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Abstract: An important imaging technique in biomedicine, the conventional optical microscopy relies
on relatively complicated and bulky lens and alignment mechanics. Based on the Gabor holography,
the lensless digital holographic microscopy has the advantages of light weight and low cost. It
has developed rapidly and received attention in many fields. However, the finite pixel size at the
sensor plane limits the spatial resolution. In this study, we first review the principle of lensless
digital holography, then go over some methods to improve image contrast and discuss the methods
to enhance the image resolution of the lensless holographic image. Moreover, the applications of
lensless digital holographic microscopy in biomedicine are reviewed. Finally, we look forward to the
future development and prospect of lensless digital holographic technology.

Keywords: lensless digital holography; resolution enhancement; computational imaging

1. Introduction

Currently, biomedical imaging at the micron scale or smaller is mainly supported by
optical microscopy [1]. Optical microscopy relies on relatively expensive and bulky lenses,
and it needs mechanical focus to obtain clear images. In addition, there is an inherent
trade-off between the field of view (FOV) and the spatial resolution, which means that
if high-resolution imaging is required, there is no large FOV. Moreover, it is not easy for
an optical microscopy to image a large volume object and to focus on objects at multiple
heights. In 1971, the concept of digital holography was first proposed [2]. However, it was
in a state of stagnation due to the limitations of computer technology and imaging devices.
With the development of digital imaging sensors and the improvement of computing
speed, digital holography began to develop in a real sense. Compared with classical
optical microscopy, the digital holography provides complex, quantitative amplitude and
phase information about the object and has wide application, to name a few, in early cell
death investigation [3], cell death and ionic regulation detection [4], particle movement
estimation [5], phase imaging of cancer cells [6], and so on. There is no such counterpart in
optical microscopy as phase patterns obtained by digital holography.

In digital holography, the amplitude and phase information of an object is encoded
into a two-dimensional hologram which is generated by the interference of the object wave
and the reference light [7]. Based on the system configuration, the digital holography
can be mainly divided into two categories: in-line digital holography and off-axis digital
holography. For the in-line setup, the object wave and the reference wave are in a line [8,9],
while there is an angle between them for the off-axis counterpart [8,10,11]. Generally, the
transparent and semi-transparent samples can be imaged by the in-line digital holography.
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Figure 1a shows a typical in-line holography schematic, which is also called as lensless
digital holographic microscopy (LDHM) [12]. The light source passes through a pinhole
and illuminates the sample, and the scattered light of the sample interferes with the non-
scattered light [13]. The sensor records the holograms, from which the scattered object
wave is numerically reconstructed [14]. Without imaging lenses and alignment mechanics,
and other bulky optical components, the LDHM is extremely compact, cost-effective and
light weight. Moreover, the field of view (FOV) and resolution are decoupled from each
other: the resolution generally depends on the pixel size of the image sensor chip and the
detection signal-to-noise ratio (SNR), whereas the sample FOV is equal to the entire active
area of the sensor chip, which is, e.g., 20–30 mm2 for a state-of-the-art complementary metal
oxide semiconductor (CMOS) imager chip and it can reach about 10–20 cm2 for a Charge-
Coupled-Device (CCD) [15–17]. In the system setup, as shown in [18] and [19], the sample
was placed close to the pinhole. This system is usually suitable for small samples, and
the distance from the pinhole to the CCD is relatively small, such as 15 mm [20]. An
advantage of this setup is that the system can record the hologram even if the object is
opaque. Figure 1b shows another in-line holography setup based on the Mach–Zehnder
interferometer, where the laser is divided into two beams by a beam splitter. One beam
is reflected by the reflector M2 and irradiates the object to form object light. The other
one is reflected by the reflector M1 to form reference light. Two light beams interfere to
form a hologram which is recorded by the CCD. If the M1 mirror is rotated and there
is an angle between the object light and the reference light when they incident on the
CCD, the system is a typical off-axis arrangement [21]. Similar to the in-line hologram,
an off-axis hologram is also composed of zero-order diffraction and ±1-order diffraction
of illumination light. Because there is a certain angle between the object light and the
reference light, the propagation direction of the three diffraction levels is different. It
is easier to eliminate the twin image for off-axis holography compared with the in-line
configuration [10]. When the angle is properly adjusted between object light and reference
light during recording, the real image and the twin image can be separated. Specifically,
the angle should be larger than:

θmin = arcsin(3 f λ) (1)

where f is the highest spatial frequency of the sample, θ is the angle between the object
light and the reference light.
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Figure 1. In-line digital holography schematic. (a) Lensless in-line holographic system schematic. 
(b) Mach–Zehnder interferometer-based holographic system schematic. 

