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Abstract: The optical power density in biotissue is an important issue for photobiomodulation (PBM)
clinical applications. In our previous study, the maximal dose and the power density distributions of
830 nm lasers under human skin could be exactly calculated and measured. In this work, the laser
power density in tissue can be changed by adjusting the focal point of the lens. From the experimental
results, it is evident that the power densities on the attached gingiva and the surrounding tissues can
be improved. Thus, the dose of a near-infrared (NIR) laser in the target tissue can be increased with a
suitable lens. Most importantly, focusing lasers on deeper tissue can avoid any damage to the skin.
This study provides a dose optimization method on the target tissue, and the results can be applied
to clinical applications, especially laser acupuncture (LA).

Keywords: photobiomodulation; dose; near infrared (NIR); laser acupuncture (LA)

1. Introduction

Photobiomodulation (PBM) has been published in many clinical applications. Light
wavelengths (nm), power density (W/cm2), energy density (J/cm2), operation frequency
(Hz), spot size (cm2), and penetration depth are key parameters for the PBM applications.
In PBM, the dose is an important parameter for biological photoresponses. The dose of
PBM is defined as the energy density (J/cm2) received on the targeted area. Namely, the
light dose is the product of power density and duration of time for medical applications.
In our previous report, low back pain was reduced by laser acupuncture [1,2]. In a study
of PBM use in animals [3], the pain factors were reduced by radiating the Zusanli (ST36)
acupoint with laser acupuncture. The irradiation dose was a crucial determinant of PBM
effectiveness in this study. On the other hand, a biphasic dose response was observed
in brain wave stimulations [4,5]. An array of lasers were used to radiate the left palms
of the subjects. Their brain waves were changed; in particular, the alpha band increased
in some regions and the beta band decreased in open-eye conditions. The subjects were
relaxed [4]. According to the light-emitting diode (LED) [5] and laser [4] test results, the
higher the dose, the higher the alpha and theta activity, and there is a positive correlation
between the dose and the alpha and theta activities. On the contrary, higher LED dosage
induced the beta activity of the right parietal hemisphere [5], but lower laser dosage
reduced the beta activity [4], and higher beta activity means a state of alertness or anxiety.
According to the Arndt–Schulz Law, a low dose of PBM is beneficial, but a high dose
inhibits physiological activity [6–8]. A suitable dose for the target can increase the efficiency
of PBM clinical applications.

To understand the optical characteristics of PBM in biotissue, a quantitative analysis
method for dose and penetration depth in the tissue is important. The backscattering light
on the palm with a He-Ne laser received by a detector in different positions was investigated,
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and a good correlation between the simulation and experimental results was found [9].
Two- and four-layer models of the skin were used to simulate light propagation, and the
backscattering light received by a detector was published [10]. The optical penetration
depths of light in human mucous tissue were performed using a commercially available
spectrophotometer with an integrating sphere [11]. The spectral ranges for maximal
penetration depths are 800–900 nm and 1000–1100 nm. The penetration depth showed in
human ex vivo tissues with 835 nm lasers is higher than that of 632.8 nm, 635 nm, and
780 nm lasers [12]. In animal tissues, a minor attenuation on the rat skin, pig fat, and pig
muscle with a 904 nm laser was measured [13]. Meanwhile, the pig skin showed slight
attenuation from the 830 nm laser. The light penetrations depend on wavelength as well as
the sample used in the experiment. The well-transmitted wavelength would be different
for human ex vivo tissues [12] and animal tissues [13]. The use of optical fiber probes as a
quantitative analysis method was designed for light dosimetry in bovine muscle [14] and
chicken tissue samples [15]. For the power density of 1.0 mW/cm2 measured in bovine
tissue samples, the penetration depth of an 808 nm laser can be predicted to be 3.4 cm [16].
Recently, Lan and co-workers reported a prototype of the LA system in which the focus
of a laser can be changed by lift–thrust operation [17]. However, the real dose and its
distribution in deeper tissue are unknown when the laser radiates on the skin.

