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Abstract: Multilayer Laue lenses (MLLs) made from WC and SiC were previously used to focus
megahertz X-ray pulse trains of the European XFEL free-electron laser, but suffered damage with
trains of 30 pulses or longer at an incident fluence of about 0.13 J/cm2 per pulse. Here, we present
numerical simulations of the heating of MLLs of various designs, geometry and material properties,
that are exposed to such pulse trains. We find that it should be possible to focus the full beam of
about 10 J/cm2 fluence of XFEL using materials of a low atomic number. To achieve high diffraction
efficiency, lenses made from such materials should be considerably thicker than those used in the
experiments. In addition to the lower absorption, this leads to the deposition of energy over a larger
volume of the multilayer structure and hence to a lower dose, a lower temperature increase, and an
improved dissipation of heat.

Keywords: X-ray free-electron laser; X-ray optics; multilayer Laue lens; heat transfer; numerical simulation

1. Introduction

X-ray free electron lasers (XFEL) provide intense, coherent, pulsed X-ray beams and
have opened up new scientific fields, including the single-shot imaging of biological
samples, imaging the dynamics of matter, creating matter under extreme conditions and
studying nonlinear X-ray optical processes. The short wavelengths and short durations of
XFEL pulses mean that these studies can be performed with a nanometer spatial resolution
and femtosecond temporal resolution. Two-photon processes such as nonlinear Compton
scattering [1] or two-photon absorption [2] are dependent on the square of the X-ray
intensity and thus are best observed at the highest intensities (high numbers of photons per
area and time). High intensities are also needed for single-molecule diffractive imaging [3,4],
generating stimulated X-ray emission [5], and for utilizing the interference of fluorescence
photons for imaging [6].

To reach the highest X-ray intensities, XFEL beams must be focused. This can be
achieved using refraction (compound refractive lenses or CRLs) [7–9], reflection (Kirkpatrick-
Baez mirrors) [10,11] or diffraction (zone plates) [12,13]. We recently explored the focusing
of the X-ray beam of the European XFEL (Schenefeld, Germany) using a pair of multilayer
Laue lenses (MLLs) [14]. These multilayer-based diffractive optics consisted of refractory
materials (silicon carbide and tungsten carbide) [15], which, although absorbing some X-ray
energy, offered high thermal stability. No change in the multilayer structures made out
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of these materials was observed when heating them up to 1073 K in the laboratory [16].
Given the aim to focus as large a proportion of the XFEL beam as possible, the beam size
should be matched to the cross-sectional area of the lenses, which should be as large as
possible to reduce the incident X-ray fluence. The cross-section of the MLLs was about
100 µm × 100 µm. These MLLs are among the largest ever made. Nevertheless, at this
beam size, a pulse energy of 1 mJ would provide a fluence of 10 J/cm2, which would
be expected to heat such lenses to close to the melting temperatures of their constituent
materials, as calculated below. The European XFEL produces trains of pulses in which
femtosecond-duration pulses are separated by as little as 220 ns. In the XFEL experiments,
limits were observed as to how many pulses could be tolerated and it was seen that
excessive exposure caused lenses to break from their mount [14]—presumably due to the
heat dissipating through the weakest part of the structure or due to high stresses caused by
large temperature gradients.

As is true for CRLs and zone plates, materials of a low atomic number (low-Z) should
be less absorbent and thus may tolerate higher fluences than the materials used in the
experiments. However, achieving high diffraction efficiency for low-Z materials requires
lenses that are thicker, which also determines the absorption qualities. Different materials
have a different heat capacity and thermal conductivity. Therefore, we need to investigate
the optimal design of MLLs for use with XFEL pulses, including the choice of materials
and structure of the lens and mounts, considering both the optical performance and the
thermal management. Here, we present the results of numerical simulations in which we
calculated the heat load on the MLLs of various geometries and materials. We validated and
benchmarked these results against the geometry and materials used in the aforementioned
European XFEL experiment. After a short description of MLLs and their preparation, we
define the geometric model, computational grid, material properties, boundary conditions
and determine the optimum mesh size. In the results and discussion section, we display
MLLs temperature distribution plots and study the time dependence of the temperatures for
all studied geometries. A simulation showing time evolution at different absorbed energies
for two selected geometries is also presented. Finally, we calculate vertical temperature
profiles in the lenses. We present a promising MLL design based on materials and geometry
that reduces the X-ray dose in the structure (energy deposited per unit mass) and effectively
dissipates the heat. The lens design is considered for future experiments at the European
XFEL using full unattenuated pulse trains.

2. Multilayer Laue lenses
2.1. Fabrication of MLLs and Their Use at the European XFEL

An MLL is a volume zone plate sliced from a structure prepared by layer deposition
onto a substrate [17]. The thicknesses of the layers are made to follow the zone plate
equation, in which the layer period varies inversely with distance from the optical axis
to diffract light to a common focus. However, this alone is not sufficient to achieve high
efficiency. The layers must also be wedged so that the tilts of the layers satisfy Bragg’s
law [18]. An MLL cut from a structure deposited onto a flat substrate can focus X-rays
only in one dimension, similar to a cylindrical lens or mirror. Two such elements oriented
orthogonal to each other are needed to produce a two-dimensional focus. Both MLLs must
be optimized for the same photon energy but with slightly different focal lengths so they
can be placed one after the other and focus on a common plane.

