3), we can obtain elliptical or hyperbolic
iso-frequency curves for ACMs as ρ+ > 0 or ρ− < 0. We only consider the real part of the
parameters for calculating the iso-frequency curves. In Figure 2a, at λ = 532 nm, εAx = 3,
εAz = 3.12. At first, we suppose that κ = 0.05. In this case, the ρ± are greater than zero.
Therefore, the iso-frequency curves are elliptical for LCP and RCP waves, as shown in
Figure 3a. The iso-frequency curves of RCP and LCP waves degenerate at kx = 0 because
ACMs are uniaxial [50]. Next, when we take the value of κ at λ = 532 nm from Figure 2b,
i.e., κ =1.05, the topological transition of iso-frequency curves occurs [48–50], where the
iso-frequency curves change from closed ellipses to open hyperbolas for LCP wave. Thus,
an opened hyperbolic iso-frequency curve can be obtained, while the iso-frequency curves
remain elliptical for RCP wave, as illustrated in Figure 3b.

Figure 3. Iso-frequency curves of ACMs for RCP and LCP waves at (a) κ = 0.05 and (b) κ = 1.05.
Iso-frequency curves of ACMs and silicon for (c) RCP and (d) LCP waves at λ = 532 nm. The real part
of the refractive index of silicon is 4.08, as taken from Figure 2c. Red and green solid lines represent
the iso-frequency curves of ACMs for RCP and LCP waves, respectively. Blue solid line represents
the iso-frequency curves of dielectrics for RCP and LCP waves.

Next, we consider the conditions for the manipulation of PBGs. The Bragg condition
of the first PBG can be given by [10,28]

Φ = (kAzdA + kBzdB)
∣∣∣λBragg = mπ (5)



Photonics 2022, 9, 411 5 of 10

where Φ represents the propagating phase within a unit cell, kAz and kBz represent the
wave vector along z direction in A and B layers, respectively. λBragg represents the resonant
wavelength within PBGs. Usually, the tangential wave vector component kx will increase
when the incident angle θ increases. As we can see from Figure 3c, both kAz and kBz
decrease when kx increases. Therefore, to maintain the Bragg condition, the value of λBragg
will decrease as θ increases. This is the reason that the PBG shift towards short wavelength
(i.e., blueshift) in all-dielectric 1DPCs. However, if we choose 1DPCs containing ACMs and
dielectrics, the situation is different. From Figure 3d, we can see that kAz increases as kx
increases within ACMs. As a comparison, kBz decreases as kx increases within dielectrics.
This means that ∆kz has different signs in the two materials. Therefore, the zero-shifted
PBGs will occur if the phase variations between ACMs and dielectric can compensate
each other (∆kAzdA + ∆kBzdB = 0) [28,29]. Similarly, if the phase variation in the ACM
layer is larger than the absolute value of the phase variation in the dielectric layer, i.e., the
over-compensated case that ∆kAzdA + ∆kBzdB > 0, the red-shifted PBGs will occur [32].
One can easily find ∂Φ/∂θ = (∂Φ/∂kx)·(∂kx/∂θ), where ∂kx/∂θ = k0 cos θ > 0. Therefore,
we only consider the sign of ∂Φ/∂kx to obtain the condition of arbitrary chiral PBGs in
1DPCs. We further differentiate Equation (5) with respect to kx and obtain

∂Φ
∂kx

=
∂kAz
∂kx

dA +
∂kBz
∂kx

dB (6)

As shown in Figure 3c,d, one can see that the sign of ∂kAz/∂kx may be positive (LCP)
or negative (RCP) in ACMs, while the sign of ∂kBz/∂kx is still negative within dielectrics,
regardless of the LCP or RCP waves. Therefore, we can arbitrarily tune the sign of ∂Φ/∂kx.
Remarkably, the sign of ∂Φ/∂kx is negative, zero and positive, corresponding to blue-
shifted, zero-shifted and red-shifted PBGs, respectively. Next, based on ∂Φ/∂kx = 0, we
can obtain the thickness of A and B layers for zero-shifted condition (see Appendix A for
detailed derivation), as follows

dA = − πc
ωBrg

ρ−kt

εBk0 −
√

εAxρ−kt
and

dB =
πc

ωBrg

√
εBk0

εBk0 −
√

εAxρ−kt

(7)

Furthermore, if ∂Φ/∂kx > 0, we can obtain the thickness of A and B layers for
redshifted condition, as follows

d′A > dA = − πc
ωBrg

ρ−kt

εBk0 −
√

εAxρ−kt
and

dB =
πc

ωBrg

√
εBk0

εBk0 −
√

εAxρ−kt

(8)

