
Citation: Jiang, X.-L.; Deng, X.-Q.;

Wang, Y.; Lu, Y.-F.; Li, J.-J.; Zhou, C.;

Bao, W.-S. Weak Randomness Analysis

of Measurement-Device-Independent

Quantum Key Distribution with Finite

Resources. Photonics 2022, 9, 356.

https://doi.org/10.3390/

photonics9050356

Received: 27 April 2022

Accepted: 16 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Weak Randomness Analysis of Measurement-Device-Independent
Quantum Key Distribution with Finite Resources
Xiao-Lei Jiang 1,2 , Xiao-Qin Deng 1,2, Yang Wang 1,2,3,* , Yi-Fei Lu 1,2 , Jia-Ji Li 1,2 and Chun Zhou 1,2

and Wan-Su Bao 1,2,*

1 Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China;
jxl@qiclab.cn (X.-L.J.); dxq@qiclab.cn (X.-Q.D.); lyf@qiclab.cn (Y.-F.L.); ljj@qiclab.cn (J.-J.L.); zc@qiclab.cn (C.Z.)

2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and
Technology of China, Hefei 230026, China

3 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of
Advanced Microstructures, Nanjing University, Nanjing 210093, China

* Correspondence: wy@qiclab.cn (Y.W.); bws@qiclab.cn (W.-S.B.)

Abstract: The ideal quantum key distribution (QKD) protocol requires perfect random numbers
for bit encoding and basis selecting. Perfect randomness is of great significance to the practical
QKD system. However, due to the imperfection of practical quantum devices, an eavesdropper
(Eve) may acquire some random numbers, thus affecting the security of practical systems. In this
paper, we analyze the effects of the weak randomness in the measurement-device-independent QKD
(MDI-QKD) with finite resources. We analytically derive concise formulas for estimating the lower
bound of the single-photon yield and the upper bound of the phase error rate in the case of the weak
randomness. The simulation demonstrates that the final secret key rate of MDI-QKD with finite
resources is sensitive to state preparation, even with a small proportion of weak randomness, the
secure key rate has a noticeable fluctuation. Therefore, the weak randomness of the state preparation
may bring additional security risks. In order to ensure the practical security of the QKD system, we
are supposed to strengthen the protection of state preparation devices.

Keywords: quantum key distribution; weak randomness; security analysis; finite resources

1. Introduction

Theoretically, the quantum key distribution (QKD) can provide unconditional security
for confidential communications of two legitimate parties, Alice and Bob [1]. Unfortunately,
because of the imperfection of the practical system, many quantum attacks may take
advantage of the loopholes introduced by imperfect devices [2–4], such as the wavelength
attack [5], the detector control attack [6,7], the Trojan horse attack [8,9]. Actually, such kinds
of attack methods have been experimentally demonstrated on QKD systems and cannot be
ignored in terms of practical security.

In order to overcome the practical QKD system security threat, proposing new pro-
tocols and security patching have been two main solutions. Lo et al. proposed [10] the
measurement-device-independent QKD (MDI-QKD) protocol, which is immune to all detec-
tor channel attacks without making any security assumptions about the quantum devices.
Recently, twin-field QKD (TF-QKD) [11] and the asynchronous MDI-QKD [12] have been
proposed, respectively. Their key rate can exceed the Pirandola–Laurenza–Ottaviani–Banchi
(PLOB) bound [13]. Both MDI-QKD and TF-QKD have made significant progress in term
of theory and experiment [14–32]. Although MDI-QKD and TF-QKD can resist all at-
tacks on quantum state measurement devices, Eve may shift their target to quantum state
preparation devices [33–38].

It has been hypothesized that Eve may control imperfect quantum state prepara-
tion devices so that bit encoding and measurement basis selection may be nonrandomly
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modulated in a practical QKD system [39]. Because of the quantum state preparation
vulnerability of the weak randomness, a security evaluation of the weak randomness is
of great significance in the practical QKD system. Based on this practical security threat,
Li et al. proposed [40] a weak randomness model of the BB84 protocol. Under the model,
the quantum states which Alice prepared are divided into two parts: the random part and
the non-random part where the non-random part may be controlled by Eve to acquire
more information. Zhang et al. [41] also analyzed reference-frame-independent QKD
(RFI-QKD) security under the impact of the weak randomness, and briefly discussed the
RFI-MDI-QKD under weak randomness.