Multilayer structures from which MLLs were prepared were deposited by magnetron
sputtering in our laboratory [19]. The multilayer consisted of alternating layers of silicon
carbide (SiC) and tungsten carbide (WC), materials that have been used previously [20]
and with melting temperatures of ~3073 K. We found that multilayers consisting of these
two materials are thermally stable up to the highest tested temperatures by heating in an
oven to 1073 K [16]. The multilayer structure (100 µm tall) consisted of over 20,000 layers,
following a design to produce a focal length of 8 mm at 10.1 keV. A straight-edge mask was
placed above the substrate during deposition to create the wedged structure by shadowing,
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and the MLLs were cut at the particular position where the wedge angle matched twice the
focal length [20]. These cuts were performed using a focused ion beam (FIB) to create MLLs
that were about 100 µm tall, 125 µm wide and 4.5 µm thick in the beam direction, as shown
in Figure 1. For rigidity, the lenses were cut to leave narrow posts 10 µm wide on either side.
We refer to this geometry as G1a. Ideally, the lens pair would have a cross-sectional area
as large as the unfocused XFEL beam, which is typically several hundreds of micrometers
wide. However, it is challenging to make MLLs, consisting of nanometer-thick layers, much
taller than about 100 µm. Each lens was attached to the edge of a 100 µm thick diamond
wafer and adhered to it using electron-induced deposition of Pt in the focused ion beam
system (as shown in Figure 1). Diamond was chosen due to its low X-ray absorption and
superior heat conduction.
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Figure 1. Scanning microscopy image of a 100 µm tall MLL used in the XFEL experiment. The MLL
consists of individual nanometer-thick layers shown in the insert, visualized with a high-resolution
transmission electron microscope (a). The same MLL was imaged with an optical microscope (b). The
MLL is positioned above the substrate and adhered in two positions (left and right) to the diamond
substrate using Pt.

The MLL design with an 8 mm focal length and 100 µm height gave a numerical
aperture of 0.006 at 10.1 keV to ideally focus X-rays of this energy to a spot of 15 nm full
width at half maximum (FWHM). The wavefronts of the lenses were measured [21] and
found to be dominated by coma with an RMS error of about 1.5 waves, caused by layer
placement errors. The achieved focus, as determined from the wavefront, was 25 nm
FWHM [14].

Experiments were performed at the MID [22] beamline of the European XFEL at
10.1 keV photon energy with a relative bandwidth of 0.1% [23]. The lenses were in an air
environment at atmospheric pressure with no active cooling during the experiment. The
XFEL beam illuminating the lenses was larger than the lens cross-section even though it was
already prefocused and defined with slits. Hence, not only the lens but also the supporting
structure, namely the substrate and the attachment points (Pt dots), were exposed.

The alignment of the MLLs was achieved using the same procedure as at the syn-
chrotron [15], except that the beam was highly attenuated. Once aligned, the pair of MLLs
was initially used to focus the XFEL beam operating in a single-pulse mode (that is, at a
10 Hz repetition rate) and 92% beamline transmission for 6 h with no adverse effects on
the lenses. The incident fluence on the first lens was estimated to be about 0.5 J/cm2. We
then increased the number of pulses per train to 2, 3, 4, and 5, all with a pulse separation
of 3.56 µs and the same 92% beamline transmission. We continued increasing the number
of pulses per train to 6, 7, 10, 20, and 30 but, in this case, only to a maximum beamline
transmission of 23.5%. The final experiment was performed with 30 pulses per train and
with 23.5% transmission. At this condition, the lenses were brought out of the Bragg



Photonics 2022, 9, 362 4 of 18

condition by the action of the beam, reducing their diffraction efficiency, and causing the
lenses to break off the substrate they were attached to. We suspect this was caused by an
excessive heat load on the lenses and the weak lens mounting. It is therefore seen that the
damage threshold with single pulses of 10 Hz was not exceeded at an incident fluence of
about 0.5 J/cm2 but was exceeded with 30 pulses per train at about 0.13 J/cm2.

2.2. Dynamical Diffraction of MLLs

The diffraction of X-rays by the multilayer structure of an MLL can be described by the
theory of dynamical diffraction [24]. Locally, a beam of wavelength λ can be considered to
be interacting with a structure of period d, which gives rise to the following two transmitted
beams: one that is deflected by an angle 2θ (determined by Bragg’s law, λ = 2d sin θ) and
one that is undeflected. The convention is to call the former the reflected beam since it
appears to reflect from the layers, and the other the refracted beam [25]. The period d
changes with position y in the MLL to ensure that the deflection angle increases with y such
that the reflected rays are directed to a common focus. For given materials, the fraction of
the incident beam that is split into the reflected (focused) and refracted beams depends on
the thickness of the MLL in the direction of the beam, as shown in Figure 2. The optimal
thickness is equal to half of the so-called pendellosung period, for which almost the entire
proportion of the transmitted beam is in the reflected beam. An approximate expression
for this is given by

τopt =
πλ cos θ

4 ∆n
(1)

where ∆n is the difference in the real parts of the refractive indices of the two-layer materials.
Away from the absorption resonances of the materials, the refractive indices scale with λ2

and hence the optimal thickness tends to increase inversely with wavelength or linearly
with photon energy.