NIR light showed better penetration in soft tissues [18]. The 830 nm laser energy
ranged from 36 J/cm2 to 360 J/cm2, and was used to evaluate the safety in rat models.
The results revealed no macroscopic or microscopic change in the tissue architecture [19].
Based on the beneficial wavelength range [20], mechanisms of photorespose [21–26], higher
penetration depth [12], and safety [19], the 830 nm laser is a suitable laser source for PBM
applications. According to our recent study, a non-invasive sensing system was developed
for laser power density measurement on the attached gingiva [27]. However, since the
laser power density decays sharply around the peripheral tissues, this situation should be
improved for increasing PBM efficacy. In this work, changing the focal points of 830 nm
lasers in the tissue was proposed to increase the power distribution on the target and
around the peripheral tissues.

2. Materials and Methods

In this work, the aluminum gallium indium phosphide diode laser (model: U-LD-
66A051Ap/Dp, Pocket Laser, Union Optronics Corp., Taoyuan, Taiwan) with a wavelength
at 660 nm ± 5 nm and the aluminium gallium arsenide diode laser (model: T8350, pocket
laser, Opto Focus Co., Ltd., New Taipei City, Taiwan) with a wavelength at 830 ± 10 nm
were used as light sources. Both lasers have the same output power of 30 mW. An auto
current control circuit was designed for driving the laser diode. An aspheric glass lens was
used in this experiment. High-speed sensitive detectors (model: PD15-22C, Silicon PIN
Photodiode, Everlight Electronics Co., Ltd., New Taipei City, Taiwan) were used for the
power density measurement of 660 nm and 830 nm lasers radiated on the targets [27]. Nine
detectors were mounted on the retainer (manufactured by College of Oral Medicine, Chung
Shan Medical University, Taiwan) which was placed on the attached gingiva. A flexible
facial fixture appliance (manufactured by iFaceDesign Technology Inc., New Taipei City,
Taiwan) provided a stable position for the laser source (Figure 1).

A male case is presented in this study. Five detectors were used to measure the
backscattering light of 660 nm and 830 nm lasers on the orbicularis oris, forearm, back
of the hand, and palm areas. In addition, the power density distributions of an 830 nm
laser after penetrating the orbicular oris on the attached gingiva were measured by nine
detectors. The attached gingiva was in the best position possible to measure the power
density of NIR after the laser penetrated the orbicular oris. In this case, the thickness of the
orbicularis oris was 1.0 cm.
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Figure 1. Schematic of the 830 nm laser radiated on the orbicularis oris by noninvasive sensing system.

The optical characteristics of backscattering on skin by 660 nm and 825 nm lasers were
simulated. The Fresnel reflection coefficients [28,29] and Snell’s law were applied for the
optical properties simulation. The skin model of reflection parts was mentioned [30]. The
incident power of the 660 nm and 825 nm lasers were set as 30 mW for the simulation. The
epidermis layer (refractive index n = 1.34), dermis layer (n = 1.4), and subcutaneous layer
(n = 1.44) were used to determine the reflection of the 660 nm laser in the tissue [31,32].
In the same way, the epidermis layer (refractive index n = 1.34), dermis layer (n = 1.55),
and subcutaneous layer (n = 1.45) were used to determine the 825 nm laser reflection in
the tissue [33,34]. The reflection intensity of the 660 nm and 825 nm lasers irradiated on
the skin, with the incident angle ranging from 1◦ to 60◦, was made by MATLAB 2015b
according to the following formula [28,29]:

R(θ) =
1
2

[
sin2(θ − θt)

sin2(θ + θt)
+

tan2(θ − θt)

tan2(θ + θt)

]
, if 0 < θ < sin−1

(
nk+1

nk

)
(1)

where R is the Fresnel reflection coefficient, and θ and θt are the angles of the photon packet
incidence on the layer boundary and transmittance, respectively. The refractive indexes of
the medium layers are nk and nk+1.

