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Abstract: In this work, the interaction between an array of QDs and Graphene nanoribbon is modeled
using dipole-dipole interaction. Then, based on the presented model, we study the linear optical
properties of the considered system and find that by changing the size, number, and type of quantum
dots as well as how they are arranged, the optical properties can be controlled and the controllable
grating plasmonic waveguides can be implemented. Therefore, we introduce different structures,
compare them together and find that each of them can be useful based on their application in
optical integrated circuits. The quantum dot arrays are located on a graphene nanoribbon with
dimensions of 775 x 40 nm?. Applying electromagnetic waves with a wavelength of 1.55 um causes
polarization in the quantum dots and induces surface polarization on graphene. It is shown that,
considering the large radius of the quantum dot, the induced polarization is increased, and ultimately
the interaction with other quantum dots and graphene nanoribbon is stronger. Similarly, the distance
between quantum dots and the number of QDs on Graphene nanoribbon are basic factors that
affect the interaction between QDs and nanoribbon. Due to the polarization effect of these elements
between each other, we see the creation of the effective grating refractive index in the plasmonic
waveguide. This has many applications in quantum optical integrated circuits, nano-scale atomic
lithography for nano-scale production, the adjustment coupling coefficient between waveguides, and
the implementation of optical gates, reflectors, detectors, modulators, and others.

Keywords: total susceptibility; graphene nanoribbon; quantum dot; surface plasmon; bipolar interaction

1. Introduction

An effectively integrated waveguide is undoubtedly the basis for the development of
photonic integrated circuits. Dielectric waveguides operate on the principle of total internal
reflectance (TIR) to guide the propagating light in a waveguide core with a high refractive
index over long distances with low losses of ~3-10 dB/m [1]. However, in these cases,
the diffraction of light as a limiting point should be considered. In contrast, plasmonic
waveguides emit a wave of surface plasmons or surface plasmon polaritons (SPPs) at the
dielectric-metal interface which is increasingly limited in the direction perpendicular to
the propagation [2,3]. Recent reports of plasmonic waveguides, such as metal-dielectric-
metal (MDM) [4,5], dielectric-metal-dielectric (DMD) [6], hybrid surface plasmon polariton
(HSPP) [7], and dielectric loading surface plasmon polariton (DLSPP) [8] has attracted
considerable attention. Plasmonic waveguides can enhance light-matter interactions [9].
However, due to the existence of free electrons at the boundary between metal and the
dielectric waveguides with ohmic losses capability, the diffusion losses will be considerable.
Achieving the dense integration of the waveguide systems is impossible considering the
diffraction problem [4]. All-graphene-based technologies are suitable approaches to solve
this problem because the electromagnetic field localizes well to graphene [10,11]. Recently,
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graphene, a one-atom-thick material, has been introduced as a plasmonic planar mate-
rial [12,13]. Thus, graphene plasmons are an attractive and suitable alternative to noble
metal plasmons because they show a relatively large distance for plasmon transmission. In
addition, surface plasmons in graphene have the advantage of being regulated by electro-
static gates [10,14]. Compared to noble metals, graphene has extraordinary electronic and
mechanical properties that originate in part from its zero-mass charge carriers [15]. Hybrid
plasmonic structures, while combining the properties of dielectric and plasmonic waveg-
uides, are designed to achieve high light confinement without including high losses [16].
Experimental research has expanded to include the fabrication and study of QD-graphene
nanostructures [10,17]. These structures can make a significant contribution to the forma-
tion of plasmonic waveguides. In integrated photonic circuits based on surface plasmon
polariton, graphene as a high-speed substrate to transfer the carriers and quantum dots as
an information processing unit can be merged to become an excellent candidate to replace
integrated electronic circuits [18,19]. Applying electromagnetic waves to the surface of
graphene nanorods creates the surface plasmon. The plasmon induced in the graphene
nanoribbon excites the exciton at the quantum point and changes the electron distribution
in the QDs, thus inserting a dipole at a quantum point. Thus, it creates a bipolar electric
field on the nano-graphene strip and the quantum dot. The electric field created by the
quantum dot on the graphene nanorod plate is due to the QD polarization caused by
surface plasmons on the graphene. Numerical simulations show that the periodic optical
structure is obtained by placing quantum dots on a graphene nanorod.