Figure 1. In-line digital holography schematic. (a) Lensless in-line holographic system schematic.
(b) Mach–Zehnder interferometer-based holographic system schematic.

However, the recording distance is larger in the off-axis configuration than that in the
in-line Mach–Zehnder interferometer. Due to the limitation of the angle between the object
light and the reference light, the space-bandwidth product and the imaging resolution are
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lower than those in the in-line holography. Compared with the off-axis counterpart, the
in-line setup is preferred for its simple and compact configuration, stability against the
environment, low cost, and a potentially higher information throughput.

Contrast and resolution are two significant performance metrics of optical imaging.
However, due to the presence of zero-order noise, twin images and the limited size of sensor
pixels, the contrast, and the resolution in the lensless digital holography still need to be
improved. In this study, we first review the principle of the lensless digital holography, then
discuss some methods to improve image contrast and to enhance the image resolution of the
lensless holographic images. Furthermore, the applications of lensless digital holographic
microscopy in biomedicine are investigated. Finally, we look forward to future development
and prospect of lensless digital holographic technology.

2. Principles of Lensless Digital Holographic Microscopy

The working flow of lensless digital holographic microscopy includes two processes
which are hologram recording and image reconstruction. Figure 2 depicts the recording
and the reconstruction processes. The recording process is to acquire the interference
pattern between the object light and the reference light, and the reconstruction step is
to recover the object wave numerically. The Fresnel diffraction [22] method and angular
spectrum method [23] are the commonly used methods for reconstruction. Two Fourier
transforms are needed for the angular spectrum method in comparison to the one needed
by the commonly applied Fresnel diffraction method. The Fresnel diffraction method,
however, requires that the distance between the object and the hologram be sufficiently
large in comparison to the size of the object or the hologram. The angular spectrum
method does not have a lower reconstruction distance limit. Moreover, spurious noise and
interference components can be tightly controlled through the analysis and filtering of the
angular spectrum [23].
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2.1. Hologram Recording

During hologram recording, the object wave carries the object’s information, which
can be expressed as:

O(x, y) = A0(x, y) exp(j∅0(x, y)) (2)

where A0(x, y) represents the amplitude distribution, ∅0(x, y) is the phase distribution.
The reference light wave is expressed as:

R(x, y) = Ar(x, y) exp(j∅r(x, y)) (3)
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The interference field is the superposition of the object light and reference light. The
interference intensity can be expressed as:

I(x, y) = |O(x, y) + R(x, y)|2 = |Ar(x, y)|2 + |Ao(x, y)|2 + O∗(x, y)R(x, y) + O(x, y)R∗(x, y) (4)

In Equation (4), the first two items are called zero-order noise, which are usually shown
in the image plane as background. It can be eliminated by subtracting the background
when no samples are placed. The third term is the complex amplitude distribution of the
object light field. The last term and the third term are conjugated. Simple back-propagation
of Equation (4), after the background subtraction, results in both a focused image and
a defocused image of the sample that spatially overlap, and the latter forms what is
commonly known as the twin image artifact in inline holography. When the sample is
placed rather close to the imaging sensor, this twin image can strongly obscure the real
object image, which leads to low signal and background contrast [17].

2.2. Digital Reconstruction

In lensless digital holography, the object light field can be reconstructed by back-
propagation. To recover the object light field, the angular spectrum method can be used.
This approach consists of computing the Fourier transform of the captured hologram after
background subtraction, multiplying it by the transfer function of free space, and then
inverse Fourier transforming. Mathematically,

U(x, y) = F−1
{

F[I(x, y)] exp
[

jkz
√

1− (λ fx)
2 −

(
λ fy
)2
]}

(5)

where U(x, y) is the reconstructed object light field, F and F−1 represent the Fourier transform
and the inverse Fourier transform, fx, fy are the spatial frequencies, and λ is the wavelength.

3. Contrast and Resolution Enhancement

Contrast and resolution are two significant performance metrics of microscopy. Image
contrast refers to the magnitude of the gray contrast of the image, which is usually dis-
turbed by the meaningless content in the image. Complex content often affects the useful
information in the image. Image resolution is the ability to distinguish adjacent objects.
The higher the resolution, the higher the pixel density. The imaging quality of the LDHM is
challenged by the twin image and aliasing effects because sensors only respond to inten-
sity and pixels are of finite size. High resolution and contrast are required in biomedical
applications. Contrast and resolution improvement has been an open problem since the
technique was developed.