To first approximation, the X-ray energy absorbed in the MLL by an incident beam
of energy Q0, can be calculated from the attenuation of X-rays by a slab of material of
thickness τ and an average composition of the two layers, as

Qabs = Q0
(
1− e−µAρτ

)
(2)

where µA is the mass absorption coefficient (photo-absorption cross-section per unit mass),
such that the volume-averaged attenuation coefficient is µA ρ = 4 π β/λ for an average
imaginary part of the refractive index β = (Γ β1 + (1− Γ) β2). Here, β1 and β2 are the
imaginary parts of the refractive indices of the two materials, and Γ is the fraction of
the layer thickness of the first material (typically Γ = 0.5). Since the thickness of MLLs
obtained from Equation (1) is usually less than 1/µ, Equation (2) can be approximated
as Qabs = Q0µAρτ and hence the energy absorbed in an MLL of optimized thickness τopt

is proportional to the ratio β/∆n, which can be minimized by choosing materials of low
atomic number. However, for a given specific heat capacity cp of the MLL structure, the
instantaneous heat rise due to an instantaneous X-ray pulse of fluence I0 = Q0/A, for a
cross-sectional area of the beam A, would be given by

∆T =
Qabs

V ρ cp
=

I0 µA
cp

(3)

where the volume V = Aτ. The temperature rise, similarly to the dose (energy absorbed
per unit mass), does not depend on the actual thickness of the lens but just on its optical and
material properties, which are dependent on the photon energy. Under the approximations
made thus far, the lowest heating would be achieved by choosing materials with the
lowest photo-absorption cross-section and the highest specific heat capacity. Some of the
properties of the materials used in the calculations and simulations of this paper are listed
in Table 1 [26–28].
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Figure 2. Plots of the diffraction efficiencies of the focused beam (blue), refracted beam (or-
ange), and total transmission (green) of MLLs. (a,c,e): Efficiencies as a function of MLL thickness.
(b,d,f): Efficiencies as a function of the deviation of the incident angle from the Bragg condition for
MLLs of optimum thickness. The dashed red line is the total transmission of a homogeneous material
of the same average composition from Equation (2), revealing anomalous transmission for ∆θ > 0.
(a,b): WC/SiC MLL at 8 keV photon energy. (c,d): WC/SiC MLL at 17.5 keV. (e,f) B4C/SiC MLL at
17.5 keV. All calculations are based on dynamical diffraction with a period of d = 10 nm.

Table 1. Bulk materials properties of elements, compounds, and multilayer pairs: density ρ, thermal
conductivity k, specific heat capacity cp, thermal diffusivity a, surface emissivity ε.

Material or Material Pair ρ [kg/m3] k [W/mK] cp [J/kgK] a [m2/s] ε [-]

aluminum (Al) 2719 202.4 871 8.55 × 10−5 0.4
diamond (C) 3500 2000 510 1.12 × 10−3 0.63
platinum (Pt) 21,450 71.6 130 2.57 × 10−5 0.15

silicon (Si) 2329 105 785 5.74 × 10−5 0.5
silicon carbide (SiC) 3100 120 750 5.16 × 10−5 0.7

tungsten carbide (WC) 13,800 110 203 3.93 × 10−5 0.3
boron carbide (B4C) 2500 90 950 3.79 × 10−5 0.92

beryllium (Be) 1844 216 1925 6.09 × 10−5 0.61
titanium carbide (TiC) 4930 30.93 880 7.13 × 10−6 0.65

WC/SiC 8220 115 476.5 2.86 × 10−5 0.5
Be/SiC 2242 168 1337.5 5.08 × 10−5 0.66

B4C/SiC 2570 105 850 4.41 × 10−5 0.81
TiC/SiC 4015 75.5 815 2.31 × 10−5 0.68
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Equation (2) assumes a uniform structure of the average composition of the MLL
and does not account for the fact that the wavefield is diffracting in the structure. The
reflected and refracted beams mentioned above form a standing wave in the periodic
structure. When the nodes of this standing wave are located in the more absorbing layers,
then the beam is attenuated less than expected from Equation (2), known as the Bormann
effect [25]. In such a condition, less energy is absorbed in the structure than predicted by
Equation (2). In crystals, this occurs when the structure is oriented relative to the incident
beam to produce the highest possible reflected intensity [25] but is not necessarily the case
for multilayer structures [29]. The magnitude of this effect depends on the ratio ∆β/β,
which means it is significant when one of the layer materials is much more absorbent
than the other. However, we find that for all materials pairs we studied, ∆β is not large
enough to increase the transmission at the condition of maximum reflectivity. Figure 2b
shows the proportion of incident energy into the reflected and refracted beams, the total
transmission (given by the sum of reflected and refracted beams), as well as the prediction
of Equation (2), all for a WC/SiC MLL at an 8 keV photon energy. This result, similar to
that with other material pairs and photon energies, shows that anomalous transmission
does occur but only off the peak of the reflected beam as a function of the incident angle,
at angles where there is significant partitioning into the refracted beam. At the maximum
point of the reflected (focused) beam, Equation (2) is seen to apply.