This paper calculates the optical properties, including the absorption coefficient and
refractive index of a graphene nanoribbon and an array of QDs on it. This analysis studies
the effect of the geometrical and optical parameters of the QDs and the effect of graphene
nanoribbon on their electrical and optical properties. The mathematical modeling, including
analytical and numerical approaches, is presented and discussed in Section 2. Finally, the
effect of different arrays of the QDs on graphene nanoribbon on optical properties is
investigated and discussed in Section 3.

2. Mathematical Formalism
2.1. Induced Polarization in Graphene and Quantum Dots

By considering the permittivity of metals based on the plasma model, it is clear that
there are different behaviors in different radiant frequencies (from pure metal to dielectric).
When the Fermi energy level of graphene leaves the Dirac point, then, due to the lack of a
bandgap between the conduction and valance bands, the behavior of graphene is the same
as pure metals (gold and silver, etc.). However, graphene’s highly dispersive behavior
should be considered. The above-mentioned points suggest that since the relaxation time
of the electron in this material is in the picosecond range, the far-infrared spectrum for
graphene is a booklet of low frequencies. Therefore, this material operates as a dielectric
with positive permittivity at any Fermi energy level [20]. Based on the physical properties
of plasmonic materials, the number of dipoles formed at the surface is given. A harmonic
oscillator differential equation is used to compute the polarization caused by an external
electric field applied in a plasma model. By obtaining the amount of electron displacement
from the steady-state solution of the harmonic oscillator differential equation, we can
calculate the polarization of the graphene nanoribbon. Thus, the polarization of graphene
is given as follows [21]

1

2 —

where v and {(w, jt¢) = sow%(yc) / (w? +iyw) are the inverse of the electron relaxation
time and a new function appears in Equation (1), respectively.

The Plasma frequency (w)) is the frequency when the real part of the permittivity
of matter becomes zero. The plasmonic behavior of metals results from a change in their
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dielectric coefficient concerning the radiant frequency. Therefore, the Plasma frequency of
graphene is also a significant parameter in the design of various devices. On the other hand,
graphene has the property of adjusting the Fermi surface so it is possible to change the
plasma frequency by changing the chemical potential (y.) of this material. This feature in
graphene increases the importance of this material in the design of plasmonic devices. The
free-electron relaxation time (T = 1) is twice the scattering rate of the charged particle
(2I). This is proportional to graphene’s Fermi velocity (vy = 10° m-s~1), chemical potential,
and electron excitability (4, ~ 4 m2-V~1.s71). Electromagnetic waves in a graphene
nanoribbon cause electrons to move in the opposite direction of the electric field, forming
a dipole moment with the center of the atoms being positive and constant. Therefore,
the descending electric field (Ex = Egcos(wt)) also makes up surface polarizations on
the graphene nanoribbon. A bipolar electric structure introduces an electric field in its

surroundings on graphene nanoribbon [21,22] and is calculated separately from the main
- =

. —
field (Edirole — 47:51;, =5 (355 R — P |, where ¢, R and P are the permittivity of the medium

surrounding the QD-graphene system, the distance between the center of polarization
and a desire for point, and the polarization of the quantum dot and graphene nanoribbon,
respectively). Therefore, the dipole field created by graphene nanoribbons at the center
of the quantum dot can be calculated in three directions, obtained from surface plasmons.
Therefore, the dipole field created by its orbiting graphene nanoribbons can be calculated
in three directions as below. These are obtained from surface plasmons, if the length of
graphene nanoribbons is in the X-axis on the X-Y plane (see Figure 1).

_ Ep 1 x0 \ 2 3¢(w)Eg
int 4rte, % Ré 3 ) Oz + 47‘[£bR5Q 2Q*Qfz @

where Rg is the distance between the desired location on graphene nanoribbon and the
center of the quantum dot. Moreover, ay, ay, and a; are basic unit vectors in the coordinate.

L —775mm

Figure 1. The structure under the study with induced polarization [23].