3.1. Contrast Improvement

In lensless digital holography, whether the Fresnel diffraction method or angular
spectrum method is used for reconstruction, the recovered image is disturbed by the twin
image, which decreases the image contrast. This is because only the intensity of the field at
the image sensor plane is measured and the field phase information is missing [24]. Fur-
thermore, zero-order noise also reduces image contrast. Several strategies were proposed
to remove the zero-order noise and the twin image to increase the image contrast.

3.1.1. HRO and Hologram Normalization

To eliminate the interference of the zero-order noise, a relatively simple method can
be used. For an off-axis holographic system, the reference light reaching the detector is
occluded before recording the hologram to obtain the intensity distribution of the object.
The authors of [25] proposed the Hologram, Reference, Object (HRO) method where the
object light is first blocked to obtain the intensity distribution of reference light, then the
hologram is recorded. Finally, the hologram without zero-order noise can be obtained
by subtracting the object light and the reference light intensity respectively. However, it
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is difficult to separate the reference light and the object light in the in-line holographic
system. As a result, the intensity distribution of the object light and the reference light
cannot be obtained separately. A commonly used method is to obtain a background
intensity distribution before the sample holograms are recorded. In the reconstruction
stage, the hologram is first normalized by dividing the hologram by the background
intensity distribution.

3.1.2. Gerchberg–Saxton Iterative Algorithm

To eliminate the twin images some non-iterative methods have been presented such
as averaging holograms of different recording distances [26]. The most popular iterative
method is the Gerchberg–Saxton(GS) iterative algorithm [27], which is depicted in Figure 3a,
where two recording planes are required. The complex amplitude is obtained by combining
the square root of the amplitude of the first recording plane with an initial phase estimation.
The angle spectrum theory is utilized for the object wave to propagate to the second
recording plane. The phase is maintained and the amplitude is replaced by the square root
of the amplitude of the second recording plane to obtain a new complex amplitude. This
complex amplitude is then back propagated to the first recording plane. The twin image
can be eliminated by repeating the process. As shown in Figure 3b, the multi-height phase
iterative algorithm is an improvement on the GS algorithm [28,29], which iterates using
eight holograms of different heights, typically 15 µm apart. Usually, it can obtain good
results after iterating 10–20 times. Using the transport of intensity equation (TIE) [30,31],
a nearly global optimal phase distribution can be obtained. With TIE, not only the locally
optimal solution is avoided, but also the convergence is sped up. Considering the positive
absorption of an object, the amplitude of the wave front should not be greater than 1 at the
object plane [32]. The process of propagating to the object plane is added to the GS iteration,
and the portion whose amplitude is greater than 1 is changed to 1, and the corresponding
phase becomes 0.
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3.1.3. Multiwavelength Phase Retrieval

Recording a set of holograms at different wavelengths is also another widely used
method [33,34] to remove the twin image. The estimated amplitude and phase at each
wavelength are processed for multiple iterations by the traditional GS algorithm. In the
iterative process, assuming that the refractive index of the object and its surrounding
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medium is constant regardless of the wavelength, the phase of the object at different
wavelengths can be expressed as:

∅1(x, y)/∅2(x, y) = λ2/λ1 (6)

The dual-wavelength algorithm flow is shown in Figure 4. The initial complex wave is
first estimated by combining the square root of amplitude under λ1 with a random phase.
Then the estimated complex wave backpropagates to obtain the complex amplitude of the
object plane. After Wiener filtering, the phase is updated according to formula (6) and
propagates to the detection plane. The complex amplitude is replaced by the square root of
amplitude obtained with λ2, which is backpropagated to the object plane, and the phase is
updated after Wiener filtering. After several repetitions, the twin image can be effectively
removed. This method can be extended to more than two wavelengths.
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3.1.4. Phase Retrieval Based on Compressive Sensing

Compressive sensing (CS) is important for generating multidimensional images from
low dimensional data. The compressive sensing theory guarantees high-precision re-
construction of multi-channel encoders that meet the conditions of restricted isometry
property [35,36]. Assuming that the signal to be reconstructed can be expressed as a sparse
function under a certain condition, compressive sensing solves the signal optimization
problem [37]. With compressive sensing, holographic images without twin images can be
reconstructed [38–40]. In addition, by using the sparsity of the sample, the compressive
sensing can also improve the resolution of the hologram reconstruction [41], which can
solve the interference caused by the twin images and the out-of-focus between different
layers in the volume imaging [42]. For the multi-height phase iterative algorithm, only two
holograms can be used for phase retrieval under the sparsity condition [43].