In Table 2, we provide values of the optimum thicknesses (Equation (1)), the absorbed
energy (Equation (2)), dose (in units of kGy = kJ/kg) and the instantaneous temperature rise
(Equation (3)) for MLLs constructed from various materials and for various photon energies,
using mass absorption coefficients determined from tabulated optical constants [30] and
the material properties are shown in Table 1. The incident fluence was assumed to be
10 J/cm2, or 20 times the fluence of the XFEL experiments. As mentioned above, the dose
and temperature rise are dictated by the mass absorption coefficient (an intrinsic property).
Away from the absorption edges (atomic resonances), this coefficient varies approximately
with the inverse square of photon energy, roughly the trend seen for calculated dose
and temperature rise in the case of B4C/SiC. It is not the case for WC/SiC, where the
temperature rise appears to vary inversely with photon energy. This is because the atomic
L edges of W are at 10 to 12 keV.

Table 2. Focusing efficiency η, optimum thickness τopt, absorbed energy Qabs, dose D, and instanta-
neous temperature rise ∆T in MLLs for an incident beam energy of 1 mJ in an area of (100 µm)2 at
photon energy E.

Material Pairs E [keV] η τopt [µm] Qabs [µJ] D [kGy] ∆T [K]

WC/SiC 8.0 0.59 4.49 378 996 2091
WC/SiC 17.5 0.59 9.08 376 490 1028
WC/SiC 24.0 0.72 13.0 261 237 497
B4C/SiC 8.0 0.72 45.0 264 210 247
B4C/SiC 17.5 0.92 108 74.5 24.7 29.1
B4C/SiC 24.0 0.96 150 44.0 10.4 12.3
TiC/SiC 17.5 0.77 50.1 223 111 135
Be/SiC 17.5 0.96 55.6 38.2 27.8 20.8

As expected, the calculated temperature rise is lowest for MLLs constructed from
materials of a low atomic number, such as B4C/SiC and Be/SiC. Most of the materials
considered have relatively high heat capacities, leading to low-temperature rises. WC
has one of the lowest heat capacities. Even so, it has a high melting temperature that is
larger than the calculated temperature rise for this particular incident fluence. The failure
observed in our experiments was not caused by a single pulse but by an accumulation of
heat which could not quickly dissipate during the pulse train.
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3. Numerical Simulations

Table 2 provides estimates for the instantaneous heat rise caused by a single XFEL
pulse, but the response of the MLL to a pulse train depends on how fast heat is dissipated
between pulses. This depends not only on material properties such as conductivity and
emissivity but also on the particular geometry of the lens and its mounting structure.
Numerical simulations have proven to be an effective tool for solving heat transfer prob-
lems [31–33] when the geometry of the problem or boundary conditions are too complex to
use analytical methods. One can quickly analyze the effect of several geometric variants
and the influence of different boundary conditions. They also give a broader picture of
the problem under consideration. Nilsson et al. [34,35] used the alternative finite element
method (FEM)-based software COMSOL [36] for solving the transient heat equation in the
case of heat transfer in zone plate optics exposed to XFEL. Here, we carried out simulations
with computational fluid dynamics (CFD) software ANSYS Fluent [37] which is based
on the control volume method (CVM). The code is widely used and thus validated for
many engineering and natural science problems, including heat transfer by conduction,
convection and radiation.

3.1. Governing Equations and Solution Procedure

In the following, we present the basic equations that describe the geometry and
physics that need to be considered for the evolution of heating. In the presented numerical
simulations, we solve the transient heat energy transport equation (heat conduction) in
solids [38,39]. The diffusion equation governs the problem

∂

∂t
(ρh) = ∇ · (k∇T) + Sh (4)

where h =
∫ T

Tre f
cpdT is the mass-specific sensible enthalpy, cp is mass-specific heat, ρ is the

density, k is the thermal conductivity, T is the temperature, Tre f is the reference temperature
and Sh is the volumetric heat source. The following formulations and parameters were used
in Fluent [40]: transient time formulation with second-order implicit discretization, least-
squares cell-based spatial discretization for gradient, and second-order spatial discretization
for energy.

In the calculation, the time-stepping method utilized a scheme for time step size
∆t :10−7 s in the first 1000 time steps, 10−6 s in the next 900 time steps, and 10−3 s in the
final 99 time steps. Such a small time step is needed at the beginning of the simulation
because the time between two consecutive X-ray pulses was 3.56× 10−6 s. The characteristic
time for thermal diffusion in the WC/SiC MLL is tdi f f = L2/a, is 3.4 × 10−4 s, since the
typical MLL dimension L is 100 µm and a = k/(ρcp) is the thermal diffusivity given in
Table 1. The total simulation time was 0.1 s, representing the time between two consecutive
pulse trains. The steady-state temperature conditions in the MLL were reached well before
the next X-ray pulse train arrived. A maximum of 20 linear solver iterations were allowed
in each time step. The CPU time for one simulation was about 2 h on a 28-core Supermicro
workstation (2× Intel® Xeon® CPU E5-2690 v4 @ 2.60 GHz).