This field is accounted for while the number of polaritons formed on the surface of
the graphene nanoribbon is one. Where Rg represents the distance between the axis of
polarization of the surface and the desired point (x, yo, z() (see Figure 1). Similarly, the
dipole created in the quantum dot induces an electric field around itself. Considering
Columbus’s law and incident applied to the electric field, the induced electric field in the

—-QD QD
surrounding medium by polarization in QD (P = py "~ X) is obtained as follows.

3pP 3pQP

pQD- _ 3pRP
int " 471¢,R3

2
1 p
) - 3>ﬂx * fe, 15 (Y@ ~ ¥ap) (Vo —¥ap)ay + 7w (Yo — xop) (20 — 7o)z ©)

If there is a neighboring array of quantum dots, the field affected by them at a point
(XQ,¥Q,2g) is equal to the sum of the field produced by each of them.

2.2. Interaction between Graphene Nanoribbon and Quantum Dots

In this paper, we introduce different structures of an array of quantum dots on the
graphene nanoribbon and model the interaction between them. The electric field acting
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on the graphene plate is the sum of the applied field (Ey) and the field results from the
QD=gy

polarization of quantum dots (E;,

set of three fields.
The first component is the applied electric field (Ey), the second component is the

induced electric field due to the effect of the polariton field of the graphene surface Plasmon
—QDj
(S,

int

. The polarization in quantum dots originates from a

), and the third component is the induced field due to the polarization field of
QD=QDj ). Thus, the total field is the sum of the three

interaction between quantum dots (E;;,

components and is given as follows.
E8 = (Ex +EP8
oo 1) @

€bd

EQDj — (

Here, €;,; = (2¢ + €4) /3¢, and g4 is the permittivity of the quantum dot [20]. To
study the interaction between particles, at first, the interaction for a single quantum dot is
modeled and then the mutual effect of the quantum dots is considered. Therefore, according
to the boundary conditions (x¢ = xg,ys = y(), the tangential electric fields between these
two materials must be equal, and the amount of initial polarization induced at the quantum
dots is calculated as follows.

ﬁQD

QD _ g QD _ 8 . 1 Sw,pe) Qng) _p _ P
ERP — g8 5 EQP —Ef = (1+ (e p Eo = Eo — g 5

€bd
leQD = 47tsbr(32D (sm - iigr‘zb’é;; BQD*g> Ep,em=1— %

The constant BRP8 shows the effect of the polarization of surface plasmons on the induced
polarization of quantum dots. This is called the ‘strength of interaction’ between the quantum
dots and the graphene nanoribbon and is given as (BP~¢ = (-1/R%_) <3(xQ/RC,C)2 - 1) ),
where R, __ represents the distance from the graphene nanoribbon center to the quantum
dot center. As an exceptional case, we consider a single QD on a graphene nanoribbon,
and the total polarization, including the polarization due to be applied to the electric
field and induced by graphene nanoribbon in a different position is calculated. It is
shown that the displacement of QD on graphene nanoribbon does not considerably change
the polarization.

As demonstrated, the displacement of the quantum dot does not have a significant
effect on the polarization of the quantum dot, but the change in radius has a relatively strong
effect on the quantity of the quantum dot polarization (Figure 2). Therefore, Figure 3 shows
the polarization of the quantum dot affected by a graphene surface plasmon polariton
based on the change in the radius of the quantum dot.

x1 0:22 .

1.6
14}
1.2

For One QD

3 5 7 9 11 13 15 17 19 21 23 25

Radius of QD
Figure 2. The effect of the radius of the quantum dot on the polarization (input light wavelength, the permit-
tivity of the quantum dot, and chemical potential are A, = 1.55 pm, &5 = 12, pi = 0.3 eV, respectively).
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Figure 3. Quantum dots distribution with equal radius. In the first case (a) QDs distribute on the
whole length of a graphene nanoribbon with the same distance. In the second case (b) QDs distribute
on the length of a graphene nanoribbon but with a smaller same distance around the center of
the graphene.