In this paper, we will analyze the effects of weak randomness in vacuum + weak
decoy-state MDI-QKD with finite resources [42–46] based on the universally composable
framework. Here, we will present a tight security analysis in MDI-QKD with finite re-
sources. In analyzing the weak randomness in MDI-QKD, we assume that the quantum
states prepared by both Alice and Bob could be controlled by Eve with a certain probabil-
ity [47], but Eve does not necessarily have the same abilities to control Alice or Bob. We also
suppose that the quantum states prepared by both Alice and Bob are controlled by hidden
variables λ and δ from Eve, where λ determines the quantum states prepared by Alice, δ
determines the quantum states prepared by Bob. The non-random probability of quantum
states prepared by Alice is p1, and the random probability is 1− p1. The non-random
probability of quantum states prepared by Bob is p2, and the random probability is 1− p2.
When p1 = 1 or p2 = 1, it shows that Eve can obtain all the information, that is, R = 0.
When p1 = p2 = 0, it indicates that Eve cannot directly acquire information, so the security
can be assured. When 0 < p1 < 1, 0 < p2 < 1, the weak randomness model could be
applied to estimate the amount of the leaked information obtained by Eve. From the
experimental parameters, we deduce that the weak randomness of the state preparation has
threatened the security of MDI-QKD, and MDI-QKD with finite resources has extremely
strict requirements of state preparation. We should put forward higher requirements of
state preparation randomness to ensure the practical security of the QKD system.

The rest of paper is organized as follows: we describe a practical vacuum + weak
decoy-state MDI-QKD protocol with biased basis choice in Section 2. In Section 3, we
present the weak randomness analysis for the protocol with finite resources and deduce
concise formulas of bounding the yield and the bit error rate for the single-photon events.
The numerical simulations are shown in Section 4 and the conclusion is summarized in
Section 5.

2. Protocol Description

In a practical QKD system, we usually choose the weak coherent state source, which
contains the vacuum state, the single photon state and the multiphoton state, instead of
the single photon source. We focus on the vacuum + weak decoy-state MDI-QKD, and the
description of the protocol is presented as follows [48]:

1. Preparation: Alice and Bob randomly modulate the intensities αa ∈ A = {µa, va, 0}
and βb ∈ B = {µb, vb, 0} with probability of pµa , pva , p0a = 1 − pµa − pva and
pµb , pvb , p0b = 1− pµb − pvb , respectively. Where µa(b) is the signal state intensity,
va(b) is the decoy state intensity, 0 is the vacuum state. For signal states, Alice and Bob
only choose the Z basis. For decoy states, Alice and Bob randomly choose a bit value
from {0, 1}, and select Z basis and X basis in probability of pz and 1− pz, respectively.
Finally, they prepared a phase randomized, weak coherent pulse based on the selected
value and send it to Charlie via a quantum channel.

2. Measurement and alignment: Charlie performs Bell state measurements (BSM) of
pulses from Alice and Bob, and then publishes the measurements to Alcie and Bob.
Both parties conduct basis alignment in open channel and compare their intensity:
µa(va), µb(vb). They retain correct measurement results and discard mismatched
measurement results. At this time, the number of pulses successfully detected in
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the Z basis and X basis are nZ
ab and nX

ab, and the subscript indicates the intensity
combinations chosen by Alice and Bob: {µaµb, µavb, vaµb, vavb, µa0, va0, 0µb, 0vb}.

3. Parameter estimation: Firstly, Alice and Bob calculate the number of bit error in
X basis mX

ab. Second, they calculate the number of successful measurement results
corresponding to the single photon pulse in Z basis sZ

11 and the number of phase error
cZ

11. Finally, they calculate the phase error rate in Z basis eph = cZ
11/sZ

11 ≤ ẽph, where
ẽph refers to the phase bit error rate which needs to be met. Execution continues if
complied, otherwise the agreement will be terminated.

4. Post-processing: Alice and Bob perform error correction, and the process consumes
information at most as leakEC bits. They also use hash functions to perform error
verification to ensure that both parties get the same key, and it requires consumption
information of log2

2
εcor

bits, where εcor is the probability of passing the error verifica-
tion process for the key pairs (XA, XB). In the end, after the two parties perform the
secret amplification operation, the key pairs are obtained by Alice is SA, and the key
pairs obtained by Bob is SB.