Furthermore, photon patterns were simulated after the 825 nm laser penetrated the
skin by collimated and un-collimated lasers. The epidermis layer (refractive index n = 1.34;
thickness: 0.065 mm), dermis layer (n = 1.55; thickness: 1.25 mm), and subcutaneous layer
(n = 1.45; thickness: 12 mm) were used to determine the reflection of 825 nm lasers in
the tissue. In addition, 10 million photon packages as light sources were adopted for
assessing the light scattering in the tissue. The distance between the photon packages and
the skin was 1 mm. Light scattering in the two-dimensional tissue model was performed by
Advanced Systems Analysis Program according to the Monte Carlo of Henyey–Greenstein
function [35,36]:

PHG(θ, g) =
1 − g2

[1 + g2 − 2gcos(θ)]
3
2

(2)

where PHG is the light scattering probability at the angle θ and g is the anisotropic coeffi-
cient. During the simulation work, the effects of optical characteristics of blood flow and
composition of the blood vessels were neglected.
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3. Results

Based on our recent work [27], the dose and laser distributions of an 830 nm laser on
the attached gingiva were measured with precision (Figure 2a). The power density analysis
for collimated and uncollimated lasers on the upper attached gingiva of a male are shown
in Figure 2b,e, respectively. Two-dimensional skin models were simulated by use of the
Monte Carlo of Henyey–Greenstein function simulation (Figure 2c,f). When an 830 nm
laser penetrates the skin, a more uniform pattern of light can be predicted for a collimated
laser (Figure 2d,g). The simulated results indicate that collimated lasers can increase the
power density on the surrounding targeted tissues.
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from 1° to 60° on the skin were simulated (Figure 3a,b). When the incidence angles of 660 

Figure 2. (a) Power densities of 830/660 nm lasers measured on the attached gingiva by a non-
invasive sensing system. (b) Power densities analysis for a collimated laser on the upper attached
gingiva for a male [27]. (c) The simulation of light scattering in a two-dimensional skin model and
(d) the photon pattern after 825 nm laser penetrated skin for collimated laser. (e) Power density
analysis for a laser without a lens on the upper attached gingiva for a male [27]. (f) The simulation
of light scattering in a two-dimensional skin model and (g) the photon pattern after a 825 nm laser
penetrated in skin for an uncollimated laser.

The reflection intensity of 660 nm and 825 nm lasers with incident angles ranging from
1◦ to 60◦ on the skin were simulated (Figure 3a,b). When the incidence angles of 660 nm
and 825 lasers on the skin are increased, higher reflection intensity can be predicted. The
simulated results indicate that the power density of the lasers decreases at a high incidence
angle. Therefore, the light penetration of an 825 nm collimated laser in a two-dimensional
skin model is more concentrated compared to that without a lens (Figure 2c,f).
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Figure 3. The simulation of (a) 660 nm and (b) 825 nm lasers irradiated on skin with different incident
angles. Here, n is the refractive index.

The backscattering light of 660 nm and 830 nm lasers in different skin areas were
measured (Figure 4). The skin areas included the orbicularis oris, forearm, back of the hand,
and palm. The results demonstrate that the highest power density of backscattering on the
palm is around 1.02 mW/cm2 and 1.42 mW/cm2, as detected by the nearest sensor, which
was 0.7 cm away from the 830 nm and 660 nm laser output center, respectively. The power
density of backscattering light on a sensor, located 23 mm away from the laser output
center, approaches zero.
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Furthermore, the power density distributions of 830 nm lasers with different focal
points in the orbicularis oris were measured by nine detectors. The maximum power
density on the attached gingiva of lasers with a 10 mm focal point was 1.89 mW/cm2