2.3. Interaction between Quantum Dots in an Array

It is important to consider how the quantum dots interact with each other to determine
how they should be arranged to have effective interaction with the graphene nanoribbon.
In this work, we use two models of quantum dots for an array. In the first model, all
quantum dots have the same radius, and in the second model, it is assumed that all QDs
have a different radius. As demonstrated in Section 2.2, if quantum dots have various radii,
their polarization will be different. Otherwise, they will have the same polarization. Thus,
we must consider these two models separately.

2.3.1. Array of Quantum Dots with the Same Radii

We also examine the first model in two cases. In the first case, we distribute the
quantum dots considering their number along the central length of the nanoribbon with
the same distances as shown in Figure 3a. In the second case, we distribute the quantum
dots at a certain distance (smaller than the first case) from each other from the center to
the edges of the graphene nanoribbon without considering their number. As it is shown in
Figure 3b, the density of quantum dots is higher at the center of the longitudinal axis of the
graphene nanoribbon.

Equation (3) represents the field that results from the polarization of a quantum dot.
Due to this equation, the difference between the two cases of the first model is the distance
that quantum dots have from each other. By superimposing the fields resulting from the
polarization of other quantum dots on the center of a quantum dot, we can obtain the
interaction of the quantum dot with other quantum dots. For the first case, the interaction
of the array of quantum dots can be calculated by the following approach.

If quantum dots are distributed with a certain distance (D) on the longitudinal axis of
graphene nanoribbon, their location is equal to xop1, Xxop1 + D, ..., xgp1 + (m — 1)D. By
placing this relation in Equation (3), the following equation is obtained.

E,QD’FQDJ' — ﬂ
47‘[£bD3

int

BQDn*QDjax (6)

. . . _ "
Now we need to introduce another interaction constant B°?»~9Pi —2x ¥ (1/]j —np).
j=1,#n

The constant B2P" QP js equivalent to the interaction between quantum dots and shows
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the effect of other QDs on the polarization of quantum dot number n. According to
Equations (3) and (4), the electric field on the graphene nanoribbon (xg, y,,0) is given as

follows.
2
3pQP | xop1+(j—1)D—x 1
I8 (o) ) oo
]:] 8*’5]' e 7]
35QD m .
E$=(ax ay a:) ’4’25,, 3 rgl (xgp1 + (j —1)D — xg) )
j=1 "8

3pRP
47T€b

m
QoD '21 é (xgp1 + (j —1)D — xg)
=178

where Rg_; is the distance between the target position on the graphene nanoribbon and the

center of quantum dot number j and is Ry, = \/(xg — (xgp1+ (j — 1)D))* + rop? + Y3
In addition, according to Equations (2), (4) and (6), the total electric field on the center of
the quantum dot is given as follows.

1 &(whe) pOD,— peP Dn—QDj
@(14' iy, BO g)E0+ ’47rsz3 BRP=QD;
3¢ (w,pe) E

47T£bR?7C: yQanQDn (8)
3¢(w,pc) E

47TSbR§7Cn0 rQD xQDn

EQDn - ( Ay ﬂy az )

Boundary conditions must be met for each quantum and graphene nanoribbon. Based
on this, we can obtain the polarization of each quantum dot considering Equation (5).

C(w, C) Dm,

ﬁgD = 2 Eo
3 g 1 ((11)D> 1) = (BQD”’QDJ'>
j=1 R?Z*C]' Re—c; 3 D’

As shown in Equation (9), the polarization of quantum dots is equal and depends
on the distance between the quantum dots and their number. Figure 4 has colors in both
red and blue. The red diagram shows the first case of the first model, and the number of
quantum dots increases. The blue diagrams show the second case of the first model, where
the distance between the quantum dots starts at 2.57gp and increases with the multiple

©)

of rQTD.
1621072,
161} De.c™25Tgp »77
167 & 4 ’-+r‘l2‘ M -’ 1

/7 QD /
roof  # et

Q
L 1/
G&I—1.58 *‘.—._._.7‘/

U4
L A
1.57 e—e—e=t
1.56 o & &,
”" A r..=25nm
1551 . o
*0‘
1.4—"A——
12 3 4 5 6 7 8 9 10 11 12 13
Number of QD

Figure 4. The ratio of polarization of quantum dots to their number in two states. Blue is for
QDs with the same distance but around the center of the graphene nanoribbon and red is for
QDs with the same distance but distributed in the whole length of the graphene nanoribbon
(Lg = 775nm, Wy = 40nm, pc = 0.3 eV, Aeff = 1.55 pum).
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2.3.2. Array of Quantum Dots with the Same Radii

As we showed in the previous sections, varying the radius of the quantum dot has a
significant effect on their polarization. The second model of the array of quantum dots on
the graphene nanoribbon is discussed in this section. The second model also has two cases,
including the Gaussian and the sagittal distribution. Figure 5 shows the structure of these

two modes.