3. Security Analysis
3.1. Security Bound

We first introduce the universally composable framework:

Definition 1 ([42]). If the key pairs (SA, SB) generated by Alice and Bob satisfy the following
conditions, the protocol is said to be ε-secure:

• Correctness. If the probability of keys SA, SB being not identical is maximal εcor, the keys are
said to be εcor-correct :

Pr(SA 6= SB) ≤ εcor,

• Screcy. The keys SA, SB are said to be εsec-secure with respect to the Eve holding a quantum
system E if:

1
2

pabort‖ρAE − ρU ⊗ ρE‖ ≤ εsec,

1
2

pabort‖ρBE − ρU ⊗ ρE‖ ≤ εsec.

where pabort denotes the probability of protocol failure aborted, ρAE(ρBE) denotes the classical-
quantum states of the system for Alice (Bob) and system E, and ρU denotes the fully mixed state on
SA or SB.

The entropic uncertainty relation to establish a bound on the smooth min-entropy of
the raw key conditioned on Eve’s information based on the composable security definition
has been extended to the case with finite resources [43]. Here, we do the finite-key analysis
based on the composable framework. The length of ε-secure keys in the Z basis is presented
as follows [45]:

` ≥ sZ
0 + sZ,L

11

[
1− H

(
eU

ph

)]
− leakEC − 6log2

21
εsec
− log2

2
εcor

. (1)

with εcor-correct and εsec-secure, where sZ
0 refers to the number of measurement events

when one party sends a vacuum state and Charlie obtains a successful BSM. sZ
11 and eU

ph are
the lower bound of the single photon count rate and the upper bound of the phase error
rate in Z basis, respectively. H(x) = −log2x − (1− x)log2(1− x) is the binary entropy
function, and leakEC is the number of bits consumed in the post-processing step.

3.2. Parameter Estimation

First of all, we consider the state preparation stage with weak randomness, supposing
that Alice and Bob prepare binary set of bits S and T, respectively, to randomly encode
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the bit and select the basis. We apply |S|, |T| representing the number of elements of the
set S and T, respectively. Due to the imperfection of the quantum devices, a part of the
set S and T can be mastered by Eve. For the set of quantum states prepared by Alice,
which is consisted of random part S1 and non-random part S2. For the set of quantum
states prepared by Bob, which is consisted of random part T1 and non-random part T2.
This assumption is reasonable by considering two cases: the first one is that the random
number generator devices may be imperfect so that part of the random numbers may be
leaked to Eve. The second one is that the imperfect state modulation may be prepared by
different laser diodes from Alice and Bob, which can be partly distinguished by observing
the properties of the spectrum, timing sequence. We define the probability of non-random
parameter at Alice as p1 = |S2|

|S| , the probability of non-random parameter at Bob as p2 = |T2|
|T| .

In a practical QKD system, we cannot guarantee the attack capabilities of Eve against Alice
is the same as Bob, so we cannot ensure p1 = p2. For the weak randomness condition,
quantum states prepared by Alice and Bob in the practical system could be expressed
as follows:

ρ′Alice =
p1

2 ∑
α=0,1

|α〉〈α|Alice ⊗ |α〉〈α|Eve + (1− p1)ρAlice ⊗ |2〉〈2|Eve, (2)

ρ′Bob =
p2

2 ∑
β=0,1

|β〉〈β|Bob ⊗ |β〉〈β|Eve + (1− p2)ρBob ⊗ |2〉〈2|Eve. (3)

where the quantum states prepared by Alice and Bob can be divided into two parts: the
first term on the right-hand side of Equations (2) and (3) denote that the quantum states
are prepared from a non-random set, the second term denote that the quantum states are
prepared from a random set. The auxiliary quantum state of Eve is related to the system
of Alice (Bob). For the system of Alice, if the auxiliary quantum state of Eve is |α〉〈α|Eve,
it indicates that Eve can obtain the key of Alice α. For the system of Bob, if the auxiliary
quantum state of Eve is |β〉〈β|Eve, it indicates that Eve can obtain the key of Bob β. For the
system of Alice and Bob, if the auxiliary quantum state of Eve is |2〉〈2|Eve, it indicates that
Alice and Bob prepared the perfect BB84 quantum states ρAlice and ρBob, and Eve cannot
distinguish different encoding states at this point. Eve can distinguish random part S1
and non-random part S2 of Alice by observing auxiliary quantum states (and the random
part T1 and non-random part T2 of Bob). The practical QKD system requires completely
true random numbers for preparing quantum states. However, the weak randomness of
practical QKD systems is universal because of the imperfection of quantum devices.