3.2. Resolution Enhancement

Lensless digital holographic microscopy allows the imaging FOV to reach the effective
area of the entire sensor chip, while high-resolution imaging is also desired. As can be seen
from Equation (5), the resolution of the computationally reconstructed image is equal to
the resolution of the captured hologram. Because there is no lens with finite NA to limit the
resolution, the resolution-limiting factor is: in theory, the refractive index of the medium
that fills in the space between the sample and sensor planes; and in practice, the pixel size
of the sensor [44]. In this section, we introduce some methods to improve the resolution.
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3.2.1. Pixel Super-Resolution Strategy

The resolution of lensless holographic microscopy primarily depends on the pixel size
of the sensor chip, resulting in under-sampling of the high-frequency information. In terms
of hardware, it is undoubtedly that using a detector with a smaller pixel size increases the
spatial resolution. At present, the smallest pixel size of the CMOS sensors is about 1 µm
which is not high enough for the microscale biomedical research. Fortunately, the pixel
super-resolution algorithm can break through the limitation caused by the hardware pixel
size [45]. Usually, the pixel super-resolution algorithm acquires multiple holograms of low
resolution to synthesize high-resolution holograms by moving the holograms in sub-pixel
increments. Sub-pixel movement between these holograms can be achieved by moving
the light source [46], the sample [47], or the detector, as shown in Figure 5. Illuminating
the object sequentially by each source in the source array is an equivalent way to realize
the source shifting, which is illustrated in Figure 5c [48]. Figure 6 shows the difference
between before and after using the pixel super-resolution algorithm. Figure 6b contains
more high-frequency information that is not collected in the lower-resolution holograms.
The pixel size of the digital hologram is reduced by six times [47] when a 2.2 µm imaging
sensor is used. In [49], Gao et al. combined the phase retrieval and pixel super-resolution
techniques as a unified optimization problem and proposed a generalized algorithmic
framework to solve the problem. Half-pitch resolution is achieved for the experimental
data acquired by an imaging sensor with a pixel pitch of 3.8 µm. In [50], four indepen-
dent linear equations that relate frequency components in four aliased sub-pixel shifted
images to unaliased frequency components in a super-resolution image were first derived.
Then a predetermined inverse matrix was used to calculate the frequency components of
a super-resolution image from those of four under-sampled images. The results show that
the proposed non-iterative sub-pixel shifting super-resolution technique that can enhance
the resolution of LDH by a factor of two with a 1.67 µm imaging sensor.
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3.2.2. Synthetic Aperture Technology

Synthetic aperture is a well-known super-resolution technique which extends the
resolution capabilities of an imaging system beyond the theoretical Rayleigh limit dictated
by the system’s actual aperture. Synthetic aperture technology (SA) was first applied to
radar [51]. The synthetic aperture is generated by angular multiplexing, which is imple-
mented by tilted beam illumination over the object and allows the recovery of additional
spatial frequencies falling outside the digital camera sensible area when on-axis illumina-
tion is used. Using this idea, the numerical aperture (NA) of the system can be improved.
A typical system setup is shown in Figure 7a [52]. The point source is moved to several
off-axis positions to provide different illumination angles. In [53], the authors proposed
a lensless system containing a BPF, a polarizer, a spatial light modulator (SLM), and
a digital camera. The system is shown in Figure 7b whose effective aperture is three times
larger than those used alone. The synthetic aperture was implemented by shifting the
BPF-polarizer-SLM-camera set, located across the field of view among several viewpoints.
In theory, this configuration can be extended to enlarge the NA by an arbitrary factor.
In [54], the superresolution is achieved by linearly moving the inspected object. In [55],
the spatial resolution is improved by recording a small number of holograms featuring
varying angles of incidence based on the synthetic spectrum normalization. SA was also
applied to terahertz in-line digital holography [56] and a one-shot synthetic aperture digital
holographic microscopy was proposed by using a combination of angular-multiplexing
and coherence gating to achieve super-resolution imaging in a single exposure [57].

Photonics 2022, 9, x FOR PEER REVIEW 9 of 19 

 

 

 

 
(a) (b) 

Figure 7. Synthetic aperture systems. (a) Typical SA system, adapted from [53]. (b) A SA setup 
where NA can be enlarged by three times. BPF: Band-pass filter, P: polarizer, adapted from [54]. 