3.2. Geometric Model and Computational Grid

We used numerical simulations for the following two purposes: (a) to estimate the
evolution of the heat load for the existing lens, and (b) to explore other materials and
geometries that might be better suited for focusing XFEL pulses with MLLs. The general
model was created using the Gambit [41] mesher and is presented in Figure 3.
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The model was assembled from three parts, namely an aluminum holder, a diamond
plate, and the MLL consisting of a silicon substrate and a multilayer structure. The MLL
geometries are designated G1a, G1b, G1c and G2a, and G2b (Figure 4).
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Figure 4. Variants of the MLL geometry G1 and G2. Geometries G1a, G1b and G2a are considered for
WC/SiC MLL (optimum thickness of 4.5 µm) at 8 keV, while the lens thickness of G1c and G2b is
45 µm, optimized for B4C/SiC at 8 keV.

The MLL geometry used in the XFEL experiment was G1a, with a lens thickness of
4.5 µm, which is the optimum thickness for a WC/SiC multilayer used at a photon energy
of 8–10 keV (first row of Table 2). Its variant G1b has 10-times wider side columns (100 µm
vs. 10 µm wide) as part of the monolithic structure assumed to be cut from the deposited
multilayer. Variant G1c is approximately 10 times thicker in the X-ray beam direction
(45 µm vs. 4.5 µm). This would correspond to an optimum thickness of a lens consisting
of a B4C/SiC ML and used at 8 keV photon energy. For a given incident fluence, Table 2
shows that this lens absorbs about the same amount of energy as the thinner WC/SiC lens,
although it is distributed over a larger volume. The G2a geometry is a proposal for a new
lens shape with an improved attachment to the diamond plate, with the same 4.5 µm lens
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thickness as G1a. The variant G2b is similar but with a lens thickness of 45 µm (for B4C/SiC
ML). The G2 variants had an increased area of attachment to the diamond mount, with the
aim to improve the conduction of heat out of the lens. Due to the significant difference in
the dimensions of the holder (cm-scale), plate (mm-scale) and lens (µm-scale), each part
was meshed separately. Because these parts have different cell sizes, a non-conformal mesh
interface was used to assemble the final computational mesh.

3.3. Material Properties and Boundary Conditions

Table 1 summarizes the properties of the materials used in the numerical simula-
tions [26–28]. Due to the lack of reliable data on the temperature dependence of material
properties, especially emissivity, constant values were used in the simulations.

To solve Equation (4), the combined external convection and radiation thermal bound-
ary condition were used. The wall heat flux is given by the following equation

− k
∂T
∂n

= α(T − T∞) + εσ
(

T4 − T4
∞

)
(5)

where α = 20 W/
(
m2K

)
is the heat transfer coefficient, ε is surface emissivity (Table 1),

σ = 5.67× 10−8 W/
(

m2K4
)

is the Stefan-Boltzmann constant, and T∞ = 296 K is the
ambient temperature.

Our first set of simulations presented below in Sec. 4 were made to explore the
effect of the geometry of the lens and its mounting on the ability to dissipate heat and
tolerate high-intensity pulse trains. For this, we considered a particular absorbed energy of
Qabs = 15.6 µJ even though the absorbed energy for a given X-ray fluence would differ for
different materials and geometries.

This choice of Qabs corresponds to an incident pulse energy of 41.3 µJ for a WC/SiC
lens of 4.5 µm thickness in the G1a or G1b geometries. This is approximately equal to the
estimated absorbed energy per pulse in the XFEL experiments. The source term due to
each absorbed X-ray pulse, needed as the input for Equation (4), is Sh = Qabs/(V∆t), is
listed in Table 3 for the various geometries, and for the same multilayer material pair of
WC/SiC. The time step for the consideration of the source was ∆t = 10−7s.

Table 3. Absorption volume V, Source term Sh, temperature ∆T and enthalpy ∆h rise for single pulse
exposure of different WC/SiC MLL geometries.

Case V [m3] Sh [W/m3] ∆T [K] ∆h [J/kg]

G1a, G1b 4.95 × 10−14 3.16 × 1015 80.59 3.84 × 104

G1c 4.4 × 10−13 3.55 × 1014 9.07 4.32 × 103

G2a 6.0 × 10−14 2.60 × 1015 66.49 31.68 × 104

G2b 4.0 × 10−13 3.91 × 1014 9.97 4.75 × 103

This is considerably longer than the femtosecond duration of the X-ray pulse, but it
is assumed that heat does not transfer between mesh nodes within this time. Each X-ray
pulse causes a temperature rise given by Equation (5) and specific enthalpy rise (or dose)
∆h = cp∆T, as listed in Table 3. The initial temperature of the whole domain was set to the
ambient temperature.