Gaussin

X

e

j:

(@)

i

Sagittal
D
2
j
X
=2 i i

(b)

Figure 5. Quantum dots distribution, (a) the Gaussian distribution, and (b) the sagittal distribution.

Since the radius of the quantum dots is varied in the array, their initial polarization will
be different. We calculated the initial polarization from the total field, including graphene’s
surface polarization and the incident wave (described in Section 2.2). If we distribute the
m = 2k + 1 number of quantum dots with a certain distance (D) on the longitudinal axis of
graphene nanoribbons as the Gaussian or sagittal type distributions, the location of QDs is
X0oDms Xopm £ D, ..., Xgpm = (k —1)D, xqpy = 0. In addition, their radius for the Gaussian
case is equal to rgop,,, "oD,, — 4, -, TQD,, — (k —1)d, and for the sagittal case, the radius is
"QDys QD +d, -, 70D, + (k — 1)d. By putting their location in Equation (3), the array of
quantum dots-interaction constant that appeared in Equation (8) is revised as follows.

BQDH—QD]' — 2 %

j=—k (((G=mD)*+ ((In = ihd)*)

~QD
piZ;

% 10

133[]) represents the initial polarization of the jth quantum dot. Each quantum dot has

a permittivity that creates its overall polarization due to the effective fields at the center of
the quantum dot. The total polarization of each quantum dot is given as follows.

1
€pd

ﬁ]QD" = SO(Ed — 1)EQD” = Eo(Sd — 1) ( <1 + 7€<w, ]ic)

poP

BQDn*g E LA
> o+ ‘471sz3

BQDnQDj> 1)

According to Equations (3) and (4), the total fields on any point of the graphene
nanoribbon (xg,yq,0) is given as follows.

3 e .

2y B ((j—1)D — x;) (12)
Pj=1 e

3 ~QDp

e U p—((—1)D — xg)
R

According to Equation (4), concerning the degree of polarization obtained at the
quantum dots, the total field induced on the graphene nanoribbon is also obtained. While
the total susceptibility of the system is obtained using graphene polarization. The following
equation expresses the total susceptibility of the structure.
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As it is well known, the susceptibility shows the interaction of the electromagnetic
field with the matter and so it is useful in optical waveguide design.

3. Results and Discussion

In this work, we used a graphene nanoribbon with dimensions of 775 x 40 nm? and an
array of quantum dots with a permittivity of 12, and different radii and arrangements on it.
We investigated the optical properties of the proposed structures for different arrangements.
To this end, we considered two cases. At first, a periodic array with the same QDs’ radius
was considered. In the second case, we considered the different radii of the quantum dots.
Incident electromagnetic wave at 1.55 um irradiated on the structure. First, the results of
the first case are considered and discussed. In this case, several arrangements of QDs can
be considered. In general, we can study the first case by exploring two possibilities. In
the first part, some QDs distribute uniformly in the length of the graphene nanoribbon.
In the second case, QDs with a given distance between them are distributed around the
nanoribbon center along the graphene length. Figure 5 compares the two cases.

According to Figure 6, we find that the presence of quantum dots makes susceptibility
to change. Such a feature allows us to place an array of quantum dots on a graphene
nanoribbon, and an optical grating is implemented. The grating blue and red periodic parts
depend on the radius and distance between each quantum dot. It should be noted that
the periodic arrangement of the quantum dots on the longitudinal axis of the graphene
nanoribbon is desired. The red graphs show the concentration model of the quantum
dots at the center of the graphene nanoribbon. Besides, the blue graph represents the
uniform rotation of the quantum dots across the entire length of the graphene nanoribbon.
In Figure 7, the dependency of the radius of the quantum dots to the grating width
is illustrated.