3.2.3. Use of SLM 
The imaging quality can be improved by adding an SLM to the lensless holographic 

imaging system. As shown in Figure 8, the SLM behind the laser acts as a phase mask, 
and the phase modulated beam that passes the SLM illuminates the sample to form holo-
grams on the detector plane. This method can suppress the twin image [58]. At the same 
position, the SLM is used to generate multiple mask modes to encode the sample infor-
mation. The sensor records a set of images and then synthesizes images with improved 
resolution and high SNR [59]. It is worth noting that the sparse phase and amplitude re-
construction (SPAR) algorithm as a phase retrieval method is proposed due to the random 
phase modulation and some noise with Poisson distribution [60]. In addition, the SLM can 
also be placed between the object and the detector as denoted by the dotted line in Figure 
8. By loading the distribution of the diffraction grating into the SLM, the detector collects 
more light, including high-frequency information of the object [61]. For example, [62] used 
an adjustable one-dimensional cosine grating mode to achieve higher resolution. 

 
Figure 8. The system setup of resolution enhancement based on SLM. 

Figure 7. Synthetic aperture systems. (a) Typical SA system, adapted from [53]. (b) A SA setup where
NA can be enlarged by three times. BPF: Band-pass filter, P: polarizer, adapted from [54].

3.2.3. Use of SLM

The imaging quality can be improved by adding an SLM to the lensless holographic
imaging system. As shown in Figure 8, the SLM behind the laser acts as a phase mask, and
the phase modulated beam that passes the SLM illuminates the sample to form holograms
on the detector plane. This method can suppress the twin image [58]. At the same position,
the SLM is used to generate multiple mask modes to encode the sample information. The
sensor records a set of images and then synthesizes images with improved resolution and
high SNR [59]. It is worth noting that the sparse phase and amplitude reconstruction
(SPAR) algorithm as a phase retrieval method is proposed due to the random phase
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modulation and some noise with Poisson distribution [60]. In addition, the SLM can also
be placed between the object and the detector as denoted by the dotted line in Figure 8. By
loading the distribution of the diffraction grating into the SLM, the detector collects more
light, including high-frequency information of the object [61]. For example, [62] used an
adjustable one-dimensional cosine grating mode to achieve higher resolution.
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3.2.4. RGB Multiplexing

The principle of single-exposure super-resolved interferometric microscopy by RGB
multiplexing can be considered as the process of encoding and decoding. In the encoding
stage, sample information is encoded onto a monochrome sensor [63] or a single-color
sensor [64] using beams of different wavelengths in the case of angular multiplexing.
During decoding, the complex amplitude of the images is restored after Fourier filtering
by adding three coherent reference lights of RGB. A schematic diagram where only one
detector is used [65] is illustrated in Figure 9a. Another arrangement is to record the
holograms using three detectors. Figure 9b shows the system which is set up as an in-line
optical path and two off-axis optical paths [66]. Due to angular multiplexing, holograms at
three wavelengths can be subjected to synthetic aperture operations, and Fourier transforms
can be used to obtain super-resolution images [67], where the resolution can be enhanced
by two times when using a sensor with a pixel size of 6.45 µm.
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3.2.5. Data Interpolation

In holographic microscopy, interpolation can be used to increase spatial resolution
for relatively large sensor pixels [68,69]. According to the Nyquist sampling theorem,
interpolation can improve the resolution because of its oversampling process. The hologram
is up-sampled to enlarge the size of the matrix; thereby, the pixel size is effectively reduced,
which leads to better resolution.

A disadvantage of this method is that the information added to the image is estimated
and not completely correct. This process is also affected by the twin image, as the twin image
can interfere with image detail. Therefore, combining phase iteration and interpolation can
improve image resolution without artifacts [70], which is illustrated in Figure 10. In this
algorithm, the optical field is propagated back and forth between the sample plane and the
sensor plane while using the measured intensity and a priori information about the sample
as constraints, following Gerchberg–Saxton and Fienup’s methods. Before the iteration, the
intensity data matrix measured by the sensor is interpolated to enlarge the matrix dimension
and thus effectively reduce the pixel size. During the iteration, the sensor plane constraints
are applied on only the measured intensity location but not the interpolated data location.
The resolution is improved about 1.26 times using a sensor with pixel size of 2.2 µm.
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3.2.6. Different Illumination Strategies