3.4. Mesh Sensitivity Study

As a standard procedure in numerical simulations to achieve results independent of
the mesh [42,43], we conducted a sensitivity study of the effect of domain discretization
(computational cell size) on the results. Coarse, medium and fine meshes were created,
as shown in Figure 5. For each finer grid, the cell size ∆ was halved in each coordinate
direction, representing an 8-fold increase in the number of the cells Nc (Table 4).
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Table 4. Sensitivity study parameters listing the cell size ∆, the number of cells Nc, the total heat
transfer rate htr and the maximum temperature Tmax of the MLL (WC/SiC).

Mesh ∆ [mm] Nc htr [W] Tmax [K]

coarse 0.01 2100 6.3 × 10−4 1133.7
medium 0.05 16,800 5.9 × 10−4 1121.8

fine 0.025 134,400 5.8 × 10−4 1117.1

Two parameters, listed in Table 4, were used to compare the numerical simulation
results for all meshes. One is the primitive variable Tmax, representing the maximum tem-
perature reached by the MLL. The other parameter is the integral variable htr, representing
the total heat transfer rate and is obtained by integrating the total surface heat flux over the
MLL surface. Figure 6 shows the maximum temperature in the MLL (WC/SiC) over time.
The peak was reached after 20 X-ray pulses (since we are assuming trains of 20 pulses). It
can be seen from this sensitivity study that the results for the medium and fine meshes
are very close. Hence, further numerical simulations were performed with the medium
computational mesh due to the lower computational demands than the fine mesh.
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4. Simulation Results and Discussion
4.1. Comparison of Geometries and Materials for a Constant Absorbed Energy Per Pulse

In the following, we present the results of the numerical study of the heating of MLLs
using the model described above and with an absorbed energy per pulse of Qabs = 15.6 µJ,
similar to the experimental conditions, as well as for higher absorbed energies. In particular,
we studied the responses of different lens geometries, mounting, and materials, under
various XFEL beam conditions (intensity, number of pulses, etc.).

The numerical simulations predict that each XFEL beam pulse causes a huge instanta-
neous and volumetrically uniform heat load on the MLL (Equation (5) and Table 3). Figure 7
shows the simulated temperature field in a vertical plane perpendicular to the X-ray beam
direction and intersecting the center of MLL, at a time t = 72 µs (after 20 X-ray pulses) for
all considered geometric variants, assuming the same absorbed energy Qabs = 15.6 µJ and
that all lenses consist of WC/SiC multilayer. As expected, the thermal load of the MLL was
reduced by increasing the support structures (G1b vs. G1c) or by using a new mounting
method (G2a vs. G1a). The thicker lenses (G1c and G2b) had a substantially reduced
temperature simply because the energy was absorbed in a larger volume, and thus the
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dose was lower. The temperature field distributions show some differences for the different
geometries. In the geometries G1b, G2a and G2b, the temperature distribution in the central
(illuminated) part is similar to G1a, since the X-ray beam cross-section absorption area
is the same. However, G1b had a larger volume of support columns, which reduced the
temperature in the entire lens due to improved heat conduction and surface radiation to
the surroundings. A similar effect was achieved with G2a and G2b, where the contact
area between the lens and the diamond plate increased, except that the heat dissipation
was even better, and thus the temperatures were further reduced. The distribution for G1c
differs most from the temperature distribution for G1a. This is due to the reduced dose
caused by distributing the energy over a larger volume. Note that for a given X-ray pulse
fluence, the dose (an intrinsic property) is independent of thickness and thus the absorbed
energy, but the optimal thickness for focusing efficiency is dictated by the materials and
photon energy, so the thickness is not a parameter that can be chosen arbitrarily. Here, we
can infer that a B4C/SiC MLL of 45 µm thickness (listed in Table 2) heats to a much lesser
extent than a WC/SiC MLL of optimal thickness.
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Figure 7. MLL (WC/SiC) temperature distribution showing a vertical plane perpendicular to the
X-ray beam direction and intersecting the center of MLL. The distributions were calculated for
different geometries: (a) G1a; (b) G1b; (c) G1c; (d) G2a; (e) G2b after 20 X-ray pulses (at a time
t = 72 µs) and assuming absorbed energy of Qabs = 15.6 µJ. The simulation assumed that the
incident X-ray beam illuminated only the area within the black dashed line box.

Figure 8 shows how the temperature in the hottest part of WC/SiC MLLs changed
with time. The absorbed energy per pulse was taken to be 15.6 µJ. The first 200 µs are
displayed so that the temperature evolution between the X-ray pulses (3.56 µs apart) as
well as between pulse trains (100 ms apart) is visible. As we can see, the lens did not cool
significantly between two pulses near the beginning of the pulse train when the materials
were still at a low temperature. At these lower temperatures, the predominant mechanism
of heat transfer is convection. With each pulse, the temperature rises stepwise, according
to ∆T from Table 3. When the temperature exceeds about 573 K, the mechanism of heat
transfer by radiation starts to prevail, such that in 3.56 µs the temperature of the lens
drops by a considerable fraction of the rising temperature. As the temperature rises, this
process becomes even more pronounced. Thus, between the penultimate and last pulse,
the decrease in the lens temperature was 314.3 K for geometry G1a.
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As we observed from the simulations of the thick lenses (geometries G1c and G2b)
and anticipated from Table 2, the maximum temperature was considerably lower for thick
lenses (Table 5), indicating that they can therefore tolerate much higher incident absorbed
energies and possibly higher incident pulse fluences. As a result, we conducted numerical
simulations for the geometries G1c and G2b for absorbed energies ranging from 0.0156 mJ
to 0.156 mJ (see Figure 9 and Table 6).