Note that the weak coherent state source encoding can be supposed to be a special
non-random encoding case in the practical MDI-QKD system, where the quantum states
from non-random part can be detected by exploiting the photon number splitting(PNS)
attack. If the mean photon number of the weak coherent source is µ, the probability of non-
random is the probability of multiphoton p1(2). Actually, the PNS attack can be detected
by applying the decoy-state method. However, because of the device variances, the weak
randomness attack cannot be detected by utilizing the decoy-state method.

Under the weak randomness model, Eve wants to acquire more information so we
can assume that Eve only performs a certain probability attenuation operation on the
quantum states of the random part, and does not perform on the quantum states of the
non-random part. Then we can suppose that the final bit error only come from the random
part, and the non-random part does not produce the bit error. Based on the attenuation
operation, the nonrandom probability in Charlie’s side can be amplified by considering the
signal loss so that the maximal transmission distance may be decreased seriously. Moreover,
because of the attenuation operation of the attacker, the single photon successful gain under
Z basis is reduced, and the bit error rate under X basis is doubled, so the length of the final
security key may be significantly reduced. The specific parameters are estimated as follows:

Firstly, let sZ
nm be the total numbers of successful detection events Charlie obtains

when Alice and Bob prepare n-photon states and m-photon states in Z basis, and nZ be the
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total numbers of events when quantum states are prepared by Alice and Bob in Z basis
and are successfully detected by Charlie. For {µaµb, µavb, vaµb, vavb, µa0, va0, 0µb, 0vb},
the expected value of nZ

ab can be expressed as:

n̄Z
ab =

∞

∑
n,m=0

pZ
ab|nmsZ

nm, (4)

where pZ
ab|nm is the conditional probabilities that Alice and Bob prepared n-photon states

and m-photon states in Z basis with intensity {µaµb, µavb, vaµb, vavb, µa0, va0, 0µb, 0vb}.
Based on Bayes’ rule, it can be expressed as:

pZ
ab|nm =

pZ
ab

τZ
ab

pa|n pb|m. (5)

where τZ
ab = ∑ pZ

ab
e−a−banbm

n!m! is the probability of Alice and Bob prepared n-photon states
and m-photon states in Z basis, and pZ

ab is the probability of Alice and Bob modulate the
intensity αa and βb in Z basis. pa|n and pb|m is the photon number distributions of Alice
and Bob, respectively.

Subsequently, for the case of weak randomness model, the probability of quantum
states prepared by Alice with non-randomness is p1, and the probability of quantum
states prepared by Bob with non-randomness is p2. The probability of single-photon states
prepared by both parties with randomness state is τ11(1− p1)(1− p2), and the probability
with non-randomness is τ11(1− (1− p1)(1− p2)) = τ11(p1 + p2 − p1 p2). The probability
with randomness when only one party prepares a single photon state is τ01(1− p1)(1− p2),
the probability with non-randomness is τ01(1− (1− p1)(1− p2)) = τ01(p1 + p2 − p1 p2).
In a practical quantum system, Eve may attenuate the quantum states prepared by Alice
and Bob. Considering the weak randomness attenuation, signal loss may happen in random
set S1(T1), but all quantum states prepared in non-random set S2(T2) arrive to Charlie
without signal loss. The probability of signal loss both two parties prepare and send single
photon state in random set under Z basis is:

pZ
loss =

sZ
11 − τZ

11(p1 + p2 − p1 p2)N
N − (p1 + p2 − p1 p2)N

, (6)

the proportion of quantum states arriving at Charlie with non-randomness is:

pZ
non−rand =

τZ
11(p1 + p2 − p1 p2)N

sZ
11

, (7)

the proportion of quantum states arriving at Charlie with randomness is:

pZ
rand =

sZ
11 − τZ

11(p1 + p2 − p1 p2)N
sZ

11
, (8)

where N is the total number of transmitting signals.
Considering independent event conditions, we exploit Cherno f f bound [49] to per-

form finite-size key analysis on MDI-QKD. For the finite sample sizes, the number of
practical measurement events can be satisfied [48]:∣∣∣n̄Z

ab − nZ
ab

∣∣∣ ≤ δ
(

nZ
ab, ε1

)
, (9)

with probability at least 1− 2ε1, where δ(x, y) ∈
[
−∆, ∆̂

]
, with∆ =

√
2x ln(16y−4) and

∆̂ =
√

2x ln(y−3/2).
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Additionally, let sX
nm be the total numbers of Charlie acquiring the successful detection