If structured light rather than the uniform light is used for illumination, the high spatial
frequency components of a sample, which are not accessible in conventional microscopy,
are shifted into the detectable domain and thus can be observed because of the Moiré effect
and leads to an increased spatial resolution. Thus, the structured illumination microscopy
was proposed [71]. Illuminating the sample with a periodic pattern and recording the
generated Moiré pattern, the resolution of lensless digital holographic microscopy can
also be enhanced through structured light illumination [72]. Figure 11 illustrates a lensless
holographic microscopy system based on structured light. The imaging process can be
described as follows: the plane wave is used to illuminate the known regular pattern, and
after passing through lens 1, the structure pattern is formed on the object plane through
diffraction at different angles. After imaging and magnifying by lens 2 to the image plane,
the off-axis hologram is generated by interference with the reference light. Structural light
illumination can be achieved by adding grating to the system [73,74]. The resolution can be
improved by about 1.5 times using an imaging sensor with a pixel size of 2.2 µm. Another
solution is to use a spatial light modulator (SLM) instead of grating [75,76]. The pattern
of structured light is loaded into SLM to obtain specific illumination, such as circular
symmetrical structured light [77].

Photonics 2022, 9, x FOR PEER REVIEW 11 of 19 

 

 

 
Figure 10. Schematic diagram of the data interpolation method. 

3.2.6. Different Illumination Strategies 
If structured light rather than the uniform light is used for illumination, the high spa-

tial frequency components of a sample, which are not accessible in conventional micros-
copy, are shifted into the detectable domain and thus can be observed because of the 
Moiré effect and leads to an increased spatial resolution. Thus, the structured illumination 
microscopy was proposed [71]. Illuminating the sample with a periodic pattern and re-
cording the generated Moiré pattern, the resolution of lensless digital holographic micros-
copy can also be enhanced through structured light illumination [72]. Figure 11 illustrates 
a lensless holographic microscopy system based on structured light. The imaging process 
can be described as follows: the plane wave is used to illuminate the known regular pat-
tern, and after passing through lens 1, the structure pattern is formed on the object plane 
through diffraction at different angles. After imaging and magnifying by lens 2 to the im-
age plane, the off-axis hologram is generated by interference with the reference light. 
Structural light illumination can be achieved by adding grating to the system [73,74]. The 
resolution can be improved by about 1.5 times using an imaging sensor with a pixel size 
of 2.2 μm. Another solution is to use a spatial light modulator (SLM) instead of grating 
[75,76]. The pattern of structured light is loaded into SLM to obtain specific illumination, 
such as circular symmetrical structured light [77]. 

 

Figure 11. Schematic diagram of the resolution enhancement in lensless digital holographic micros-
copy based on structured illumination. 

The resolution of lensless digital holographic microscopy is also affected by the illu-
mination coherence and temporal coherence [78]. In the case of insufficient spatial coher-
ence of the light source, the spatially-extended light source combined with the deconvo-
lution operation can effectively improve the imaging resolution [79]. For insufficient tem-
poral coherence, a differential holographic reconstruction method based on ultra-broad-
band light source illumination can enhance the resolution and contrast of imaging [80]. 

3.2.7. Deep Learning 
The artificial neural network is a nonlinear computing model based on brain struc-

ture. The network is connected by simple nonlinear elements and adaptive weights [81]. 
When neurons are divided into different layers connected by different weights, a complex 
training process, such as error backpropagation, is required. Deep learning is a machine 
learning technology that uses multi-layer neural networks for data modelling, analysis, 
and decision making , and has been widely used for statistics, analysis, and prediction of 
large data samples. 

In recent years, deep learning has been applied to holographic image reconstruction 
and phase retrieval to obtain high-resolution images without twin image [82,83]. The deep 
learning networks can map the relationship between the input and output without any 

Figure 11. Schematic diagram of the resolution enhancement in lensless digital holographic mi-
croscopy based on structured illumination.



Photonics 2022, 9, 358 11 of 18

The resolution of lensless digital holographic microscopy is also affected by the illumi-
nation coherence and temporal coherence [78]. In the case of insufficient spatial coherence
of the light source, the spatially-extended light source combined with the deconvolution
operation can effectively improve the imaging resolution [79]. For insufficient temporal
coherence, a differential holographic reconstruction method based on ultra-broadband light
source illumination can enhance the resolution and contrast of imaging [80].

3.2.7. Deep Learning

The artificial neural network is a nonlinear computing model based on brain struc-
ture. The network is connected by simple nonlinear elements and adaptive weights [81].
When neurons are divided into different layers connected by different weights, a complex
training process, such as error backpropagation, is required. Deep learning is a machine
learning technology that uses multi-layer neural networks for data modelling, analysis,
and decision making, and has been widely used for statistics, analysis, and prediction of
large data samples.