Table 5. Maximum MLL (WC/SiC) temperatures Tmax for different geometries after 20 XFEL pulses
and absorbed energy Qabs = 0.015625 mJ.

G1a G1b G1c G2a G2b

Tmax [K] 1365.69 1319.8 438.24 1078.29 432.57
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Table 6. Maximum MLL (WC/SiC) temperatures in K for two different geometries and different
absorbed energies Qabs after 20 XFEL pulses.

Geometry
Qabs [mJ]

0.015625 0.046875 0.09375 0.15625

G1c 168.21 458.63 894.27 1475.11
G2b 164.65 447.95 872.89 1439.43

These allow us to find the dependence of the maximum lens temperature after 20 pulses
on the absorbed energy per pulse. For data from Table 6, the linear regression curve is

Tmax = c Q + T∞ (6)

where c = 9293.52 K/mJ for geometry G1c, and c = 9065.09 K/mJ for the G2b geometry
with WC/SiC multilayers. The goodness of fit is R2 = 0.997. If we know the maximum
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allowable temperature, we can calculate from Equation (6) the highest possible absorbed
energy, and thus the tolerable incident pulse energy, for a particular lens design.

The vertical temperature profiles T̃(z̃) through the MLL center after 20 X-ray pulses
are presented in Figure 10 as a function of the dimensionless temperature defined as
T̃ = (T − T∞)/(Tmax − T∞) and the dimensionless vertical coordinate defined as
z̃ = (z− zmin)/(zmax − zmin). The coordinate system refers to the one shown in Figure 3.
Dimensionless quantities were used for ease of comparison, as the lens heights were dif-
ferent for geometries G1 and G2, and maximum temperatures also varied by an order of
magnitude between cases. The minimum and maximum z coordinates of the MLL are zmin
and zmax, respectively. Geometry G2b was the most favorable since it led to the smallest
temperature difference. Consequently, the stresses, and thus the deformations, due to the
heat load, are also expected to be the smallest.
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Figure 10. Vertical temperature profiles of WC/SiC MLLs of different geometries at the end of
20 pulses at t = 72 µs. The energy absorbed per pulse was 15.6 µJ.

However, the thick-lens geometry of G2b is not suitable for WC/SiC MLLs since it
would not efficiently focus X-rays. As shown in Equation (1), the optimal thickness is
inversely proportional to the refractive contrast ∆n of the materials. The contrast between
WC and SiC is high, giving an optimal thickness of only 4.5 µm at 8 keV. The optimal
thickness is much higher for the materials Be/SiC and B4C/SiC, as well as for higher photon
energies, as seen in Table 2. The thickness of 45 µm is close to the optimum for B4C/SiC at
8 keV and Be/SiC at 17.5 keV photon energy. We simulated these multilayer combinations
for the G2b geometry with the same absorbed energy of 15.6 µJ, 20 pulses per train and
3.56 µs separation between the pulses. This absorbed energy was caused by an incident
pulse energy of 409 µJ for Be/SiC and 59.2 µJ for B4C/SiC. The temperature distribution for
the two cases is shown in Figure 11, and Figure 12 compares the evolution of the maximum
lens temperature over the course of the pulse train. The highest temperatures for these
B4C/SiC and Be/SiC MLLs were considerably lower than for the cases discussed above,
even though the incident X-ray pulse fluences were higher. For Be/SiC at 409 µJ incident
pulse energy, the highest temperature is 401.47 K, and for B4C/SiC at a 59.2 µJ incident
pulse energy, the highest temperature reached was 383.71 K. It is predicted, therefore, that
Be/SiC MLLs can withstand higher fluence pulses than B4C/SiC or WC/SiC MLLs.
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for the same absorbed energy of 15.6 µJ per pulse.

Figure 11 also shows a benefit of the 100 µm wide supporting posts for these particular
materials. Because of the greater thickness of the lens there, more conduction of heat
occurred transversely. In this case, the support posts acted as a heat sink, as can be seen
from the temperature outside the illumination area as defined by the dashed lines in
Figure 11 as compared with the much higher temperature gradients that occurred for the
thinner WC/Sic MLLs depicted in Figure 7.

4.2. Comparison of Optimized MLLs of Different Materials

We also calculated the highest average and maximum temperatures of lenses made
from different multilayer material pairs given in Table 2, for a photon energy of 17.5 keV,
the G2 geometry, and an incident pulse energy of 1 mJ. The thicknesses of the lenses were
set to their optimal values τopt given by Table 2. The incident energy of 1 mJ is much higher
than the pulse energy experienced in the current XFEL experiments and represents utilizing
the entire output of an FEL beamline to obtain focused intensities of higher than anything
achieved to date. The absorbed energy Qabs for the 1 mJ incident pulse is shown in Table 2.
The number of pulses per X-ray pulse train and time separation between two consecutive
pulses remained the same as in the previous simulations.