events when Alice and Bob prepare n-photon states and m-photon states in X basis, and vX
nm

be the corresponding number of bit error. mX
ab is the total amounts of bit error when Alice

sends states in X basis and mX
ab = ∑

n,m=0
vX

nm. For {µaµb, µavb, vaµb, vavb, µa0, va0, 0µb, 0vb},

the expected numbers of bit error mX
ab can be expressed as:

m̄X
ab =

∞

∑
n,m=0

pX
ab|nmvX

nm, (10)

where pX
ab|nm is the conditional probabilities that Alice and Bob prepare n-photon states and

m-photon states in X basis with {µaµb, µavb, vaµb, vavb, µa0, va0, 0µb, 0vb}. Based on Bayes’
rule, it can be expressed as:

pX
ab|nm =

pX
ab

τX
ab

pa|n pb|m. (11)

where τX
ab = ∑ pX

ab
e−a−banbm

n!m! the probability of Alice prepare n-photon states and Bob and
m-photon states in X basis. pX

ab is the probability that Alice and Bob modulate the intensity
µa and βb in X basis, and pa|n and pb|m is the photon number distributions of Alice and
Bob, respectively.

Similarly, within the independent event conditions, for the finite sample sizes, the m̄X
ab

under the cherno f f bound can be satisfied [48]:∣∣∣m̄X
ab −mX

ab

∣∣∣ ≤ δ
(

mX
ab, ε2

)
, (12)

with probability at least 1− 2ε2, where δ(x, y) ∈
[
−∆, ∆̂

]
, with∆ =

√
2x ln(16y−4) and

∆̂ =
√

2x ln(y−3/2).
Actually, the probability of signal loss both two parties prepare and send single photon

state in random set under X basis is:

pX
loss =

sX
11 − τX

11(p1 + p2 − p1 p2)N
N − (p1 + p2 − p1 p2)N

, (13)

the proportion of quantum states arriving at Charlie with non-randomness is:

pX
non−rand =

τX
11(p1 + p2 − p1 p2)N

sX
11

, (14)

the proportion of quantum states arriving at Charlie with randomness is:

pX
rand =

sX
11 − τX

11(p1 + p2 − p1 p2)N
sX

11
. (15)

Note that, only the single-photon pulses from the random set can be used to generate
secret keys. In analyzing the impacts of weak randomness, the number of single photon
sent by both parties in Z basis which cannot generate secret keys is as follows:

s̃Z
11 = τZ

11(1− p1)(1− p2)N, (16)

the number of single photon sent by both parties which can generate secret keys satisfies:

s′11 ≥ sZ,L
11 − s̃Z

11, , (17)
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the lower bound of the number of single photons sent by one party in Z basis which cannot
generate secret keys is as follows:

s̃Z
0 = τZ

01(1− p1)(1− p2)N, (18)

the number of single photon sent by one party which can generate secret keys satisfies:

s′0 ≥ sZ
0 − s̃Z

0 ., (19)

where the lower bound of the successful counts of the single photon sent by two parties in
Z basis sZ,L

11 satisfies [50]:

sZ,L
11 ≥[

(
p1|va p2|µa p1|vb

p2|µb
− p2|va p1|µa p2|vb

p1|µb

)
NZ

vavb
− p1|vb

p2|vb
(p1|va p2|µa − p2|va p1|µa)NZ

vaµb

− p1|va p2|va(p1|vb
p2|µb

− p2|vb
p1|µb

)NZ
µavb

]×
τZ

11
p1|va p1|vb

(p1|va p2|µa − p2|va p1|µa)(p1|vb
p2|µb

− p2|vb
p1|µb

)
, (20)

the number of successful counts of the single photon sent by one party in Z basis satisfies:

sZ
0 = e−µa nZ

0µb
+ e−va nZ

0µb
+ e−µa nZ

0vb
+ e−va nZ

0vb
, (21)

where

NZ
vavb

=
nZ,L

vavb

pva pvb pZ
−

p0|va nZ,U
0vb

p0a pvb pZ
−

p0|vb
nZ,U

va0

pva p0b pZ
+

p0|va p0|vb
nZ,L

00

p0a p0b

, (22)

NZ
vaµb

=
nZ,U

vaµb

pva pvb pZ
−

p0|va nZ,L
0µb

p0a pµb pZ
−

p0|µb
nZ,L

va0

pva p0b pZ
+

p0|va p0|µb
nZ,U

00

p0a p0b

, (23)

NZ
µavb

=
nZ,U

µavb

pµa pvb pZ
−

p0|µa nZ,L
0vb

p0a pvb pZ
−

p0|vb
nZ,L

µa0

pµa p0b pZ
+

p0|µa p0|µb
nZ,U

00

p0a p0b

. (24)

in the same way, we deduce the lower bound nZ,L
ab

and upper bound nZ,U
ab

of nZ
ab

by applying
the Cherno f f bound.