(Figure 5a). Similarly, the maximum power density on the attached gingiva of lasers
without a lens was 1.80 mW/cm2. Meanwhile, the power densities of 830 nm lasers on
the attached gingiva versus different focal points were analyzed (Figure 5b). In Figure 5c,
the ratio of power densities on the attached gingiva at 4 mm, 8 mm, and 12 mm can be
raised 1.81, 2.99, and 2.97-fold more than that laser without a lens, respectively (Figure 5c).
Furthermore, the power density decay on the attached gingiva can be improved by 30.2%
and 32.3% at 4 mm and 8 mm away from the laser center, respectively (Figure 5d).
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4. Discussion

Skin is a turbid medium that causes the occurrence of multiple light scattering. Light
scattering occurred when the laser penetrated the skin, especially in the dermis and subcu-
taneous layers (Figure 2c,f). In this work, 660 nm and 830 nm laser propagation in tissue
was investigated. The backscattering of the 660 nm laser on the palm and back of the hand
is higher than that of the 830 nm laser (Figure 4). However, the power density of skin is very
small compared to the incident power of lasers (30 mW). On the other hand, different skin
areas, such as under the beard or hair, could influence the power density of backscattering
light; color and thickness of the skin may also have an influence. In this case, the skin colors
of the palm and back of the hand are slightly higher than those of the orbicularis oris and
forearm. Therefore, the power density of backscattering light on the palm and back of the
hand is higher than that on the orbicularis oris and forearm [37,38]. When a 830 nm laser
penetrated the skin, a slight difference of maximal power density was observed between
lasers with a lens and without a lens (Figure 5a). In general, the maximal power density of
an 830 nm laser on the target is approximately the same whether the lens is used or not.
On the other hand, a higher power density on the peripheral tissues can be achieved by
using an 830 nm laser with a 10 mm focal point in the orbicularis oris. The results show
that the power densities on the peripheral tissues can be raised approximately three-fold
at 8 mm to 12 mm from the 830 nm laser center (Figure 5c). Moreover, the power density
decay of a 830 nm laser on the attached gingiva can be improved by 30.2% and 32.3% at
4 mm and 8 mm away from the output center, respectively (Figure 5d). The light at 660 nm
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is more risky than 830 nm at the same dose on the orbicularis oris. The incident beam of
the 830 nm laser can achieve better power density distribution in deeper tissue. On the
contrary, the light 660 nm laser concentrates on shallow skin; thus, the dosage is a big issue.
Using a high dosage of laser at 660 nm and focusing it on shallow tissue would cause pain
and even damage of the tissue.

In our case, the best focal point for the 830 nm laser to penetrate the orbicularis oris is
10 mm. Based on our results, the incident beam of the NIR laser can be designed to achieve
better power density distribution in the targeted tissue. In dentistry applications, the power
densities on the peripheral tissues of attached gingiva can be improved when a 830 nm laser
is used with an adequate focal point in the orbicularis oris, as shown in Figure 6. From our
results, the power densities of the 830 nm laser with a 10 mm focal point can be achieved
approximately 1 mW/cm2 (0.95 mW/cm2) at 8 mm from the laser center (Figure 5a). These
results can be applied to traditional Chinese medicine (TCM) applications. When the LA
(λ = 830 nm, 30 mW) with a 10 mm focal point is applied to the skin with a thickness of 1 cm,
the power density at range of 8 mm from the laser center can be calculated approximately
1 mW/cm2. This means the maximal power density (1.89 mW/cm2) is nearly two-fold
compared to the surrounding tissues at 8 mm (0.95 mW/cm2) from the laser center.

According to recent studies, if more mitochondria activity can be achieved by the
laser with a uniform distribution [39], the uniformity of PBM treatment can improve
the experimental outcomes. This study is very consistent with our other research about
antibacterial efficacy of photodynamic therapy (PDT) [40]. The results of the study highlight
the importance of the laser profile as a key parameter that determines the survival rate
of Actinobacillus actinomycetemcomitans and Streptococcus mutans at the edge of the culture
plate. Thus, the dose is an important parameter for PMB [39] and PDT [40].