-9 Array of QDs around the center of GNR ' - 25 ' ) ) ' ' ) '
2 Array of QDs around the cepter of GNR
> =10 E
2
% Q
5~ 2
ELN e
n -7 o 2
b
° t
| S
3 -9r E V—
S £
14 -10T g
-04 -03 -02 -01 0 01 02 03 0.3 1'_50_4 03 02 01 0 01 02 03 04
Length of Graphene (pm) Length of Graphene (zm)
(a) (b)

Figure 6. Susceptibility for the proposed system in (a) the real part of the susceptibility for an array
of QDs distributed on the graphene nanoribbon with the same distance in the whole ribbon with a
chemical potential of 0.9 eV m = 3,rop = 25 nm, and (b) the imaginary part of the susceptibility for
an array of QDs distributed on the graphene nanoribbon with the same distance but centered around
the center of the ribbon with Dc_c = 3rgp, rgp = 25 nm. The distance between QDs in red and blue
curves are 45 nm and 194 nm, respectively.
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Real part of Susceptibility (103)

Figure 7. In the first case of the first model, the effect of quantum radius on (a) real part and
(b) imaginary part of the susceptibility, y = 0.9 eV.

As shown in Figure 7, the grating width is broadened as the quantum dot radius
increases. If the radius of the quantum dots is randomly chosen, the susceptibility of the
proposed system will be interesting for many applications. Therefore, we introduced the
second model with two Gaussian and sagittal cases. According to this point, Table 1 shows
the radii used in these structures with their initial polarization.

Table 1. Initial polarization in terms of the radius of QD (nm).

The Radius of QD (nm) Initial Polarization (1~3’l(-2 D) %1021
10 0.0099
15 0.033
20 0.079
25 0.1543

Figures 8 and 9 show the susceptibility of the Gaussian and sagittal cases, respectively.

As it is clear, decreasing or increasing the radius of the quantum dots has a significant
effect on the nano-grating implemented by the proposed structure. It makes the manufac-
turing industry of such waveguides more accurate. This is because most changes occur at
the point where the largest quantum dot is located (See Figure 9).

-1.44 E- 1.07
1.46 2 1.06
oy
-1.48 Q 1.05
3
15 o 1.04
[T
O 1.03
-1.52 t
8 1.02
154 g 1.01
-1.56 £
©
-1.58 £ 099
0.4 0.2 0 0.2 0.4 0.4 0.2 0 0.2 0.4
Length of Graphene (um) Length of Graphene (um)
(a) (b)

Figure 8. The susceptibility for the Gaussian case for distribution in whole graphene nanoribbon
(a) real part, and (b) imaginary part, y. = 0.3 eV.



Photonics 2022, 9, 348

10 of 12

Real Part of Susceptibility (103)

o

-0.5

-1.5
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-2.5

4.5

Real Part of Susceptibility (1 03)

-1.44 2 107
-1.46 2 106
&
1.05
148 b
>
@ 104
15 © 103
b
152 & 1.02
2 1.01
-1.54 o
E’ )
-1.56 £ 099
o = * = -, = 04 0.2 0 0.2 0.4
e - ) : Length of Graphene (um
Length of Graphene (um) 9 P (um)
(a) (b)

Figure 9. The susceptibility for the sagittal case for distribution in whole graphene nanoribbon (a) real
part, and (b) imaginary part, y. = 0.3 eV.

By comparing the numerical simulation of the two models (Figures 5-8), we find
that the contrast of the grating in the second model is less significant. In other words,
the amplitude of the susceptibility is affected using a different model. Therefore, we can
adjust the grating structure in the desired pattern by using the superimposed sagittal and
Gaussian structures.

As shown in Figure 10, because the changeable chemical potential of the graphene
nanoribbon has a significant effect on susceptibility, it can bring significant prosperity to
the photonics and Plasmonics industry. The imaginary part represents the losses in the
structure, and, with a chemical potential of less than 0.3 eV, the least losses are reported,
which is the result of reports and other articles [13,21].