Under the weak randomness condition, due to the attenuation operation of the attacker
on the quantum channel, the probability of non-randomness in Charlie increases, so the bit
error rate in X basis satisfies:

e′b = eX
b

YX
11

YX
11 − (p1 + p2 − p1 p2)

, (25)

where YX
11 is the number of single photons yield in the X basis, it satisfies [50]:

YX
11 =[

(
p1|va p2|µa p1|vb

p2|µb
− p2|va p1|µa p2|vb

p1|µb

)
NX

vavb
− p1|vb

p2|vb
(p1|va p2|µa − p2|va p1|µa)NX

vaµb

− p1|va p2|va(p1|vb
p2|µb

− p2|vb
p1|µb

)NX
µavb

]× 1
p1|va p1|vb

(p1|va p2|µa − p2|va p1|µa)(p1|vb
p2|µb

− p2|vb
p1|µb

)
, (26)

in fact, the bit error rate in X basis without weak randomness is:

eX
b =

vX,U
11

sX,L
11

, (27)

the upper bound of the number of single photon bit error in X basis satisfies:

vX,U
11 ≤

τX
11MX

vavb

p1|va p1|vb

, (28)
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where

MX
vavb

=
mX,U

vavb

pva pvb pX
−

p0|va mX,L
0vb

p0a pvb pX
−

p0|vb
mX,L

va0

pva p0b pX
+

p0|va p0|vb
nx,U

00

p0a p0b

. (29)

here, mX,L
ab

and mX,U
ab

is the lower and upper bound of mX
ab

, respectively, and they can be
obtained by the Cherno f f bound.

When Alice and Bob prepare single photon states in X basis, exploiting the same
calculation methods we can acquire the total numbers of successful detection events Charlie
obtains in X basis sX

11 comparable to the total number of successful detection events Charlie
obtains in the Z basis sZ

11.
In asymptotic conditions, we can assume that the phase bit error rate in Z basis is

equal to the bit error rate in X basis, that is, eph = eX
b . However, under the condition of the

finite length of the key, there is a deviation between eph and e′b. We suppose the deviation
between the two is θ. Exploiting the random sampling method of Fung et al. [51], we can
estimate the phase error rate of the single photon events:

Pr(eph ≥ e′b + θ) ≤

√
sX,L

11 + sZ,L
11√

e′b(1− e′b)s
X,L
11 sZ,L

11

2−(s
X,L
11 +sZ,L

11 )σ(θ), (30)

where

σ(θ)=H(e′b + θ −
sX,L

11

sX,L
11 + sZ,L

11

θ)− (1−
sX,L

11

sX,L
11 + sZ,L

11

)H(e′b + θ)−
sX,L

11

sX,L
11 + sZ,L

11

H(e′b), (31)

for a given probability of failure εsec:

εsec =

√
sX,L

11 + sZ,L
11√

e′b(1− e′b)s
X,L
11 sZ,L

11

2−(s
X,L
11 +sZ,L

11 )σ(θ), (32)

it can be calculated from θ = g(εsec, e′b, sX,L
11 , sZ,L

11 ) ,where

g(a, b, c, d) =

√
(c + d)(1− b)b

cd ln 2
log2(

c + d
cd(1− b)b

212

a2 ), (33)

the upper bound of the phase error rate of the single-photon events in Z basis eph can be
expressed as :

eU
ph ≤ e′b + g(εsec, e′b, sX,L

11 , sZ,L
11 ), (34)

According to Equations (17), (19) and (34), we can calculate the length of final security key
of the decoy-state MDI-QKD protocol with the weak randomness:

`′ ≥ s′0 + s′11

[
1− H

(
eU

ph

)]
− leakEC − 6log2

21
εsec
− log2

2
εcor

. (35)