In recent years, deep learning has been applied to holographic image reconstruction
and phase retrieval to obtain high-resolution images without twin image [82,83]. The
deep learning networks can map the relationship between the input and output without
any prior knowledge of the imaging model. By training a set of matched low-resolution
and high-resolution images, the relationship between them can be learned. Thus, a high-
resolution image can be retrieved from one or multiple low-resolution images captured
by a similar setup. Compared with other methods, there is no need to change the angle or
height in the data acquisition process based on deep learning, which reduces the complexity
of the operation. On the other hand, it does not need to use multiple wavelengths of light
source or a source array, which reduces the complexity of the system and is more conducive
to real-time imaging, even in a bad environment. Whether it is an amplitude object, a phase
object or a complex object, it is possible to reconstruct a high-resolution image without
prior knowledge based on deep learning [84,85].

Moreover, based on a deep learning framework for the generative adversarial network
(GAN), there are breakthroughs in both pixel size limitation and diffraction limit limitation,
and image super-resolution is achieved in coherent imaging systems [86]. In addition,
combining the volumetric imaging ability of holographic microscopy with artifact-free
images of incoherent microscopy, 3D imaging of object snapshots with bright-field contrast
using a single hologram is realized based on the GAN network [7]. It should be noted that
training in this framework requires a lot of data.

4. Application of Lensless High-Resolution Holographic Microscopy in Biomedicine

With the development of the imaging system and the reconstruction algorithm, high-
resolution holographic imaging can be achieved and gradually finds wide applications
in biomedicine.

4.1. Molecular Quantitative Analysis

In [87], the LDHM shows great potential in blood analysis. For high-density red
blood cells (RBCs), high-resolution imaging is possible, while auto-counting is performed.
Moreover, the volume of RBCs is further characterized at the single-cell level, as well as the
measurement of hemoglobin concentration in whole blood samples. Combined with the
neural network, RBCs can be extracted from the holograms, which helps to quantitatively
analyze the morphological characteristics of RBCs to diagnose diseases associated with
RBCs [88]. Furthermore, in terms of disease detection, due to the high throughput of
lensless holographic microscopy, screening speed can be significantly improved, such as
screening of bacillus anthracis spores [89], parasites [90], and cervical cells [91].

Lensless digital holographic microscopy does not require mechanical focus and is
characterized by real-time and dynamic imaging [92]. One application for this capability
is automatic positioning, tracking, and shape analysis of targets, such as positioning of
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colloidal particles [93], dynamic tracking of prokaryotes [94], and cells of any shape [95],
deformation measurement [96] and quantitative analysis of flowing cells [97], and the
analysis of the platelets adhesion morphology, aggregation, and spreading in vitro mod-
els [98]. In [99], the tracking of an evaporating droplet (size ∼ 100 µm) and the microscopic
imaging of bacteria (size ∼ 1 µm) are also realized by the LDHM. Another application is
the measurement of the object size and 3D position, such as a fast-flowing bubble [100] and
moving particles [101,102]. Moreover, the technique has been used to detect nanoparticles,
biomolecules, and viruses, e.g., for viral load measurements in field settings [103], and
even to measure the particulate matter in the air by combining with an impaction-based
air sampler [104].

Different angles of illumination in digital holographic imaging can also be used to
generate tomographic reconstructions. With the filtered back-projection algorithm, a 3D
lensless image of a specimen can be reconstructed. In [105], the lensless holographic tomog-
raphy was achieved when many light sources were used sequentially from many different
angles, from which many holograms are recorded. A single tomogram can be reconstructed
from these multiple holograms. This technique was implemented to the image of C. elegans
worms in three dimensions and been merged with micro-fluidics to enable tomographic
imaging of 3D objects during their flow and combined with a microfluidic device to per-
form optofluidic holographic tomography [106]. A quantitative phase image contains
information about the optical thickness distribution of a specimen where optical thickness
means the product of physical thickness and refractive index. By utilizing a tomographic
imaging technique, the 3D refractive index distribution was visualized [107].

4.2. Flow Cytometry

Flow cytometry can count and sort tiny particles suspended in fluids for analysis
of plankton for many years [108]. This technique relies on the sheath flow to limit the
biological sample to the focus of the illumination light, measuring the scattering intensity
of each particle within the sample volume. As the digital holographic wavefront can record
all the information of the object [109], lensless holographic microscopy proved to be able
to image plankton [110] and offers a new option for expensive flow cytometry on the
market due to its capability of volumetric imaging. Using the laptop, holographic-based
portable flow cytometry can dramatically reduce cost, size, and weight, and provide high-
throughput for large samples. With deep learning, the system can monitor a large number
of biological samples continuously [111]. In [112], the authors presented a lensless digital in-
line holographic microscopy system combining with microfluidic chips for monitoring cells
and conducting viability experiments that can be used for space-based in vitro experiments.