ﬂ‘

EE NP NN N EEEEEEEEEEEEESN NN N

-I?I—I-I--I-lv-ll.

--’- BN . g -‘— -. _uc=0.9 ev

1.3
i
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1 1]
w11 =0.1 €V 1.2 -"\l"a--"-—-"'—-"-'-\l!,-'-'-
1
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: |
] 1

- - pc=0.5 ev

’—A——‘——-ﬁﬁ-

- - uc=0.7 ev
1.05

Imaginery Part of Susceptibility
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Length of Graphene (um)

0
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Figure 10. The susceptibility for the sagittal case for distribution in whole graphene nanoribbon with
changeable chemical potential, (a) the real part of the susceptibility and (b) the imaginary part of the
susceptibility.

4. Conclusions

In this work, we used an array of quantum dots on a graphene nanorod to introduce
the appropriate lattice structure at the nanoscale. We arranged the quantum dots on
the longitudinal axis of the graphene nanoribbons in different shapes and investigated
the behavior of the proposed structures based on Columbus’s law and the modeling of
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surface plasmon polaritons. Theoretically, we obtained the sensitivity of the structure
by examining the interaction between quantum dots, and between quantum dots and
graphene nanoribbons. Finally, by analyzing the results, we were able to form the desired
lattice structures using the dimensions and arrangement of quantum dots.

As expected, these structures have a variety of applications in classical and quantum
optical integrated circuits, nanoscale atomic lithography for nanoscale production, coupling
coefficient adjustment between waveguides, and the implementation of optical gates,
reflectors, detectors, and modulators.

Author Contributions: S.A. write the paper and simulated the task. A.R. designed the project
conceptually and write and edit the paper and supervise the project. PM. writes and edits the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: It does not apply to this paper.
Informed Consent Statement: It does not apply to this paper.

Data Availability Statement: There is no data in this paper to publish.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

Tran, M.A.; Huang, D.; Komljenovic, T.; Peters, ].; Malik, A.; Bowers, J.E. Ultra-low-loss silicon waveguides for heterogeneously
integrated silicon/III-V photonics. Appl. Sci. 2018, 8, 1139. [CrossRef]

Barnes, W.L. Surface plasmon-polariton length scales: A route to sub-wavelength optics. . Opt. A Pure Appl. Opt. 2006, 8, S87.
[CrossRef]

Ono, M.; Taniyama, H.; Kuramochi, E.; Nozaki, K.; Notomi, M. Toward application of plasmonic waveguides to optical devices.
NTT Tech. Rev. 2018, 16, 14-19.

Huang, X.; Chen, G.; Zhou, W.; Huang, X. Cm-level photonic-crystal-like subwavelength waveguide platform with high
integration density. Appl. Sci. 2019, 9, 3410. [CrossRef]

Veronis, G.; Fan, S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 2005,
87,131102. [CrossRef]

Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photonics 2009, 1, 484-588. [CrossRef]

Hao, R; Li, E.; Wei, X. Two-dimensional light confinement in cross-index-modulation plasmonic waveguides. Opt. Lett. 2012,
37,2934-2936. [CrossRef] [PubMed]

Briggs, R M.; Grandidier, J.; Burgos, S.P.; Feigenbaum, E.; Atwater, H.A. Efficient coupling between dielectric-loaded plasmonic
and silicon photonic waveguides. Nano Lett. 2010, 10, 4851-4857. [CrossRef] [PubMed]

Pacifici, D.; Lezec, H.].; Atwater, H.A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics 2007,
1, 402-406. [CrossRef]

Gubin, M.Y.; Prokhorov, A.V,; Volkov, V.S.; Evlyukhin, A.B. Controllable Excitation of Surface Plasmon Polaritons in Graphene-
Based Semiconductor Quantum Dot Waveguides. Ann. der Phys. 2021, 533, 2100139. [CrossRef]

Aliofkhazraei, M.; Ali, N.; Milne, W.I; Ozkan, C.S.; Mitura, S.; Gervasoni, J.L. (Eds.) Graphene Science Handbook: Electrical and
Optical Properties; CRC Press: Boca Raton, FL, USA, 2016.