The time evolution of the average and maximum temperatures for the MLLs of four
multilayer systems are shown in Figure 13, and the maximum temperature profiles are
shown in Figure 14. The highest maximum and highest average temperatures reached
during irradiation by the pulse train are presented in Table 7. The melting temperature
Tmelt is also provided for comparison.
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TiC/SiC, B4C/SiC and Be/SiC: (a) maximum temperature; (b) average temperature for a pulse train
consisting of 20 pulses with 1 mJ energy per pulse.
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Figure 14. Temperature field in the z-x cross-section plane of MLLs consisting of (a) B4C/SiC,
(b) Be/SiC, (c) TiC/SiC, and (d) WC/SiC multilayers with optimal thicknesses for diffraction, after
20 pulses of 1 mJ energy (10 J/cm2 incident fluence). The simulation assumed that the incident X-ray
beam illuminated only the area within the black dashed line box.

Table 7. The highest average Tavg and maximum Tmax MLL temperatures of different MLs for a
photon energy of 17.5 keV and a train of 20 pulses with 1 mJ energy per pulse.

B4C/SiC Be/SiC TiC/SiC WC/SiC

Taavg [K] 445.05 380.65 947.15 2395.15
Tmax [K] 666.85 526.75 2374.15 12,978.85
Tmelt [K] 3036.15 1560.15 3373.15 3080.15

The simulation results presented in Figures 13 and 14 show that an incident pulse
energy of 1 mJ at a photon energy of 17.5 keV is too high for the WC/SiC MLL as the
temperature quickly exceeds the melting point. Lenses made from the three other material
pairs can tolerate high pulse energies. For TiC/SiC, the maximum temperature is lower
than the melting point, but it is still very high, which means that the lens is very likely to
deform due to temperature loads and stresses. The maximum temperatures of B4C/SiC and
Be/SiC lenses are both lower than 673 K and much lower than their melting temperatures.

5. Conclusions

In this paper, we investigated how the geometry and the material properties of MLL
lenses affect their response to intense XFEL pulses and megahertz pulse trains. A numerical
simulation is an effective tool to gain insight and a better understanding of the heat transfer
process in the design and analysis of optical elements in XFEL experiments. We looked at
the evolution of the temperature fields in MLLs over a train of pulses and its dependence
on incident X-ray intensity, multilayer materials, geometries and mounting schemes. We
first computed the temperature fields in WC/SiC MLLs, which were previously used
in experiments at the European XFEL. These temperature fields were compared with
simulations of MLLs of the following other material pairs: B4C/SiC, TiC/SiC, and Be/SiC.
The simulations showed a much lower heat load on these alternative materials for a
given absorption of energy in the lens. Still, more importantly, the temperature is much
lower for a given incident pulse energy. Hence, these other materials, consisting of lower
atomic number elements than tungsten, should be more suitable for use with intense X-ray
pulse trains.

Based on this study, we find that as the temperature of the lenses rises over the
course of the pulse train, the heat induced in thin lenses (such as WC/SiC MLLs) mainly
dissipates radiatively. Hence, the mounting of MLLs to a heat sink, or active cooling of
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the MLLs, is not necessarily required in such a case. However, this situation leads to
high temperature gradients in the materials, which could cause large local stresses due
to differential expansion that could potentially deform the lens or even break it. We did
not consider the thermal expansion of materials in our analysis and thus did not model
such effects, but based on an annealing study of WC/SiC multilayer structures [16], it is
expected that stresses of the multilayer structure itself change as a function of temperature.
We did not consider the effect of illuminating the lens-supporting structure or mounting
with the intense X-ray beam, which might give a more uniform heat load across the entire
structure (and lead to even higher energy deposition, which would be disadvantageous).

We identified several advantages in constructing MLLs from materials of a low atomic
number that lead to their suitability for use with intense XFEL pulses. Primarily, these
materials absorb less energy per unit mass for a given incident intensity and thus heat less
in the beam. Because the refractive contrast of low-Z materials is lower than for the material
pair of WC and SiC, such low-Z MLLs must be considerably thicker than WC/SiC MLLs.
Even so, their total transmission tends to be higher, so the energy deposited (into that greater
volume) is lower than for WC/SiC MLLs. The larger volume of the low-Z MLLs confers
better heat dissipation, and the surrounding material acts better as a heat sink. These trends
also hold with an increase in the photon energy since the absorption and refractive contrast
of materials both decrease with photon energy. Thus, MLLs become even more suitable
for focusing XFEL pulses at photon energies of 20 keV and above. We did not study the
ability to make multilayer structures from the other materials suggested here. Nevertheless,
with the optimal materials and design, it appears that it should be possible to focus intense
XFEL pulses with MLLs to small focal spots, giving unprecedented intensities.
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