4.3. Biomolecular Classification

The classification of biological samples has always been of interest to researchers.
The traditional approach requires transferring samples to the lab for testing or testing
at a relatively slow rate. Based on lensless digital holographic microscopy, not only can
samples be detected in the field, but also the classification speed is fast. The detection of
common biological molecules, such as oak pollen, Bermuda grass pollen, ragweed pollen,
and aspergillus spores, has a classification accuracy of >94% [113]. Cell classification is also
a problem that has attracted much attention. As a label-free and high-throughput method,
lensless holographic microscopy can classify white blood cell subpopulations based on cell
size and deformability [114]. Using the optical neural network, the classification accuracy of
monocytes, granulocytes, and lymphocytes is close to 89% [115,116]. In addition, a passive
linear integrated photon stage is utilized as an effective nonlinear hybrid interface between
the holographic projection and the image sensor, which enables high-throughput cell classi-
fication using multiple parallel channels [117,118]. Combining with deep convolutional
neural networks, the label-free holography was applied to discriminate the normal cells
from tumour cells and to classify different types of tumour cells [119]. Regarding cell
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classification, Buzalewicz et al. in [120] used LDHM to obtain new optical signatures of
bacterial colonies, which represents an innovative approach to bacterial colony analysis.

Recently, the Mach–Zehnder based DHM was used to measure the cell volume [121],
quantify cytotoxic effect of organic nanoparticles [122], investigate morphological changes
in T-lymphocytes after exposure with bacterial determinants for early detection of septic
conditions [123], and detect leukocyte alternations associated with perioperative inflam-
mation after cardiac surgery [124]. It is believed that the LDHM can be applied to these
fields soon.

5. Outlook

The image resolution of lensless digital holographic microscopy is mainly limited
by the pixel size of the CMOS or CCD sensors. With the continuous development of
industrial technology, hardware performance will be enhanced. This means that the
computer will run faster and the sensor technology will be more advanced. Lensless
holographic microscopes can achieve higher resolution from hardware. In addition, in
order to break through the resolution limitations of the lensless holographic microscope,
pixel super-resolution algorithms and synthetic aperture techniques have matured. The use
of SLM or some improvement of lighting strategies can also improve the resolution. On the
other hand, the rapid development of artificial intelligence will benefit the reconstruction of
super-resolution images, and the cost of time will decrease by using GPUs for calculation.
The reviewed resolution enhancement techniques are shown in Table 1. The exemplary
results show that the pixel super-resolution method obtains the best result, which is about
several hundred nanometers when the hologram is imaged by a sensor with a pixel size
of 2.2 µm. In this approach, sub-pixel movement between the holograms is needed which
can be achieved by moving the light source, the sample, or the detector. The illumination
strategies are used by the synthetic aperture and the structured light to enlarge the NA.
A diffraction grating is inserted between the sample and the camera when the SLM is
used. These methods can achieve a resolution improvement factor ranging from 1.26 to
2.5. Extra hardware configuration is necessary except the data interpolation and deep
learning method. In general, the hardware updating methods perform better than the data
processing counterpart, though the implementation of the former ones is more complicated.

Table 1. Characteristics of various resolution enhancement techniques.

Technique Configuration Phase Improvement (Times)

Pixel super-resolution [46–50] Single light source or source array Not required 6
Synthetic aperture [52–57] Single channel or three channels Required, by SLM ~1.5

SLM-based [58–62] Single channel Required, by SLM ~2
RGB multiplexing [63–67] Three channels Not required 2.5
Data interpolation [68–70] None Not required ~1.26

Structured light [71–77] Single channel Required, by SLM ~1.5
Spatially-extended light [79] Single channel Not required Not given

Deep learning [7,82–86] None Not required Diffraction limited

Lensless holographic microscopy has a wide application in biomedicine fields, such as
flow cytometry, disease monitoring, and classification of cells. As the lensless holographic
microscope is more portable and can be operated by tablets and smartphones, it can be
a reliable choice for areas where resources are limited.

The improved imaging resolution of the lensless holographic microscope is bound
to sacrifice another degree of freedom, which is time. Computation time is an important
parameter. How to obtain higher resolution images with faster speed is a problem that
needs to be considered. The rapid high-resolution reconstruction methods will make the
lensless digital holographic microscope more suitable for biomedical applications.
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