Neto, A.C.; Guinea, E; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009,
81, 109. [CrossRef]

Hosseininejad, S.E.; Komjani, N.; Noghani, M.T. A comparison of graphene and noble metals as conductors for plasmonic
one-dimensional waveguides. IEEE Trans. Nanotechnol. 2015, 14, 829-836. [CrossRef]

Armaghani, S.; Khani, S.; Danaei, M. Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing
optical Kerr effect. Superlattices Microstruct. 2019, 135, 106244. [CrossRef]

Sun, Z.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227-238. [CrossRef]
Zheng, K; Yuan, Y.; Zhao, L.; Chen, Y,; Zhang, E; Song, J.; Qu, J. Ultra-compact, low-loss terahertz waveguide based on graphene
plasmonic technology. 2D Mater. 2019, 7, 015016. [CrossRef]

Wu, J.; Gong, M.; Schmitz, R.C.; Liu, B. Quantum Dot/Graphene Heterostructure Nanohybrid Photodetectors, in Quantum Dot
Photodetectors; Springer: Berlin/Heidelberg, Germany, 2021; pp. 215-248.

Gubin, M.Y.; Leksin, A.Y.; Shesterikov, A.V.; Volkov, V.S.; Prokhorov, A.V. Nonlinear plasmonic switching in graphene-based stub
nanoresonator loaded with core-shell nanowire. Appl. Surf. Sci. 2020, 506, 144814. [CrossRef]

Xing, G.; Liu, X.; Hao, S; Li, X.; Fan, L.; Li, Y. Diameter-and length-controlled synthesis of ultrathin ZnS nanowires and their
size-dependent UV absorption properties, photocatalytic activities, and band-edge energy levels. Nanomaterials 2019, 9, 220.
[CrossRef] [PubMed]


http://doi.org/10.3390/app8071139
http://doi.org/10.1088/1464-4258/8/4/S06
http://doi.org/10.3390/app9163410
http://doi.org/10.1063/1.2056594
http://doi.org/10.1364/AOP.1.000484
http://doi.org/10.1364/OL.37.002934
http://www.ncbi.nlm.nih.gov/pubmed/22825183
http://doi.org/10.1021/nl1024529
http://www.ncbi.nlm.nih.gov/pubmed/21028908
http://doi.org/10.1038/nphoton.2007.95
http://doi.org/10.1002/andp.202100139
http://doi.org/10.1103/RevModPhys.81.109
http://doi.org/10.1109/TNANO.2015.2449903
http://doi.org/10.1016/j.spmi.2019.106244
http://doi.org/10.1038/nphoton.2016.15
http://doi.org/10.1088/2053-1583/ab5546
http://doi.org/10.1016/j.apsusc.2019.144814
http://doi.org/10.3390/nano9020220
http://www.ncbi.nlm.nih.gov/pubmed/30736439

Photonics 2022, 9, 348 12 of 12

20.
21.
22.

23.

Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2007; Volume 1.

Engheta, N.; Ziolkowski, R-W. Metamaterials: Physics and Engineering Explorations; John Wiley & Sons: Hoboken, NJ, USA, 2006.
Cox, J.D.; Singh, M.R.; Gumbs, G.; Anton, M.A; Carreno, E. Dipole-dipole interaction between a quantum dot and a graphene
nanodisk. Phys. Rev. B 2012, 86, 125452. [CrossRef]

Armaghani, S.; Rostami, A.; Mirtaheri, P. Analysis and Simulation of the Optical Properties of a Quantum Dot on a Graphene
Nanoribbon System. Photonics 2022, 9, 220. [CrossRef]


http://doi.org/10.1103/PhysRevB.86.125452
http://doi.org/10.3390/photonics9040220

	Introduction 
	Mathematical Formalism 
	Induced Polarization in Graphene and Quantum Dots 
	Interaction between Graphene Nanoribbon and Quantum Dots 
	Interaction between Quantum Dots in an Array 
	Array of Quantum Dots with the Same Radii 
	Array of Quantum Dots with the Same Radii 


	Results and Discussion 
	Conclusions 
	References