4. Numerical Simulations and Discussions

In this section, we numerically simulate the performance of effects of weak random-
ness on MDI-QKD with finite resources. We consider a fiber-based channel model and
experimental parameters from [44], and define α = 0.2 (dm/km) as the fiber loss coefficient,
ηd = 0.145 as the detection efficiency of the relay Charlie, and pd = 6× 10−7 as the dark
count for detectors. L is the length of fiber between Charlie and Alice (Bob). The security
bound is fixed to ε = 10−10, and f = 1.16 is the efficiency of error correction. R = `

/
N

is the secret key rate, where N is the total number of transmitting signals sent by Alice.
The numerical parameters are listed in Table 1.
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Table 1. List of experimental parameters applied in the numerical simulation in the following table: α

(dm/km) is the loss coefficient of the fiber, f is the efficiency of error correction, ηd is the efficiency for
the Charlie-side detector, ed is the optical misalignment error rate, pd is the dark count for detectors,
and ε is the predetermined security bound.

α f ηd ed pd ε

0.2 1.16 0.145 0.015 6× 10−7 10−10

Firstly, we analyze the effects of weak randomness existing only one party (Alice or
Bob) in Figure 1, where we suppose Alice and Bob are symmetrical in the practical QKD
system. Here, we assume p2 = 0 which means that Eve just masters the randomness infor-
mation of Alice. p1 = 0, 10−x(x = 6, 5, 4, 3) means that Eve has different abilities of master-
ing the randomness information of Alice. As shown in Figure 1, the dashed lines from right
to left are obtained for different weak randomness parameters p1 = 0, 10−x(x = 6, 5, 4, 3)
with the fixed finite number of total pulses N = 1015. We can deduce that although Eve
just masters the randomness information of one party when N = 1015, the generation of
the security key rate will be seriously affected, and the security key is no longer being
generated when p1 ≥ 10−3. Particularly, when the parameter of weak randomness p1 rises
from 0 to 10−3, the achievable transmission distance declines from 182 km to 36 km.
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Figure 1. (Color online) The secret key rates (per pulse) in logarithmic scale versus transmission
distance between Alice and Bob when just one party exists the weak randomness parameters and
p1 = 0, 10−x(x = 6, 5, 4, 3) (curves from right to left) and another one do not exist weak randomness
p2 = 0 for fixed N = 1015.

Actually, compared with the general BB84 protocol, the MDI-QKD protocol is more
vulnerable to the weak randomness of state preparation. The reason is that both of Alice
and Bob perform the state preparation operation, which is different from BB84 protocol
where just Alice performs the state preparation operation. In the practical MDI-QKD
system, the possibility of the random number for bit encoding and basis selecting leaked to
Eve may be greater because of the imperfection of the quantum devices.

Moreover, considering the practical MDI-QKD system with finite resources, we divide
the weak randomness model into two cases. The first one is that the signal states and the
decoy states may be modulated with the same laser diode by Alice and Bob so that both of
the signal states and decoy states in Alice and Bob will be modulated with the same non-
random probability p1 and p2. The second one is that the signal states and the decoy states
may be modulated with the different laser diode by Alice and Bob. The signal states and the
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decoy states which are prepared by Alice and Bob are supposed to be distinguished with
the nonrandom probability p1 and p2 and the different signal states cannot be distinguished.
If the signal states can be distinguished from the decoy states, Eve can exploit the PNS
attack without detection. If the signal states cannot be distinguished from the decoy states,
Eve can attenuate the states in the quantum channel.

In order to perform a better simulation, we then study the effects of weak randomness
for different finite number of total pulses N. We define p1 = p2 = 10−6 as the secret key
rate with weak randomness influence and p1 = p2 = 0 as the secure key rate without
weak randomness influence. The effects of weak randomness for the secure key rate with
different N = 10x(x = 13, 14, 15, 16) are shown in Figure 2. Corresponding simulation
results are shown in Figure 2, the solid lines from left to right are obtained for different
total numbers of transmitting signals N = 10x(x = 13, 14, 15, 16) with the fixed weak
randomness parameters p1 = p2 = 0 and the dashed lines from left to right are obtained
for different finite number of total pulses N = 10x(x = 13, 14, 15, 16) with the fixed
weak randomness parameters p1 = p2 = 10−6. We can find that even though the weak
randomness parameter is obtained as small as 10−6 , it will significantly affect the generation
of the security key rate, which means that even small proportions of weak randomness
can bring Eve a lot of information. As illustrated in Figure 2, because of Eve’s attenuation
operation, the greater the total numbers of transmitting signals, the greater the reduction of
the secure transmission distance. The achievable transmission distance declines 17.89%,
15.38%, 10.97%, 5.88% when N = 1016, 1015, 1014, 1013, respectively.