3. Numerical Simulation and Applications

According to the above discussion, we firstly considered conventional PBGs of chiral
1DPC (AB)6 for LCP and RCP waves. For the structural parameters, we set dA = 228 nm,
dB = 20 nm and κ = 0.05 + 0.01i. We assumed that both the incident and exit media are
air. On the basis of the anisotropic transfer matrix method (TMM) [57], we calculated the
reflectance spectra as a function of wavelengths and incident angles for LCP and RCP
waves, as shown in Figure 4a. We can see the PBG shifts toward the short wavelength as
the incident angle increases, regardless of the LCP and RCP waves, which is similar to
all-dielectric PCs for the TM and TE waves [2]. Next, we considered ACMs with κ shown in
Figure 2b and other parameters remain unchanged, in which the iso-frequency curves are
hyperbolas for the LCP wave while the iso-frequency curves of the RCP wave are elliptical.
Similarly, the reflectance spectra of the LCP and RCP waves are shown in Figure 4b. For
the LCP wave, λBragg = 532 nm. As we can see, both gap edges only shift slightly at large
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incident angles for the LCP wave, while those shift toward the short wavelength as the
incident angle increases for the RCP wave, which agrees well with our theoretical analysis
in Section 2. Therefore, we obtained the zero-shifted PBGs for the LCP wave. We further
chose dA = 274 nm and dB = 20 nm based on Equation (8), and other parameters are the
same as those used in Figure 4b. The reflectance spectra of the LCP and RCP waves are
given in Figure 4c. Comparing the LCP wave with the RCP wave, we can see red-shifted
gaps for the LCP wave while there are blue-shifted gaps for the RCP wave. To better
demonstrate how the gap edges shift, we further extracted the wavelength of gap edges
as a function of the incident angle for LCP and RCP waves from 0◦ to 90◦, as shown in
Figure 4d–f, respectively.

Figure 4. Reflectance spectra of (AB)6 versus incident angles for LCP and RCP waves. (a) dA =

228 nm, dB = 20nm and κ = 0.05+ 0.01i. (b) dA = 228 nm, dB = 20 nm and κ is taken from Figure 2b.
(c) dA = 274 nm, dB = 20 nm and κ is taken from Figure 2b. (d–f) Gap edges corresponding to (a–c),
respectively. The red (blue) solid line represents the upper (lower) band edge.

Based on the chiral PBGs (different PBGs for different circularly polarized waves)
as shown in Figure 4c,f, we can design a wide-angle polarization selector for RCP and
LCP waves. The reflectance of LCP and RCP waves at λ = 514 nm and λ = 566 nm,
respectively, are shown in Figure 5a,b. We can clearly see that the reflectance always
remains at a low value for the LCP wave at λ = 514 nm and RCP wave at λ = 566 nm,
while it increases sharply for the RCP and LCP waves at the two wavelengths over a
broad range of angles, which leads to a high polarization selection ratio at a wide-angle
range. We define the ρl = RRCP/RLCP and ρu = RLCP/RRCP as the short-wavelength and
long-wavelength polarization selection ratio, respectively. We consider that the angle range
in which ρ > 4 is regarded as the efficient polarization selection for the structure. From
Figure 5c,d, we can see a high polarization selection ratio at a wide-angle range from 19.6◦

to 66.8◦ at λ = 514 nm and from 20.7◦ to 64.2◦ at λ = 566 nm, respectively. Therefore, the
structure can be utilized as a high-efficiency polarization selector for circular polarization
waves. Interestingly, the chiral PBGs can also be utilized to enhance the photonic spin Hall
effect [52,58], which refers to the phenomenon that the left and right-handed circularly
polarized components split and produce transverse displacement when a Gaussian beam is
reflected or transmitted at the interface of the structure. This photonic spin Hall effect can
be expressed from the reflection coefficient ratio of LCP and RCP waves. The red-shifted
PBG for the LCP wave and the blue-shifted PBG for the RCP wave can greatly enhance the
reflectivity ratio between LCP and RCP waves. Therefore, the structure also facilitates the
application of enhancing the photonic spin Hall effect.
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Figure 5. Reflectance for LCP and RCP waves at (a) λ = 514 nm and (b) λ = 566nm, respectively.
The blue (red) dotted line represents the reflectance of LCP (RCP) wave. Polarization selection ratio
versus incident angles at (c) λ = 514 nm and (d) λ = 566 nm, respectively. The blue dashed lines
indicate ρ = 4.

4. Conclusions

In summary, we theoretically studied the chiral PBGs in 1DPCs containing ACMs. The
PBGs can be arbitrarily designed to be blue-shifted, zero-shifted or red-shifted. Particularly,
our work provides a way to design a high-efficiency wide-angle polarization selector for
circular polarization waves, owing to the fact that the gap edges are red-shifted for the
LCP wave and blue-shifted for the RCP wave. The manipulation of chiral PBGs would also
facilitate the applications of omnidirectional reflection and absorption, splitting wave and
enhancing the photonic spin Hall effect for circularly polarized waves.
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Appendix A

Here, we present a detailed derivation on two conditions for the zero-shifted and

redshifted gaps. For LCP wave, we rewrite Equation (2) as kAz = kt

√
1− k2

x/(ρ−k2
t ) and

kBz =
√

εBk0

√
1− k2

x/
(
εBk2

0
)
. Under the conditions of |εAz| � 1 and εB � 1, kAz and kBz

can be Taylor expanded to the first-order series, as follows
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kAz ≈ kt(1−
k2

x

2k2
t ρ−

) and

kBz ≈
√

εBk0(1−
k2

x

2εBk2
0
)

(A1)

Substituting Equation (A1) into Equation (5), we have

dA
dB

= −ρ−kt

εBk0
(A2)

At normal incidence, the Bragg condition can be given by

√
εAxdA +

√
εBdB =

πc
ωBrg

(A3)

Combining Equation (A2) with Equation (A3), we can obtain two conditions for the
zero-shifted gaps

dA = − πc
ωBrg

ρ−kt

εBk0 −
√

εAxρ−kt
and

dB =
πc

ωBrg

√
εBk0

εBk0 −
√

εAxρ−kt

(A4)

Similarly, in the case of ∂Φ/∂kx > 0, we can obtain two conditions for the redshift
gaps

d′A > dA = − πc
ωBrg

ρ−kt

εBk0 −
√

εAxρ−kt
and

dB =
πc

ωBrg

√
εBk0

εBk0 −
√

εAxρ−kt

(A5)
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