Our experimental results show that the power density distribution on the target tissue
can be increased by an 830 nm laser with a suitable lens. That is, an adequate focal point is
key for NIR laser distribution in tissue, and the dose can be quantitatively calculated for
healing time on the target and its surrounding tissues. For example, the healing time can
be quantitatively calculated for nearly 9 min when the total dose (1 J/cm2) of PBM is used
in 1 cm thickness of tissue (1000 mJ/cm2/1.89 mW/cm2 ≈ 530 s ≈ 9 min). The exact dose
of PBM therapy can increase the efficiency for clinical research and applications.

According to the Arndt–Schulz Law, a lower dose of PBM is considered for the positive
effect in biological response [6–8]. However, the results should be reassessed. In a recent
study, the photoresponse of isolated mitochondria in bovine liver irradiated by a 980 nm
laser (7.69 to 107.69 J/cm2) was investigated [41]. The results indicate that a 980 nm laser at
7.69 J/cm2 (low energy density) causes drastic inhibition of ATP production. The optimal
dose ranges from 61.54 to 84.62 J/cm2. If the light dose is wrongly administered, the
photoresponse could affect the mediators of the cells. Similarly, biphasic dose responses
have also been observed in our clinical studies [4,5]. Thus, different doses of PBM therapy
can create different effects in clinical applications. Repeated and more standardized studies
are required to clarify the therapeutic strategies of PBM applications.

In this work, the optical characteristics of light propagation in skin were investigated.
The power densities on the target and peripheral tissues were successfully demonstrated
by a noninvasive sensing system. Our results are helpful for optimizing doses of PBM in
different skin areas, especially LA applications.



Photonics 2022, 9, 350 8 of 10Photonics 2022, 9, x FOR PEER REVIEW 8 of 10 
 

 

 
Figure 6. Power densities distribution of the 830 nm laser with a different laser beam penetrating 
the orbicularis oris. Schematics were created with BioRender.com. 

5. Conclusions 
In the present study, the power densities on the attached gingiva radiated with a 

variable focal point laser were investigated. The optimal focal point in the orbicular oris 
was found and the power densities on the surrounding tissues can be raised. Our present 
method reveals that, if the focal point of an NIR laser can be determined, the dose in the 
tissue can be defined. Furthermore, the focal point of an NIR laser should be focused in 
the tissue for safe LA applications. The method is useful for increasing the power density 
on the target and its surrounding tissue, especially for LA. According to TCM, acupoints 
are located at different depths of our body; thus, focusing lasers on the acupoints could 
increase the efficiency of PBM in clinical applications. 

Author Contributions: Conceptualization and investigation, C.-T.S. and J.-H.W.; methodology and 
validation, C.-T.S. and J.-H.W.; writing—original draft preparation, C.-T.S.; writing—review and 
editing, F.-C.C. and J.-H.W.; simulation work, S.-H.M.; project administration, C.-T.S. and J.-H.W. 
All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Informed Consent Statement: Informed consent was obtained from a male case involved in the 
study. 

Data Availability Statement: The data used to support the findings of this study are included 
within the article. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 6. Power densities distribution of the 830 nm laser with a different laser beam penetrating the
orbicularis oris. Schematics were created with BioRender.com.

5. Conclusions

In the present study, the power densities on the attached gingiva radiated with a
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method reveals that, if the focal point of an NIR laser can be determined, the dose in the
tissue can be defined. Furthermore, the focal point of an NIR laser should be focused in
the tissue for safe LA applications. The method is useful for increasing the power density
on the target and its surrounding tissue, especially for LA. According to TCM, acupoints
are located at different depths of our body; thus, focusing lasers on the acupoints could
increase the efficiency of PBM in clinical applications.
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