Apparently, with the number of total pulse increases, so does the number of quantum
states which may be attenuated. Eve may obtain more information due to the relation
between the expected values and the observed values for the case with different modulated
states in the practical QKD system. In this case, the number of modulated states distin-
guished by Eve may increase which leads to more leakage of the security key information
so we are supposed to control the number of total pulses within a rational range rather
than arbitrarily choosing.
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Figure 2. (Color online) The secret key rates (per pulse) in logarithmic scale versus transmission
distance between Alice and Bob with weak randomness parameters p1 = p2 = 0, 10−6 for different
N = 10x(x = 13, 14, 15, 16) (curves from left to right). The dashed lines are results of p1 = p2 = 10−6

for different N, and the solid lines are the results of p1 = p2 = 0 for different N.

To further research the effects of the weak randomness for different N, we con-
sider the secure key rate for N = 1015, 1016 with different weak randomness parameters
p1 = p2 = 0, 10−x(x = 6, 5, 4, 3) in Figure 3. As illustrated in Figure 3, the solid lines from right
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to left are obtained for different weak randomness parameters p1 = p2 = 0, 10−x(x = 6, 5, 4, 3)
with the fixed finite number of total pulses N = 1016 and the dashed lines from right to left
are obtained for different weak randomness parameters p1 = p2 = 0, 10−x(x = 6, 5, 4, 3)
with the fixed finite number of total pulses N = 1015. We can discover that the security key
rate of two different N lines are approximately asymptotic when the weak randomness
parameters p1 = p2 ≥ 10−5, which means that the influence of the weak randomness on
final security key rate is stronger than the finite number of total pulses. The security key
rate of two different N lines are not asymptotic when the weak randomness parameters
p1 = p2 ≤ 10−6, which means that the influence of the weak randomness on the final
security key rate is weaker than the finite number of total pulses.
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Figure 3. (Color online) The secret key rates (per pulse) in logarithmic scale versus transmission
distance between Alice and Bob with p1 = p2 = 0, 10−x(x = 6, 5, 4, 3) (curves from right to left)
for different N = 1015, 1016. The dashed lines are results of N = 1016 with different weak random-
ness parameters, and the solid lines are the results of N = 1015 with different weak randomness
parameters.

From the above simulation results, we can deduce that the weak randomness has a non-
negligible effect on the secret key rate of the MDI-QKD with finite resources, even though
the weak randomness parameter is small. Moreover, the effects of the weak randomness on
final security key rate may perform differently for the different finite number of total pulses.

5. Conclusions

In conclusion, we analyze the effects of weak randomness on the security key rate of
MDI-QKD with finite resources, and demonstrate that MDI-QKD has high security demand
of quantum state preparation. The MDI-QKD system generates fewer security keys and
the achievable transmission distance declines from 182 km to 36 km when just one party
exists the weak randomness p1 which rises from 0 to 10−3. The system can no longer
generate a security key when p1(p2) ≥ 10−3. Considering the condition of finite resources,
even though the weak randomness parameter is obtained as small as 10−6 or 10−5, it
will significantly affect the generation of the security key rate, which means that even
small proportions of weak randomness can bring Eve a lot of information. Additionally,
because of Eve’s attenuation operation, the greater the total numbers of transmitting
signals, the greater the reduction of the secure transmission distance where the achievable
transmission distance declines 17.89%, 15.38%, 10.97%, 5.88% for N = 1016, 1015, 1014, 1013.
Moreover, the influence of the weak randomness on the final security key rate is stronger
than the total numbers of transmitting signals when p1, p2 ≥ 10−5, and the influence of the
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weak randomness on the final security key rate is weaker than total numbers of transmitting
signals when p1, p2 ≤ 10−6.

Finally, we conclude that the practical decoy-state MDI-QKD system requires strict
randomness in the state preparation. In order to avoid the weak randomness loopholes,
two aspects can be seriously considered in the practical MDI-QKD system: the first one is to
protect the true random numbers from information leakage to Eve, and the another one is
that the state modulation apparatus are supposed to be carefully designed so that different
modulated quantum states in the side of both Alice and Bob cannot be distinguished in
all degrees of freedom. For example, the narrow spectral filter and the time filter can be
applied in the practical experiment to reduce the distinguishability.
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