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Abstract: Single event burnout (SEB) is a great threat to gallium nitride (GaN) power devices for
aerospace applications. This paper is dedicated to the investigation of the SEB mechanism in a GaN
power device using a femtosecond pulsed laser. In the test, the SEB of a commercial p-GaN power
device was triggered by a focused laser beam with a wavelength of 620 nm, and the irradiation-
sensitive area of the devices was identified. We observed that the damage modes were consistent with
the results of heavy ion experiments. The vertical breakdown of the drain is proposed as the dominant
mechanism of SEB. We also provide a schematic representation of the leakage path formation using
the electrical data obtained following laser-induced SEB. This study provides an important reference
for consideration of device reliability and application prospects.

Keywords: SEB mechanism; GaN power device; femtosecond pulsed laser; heavy ions

1. Introduction

Single event burnout (SEB), induced by high-energy ionizing particles, is a vital
reliability concern for electronic power devices used in aerospace applications; the resulting
catastrophic failures make it impossible to guarantee power system performance in the
space radiation environment. To determine the critical factors affecting SEB, the test
device has typically been evaluated by accelerated particle beams, such as heavy ions [1–3].
However, the absence of focusing capability makes it difficult to apply ion beams to
systematic investigation of SEB with high spatial resolution, and the operation is relatively
expensive [4]. Pulsed lasers have played a powerful role in SEB research of silicon (Si)
power devices as a more convenient and affordable tool [5–7]. Because of its fast response
and finely tunable energy, pulsed-laser testing can be used to quickly determine the safe
operating area, detect sensitive areas and learn much more about the test device [6,7]. In
addition, femtosecond pulsed lasers have recently begun to be used in SEB research into
wide bandgap semiconductor devices, such as silicon carbide (SiC) devices [8,9].

Another high melting point wide bandgap semiconductor, gallium nitride (GaN),
has a higher breakdown electric field and faster electron migration rate than Si, so that it
constitutes an excellent material for the manufacture of low energy consumption, radiation-
resistant power devices [10,11]. Specifically, normally-off GaN power devices offer great
advantages and potential for space and aerospace power applications. In previous stud-
ies [12–15], heavy ion data for GaN power devices showing SEB responses and brief
exploration of the destruction have been reported. These studies have confirmed that when
SEB occurs in a device, its electrical properties change, and single event transient (SET)
current can be observed during an irradiation run. The damage mode of SEB has also been
studied involving observation of the connection between the source and drain directly
on the device surface; a vulnerable area is located between the gate and the drain exiting
by a short-circuit path; a vertical breakdown of the drain occurs at high voltage, with a
short-circuit path to the substrate. Although some research has been carried out on the SEB
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generation mechanism of GaN power devices, damage exploration has mainly focused on
direct observation, using tools such as the scanning electron microscope (SEM) and the
emission microscope (EMMI), while a quantitative description of the main factors is lacking.
There are also studies of radiation effects in GaN using pulsed lasers. Khachatrian, A. et al.
used pulsed lasers for the first time to study the SET mechanism of the GaN high electron
mobility transistor (HEMT) via two-photon absorption (TPA) [16]; Roche, N. J. et al. dis-
cussed the dependence of a GaN diode device current response on the laser wavelength [17];
Ngom, C. et al. used femtosecond pulsed lasers incident on GaN power devices from the
backside, discussing possible absorption mechanisms of femtosecond pulsed lasers in
devices and the phenomenon of surface destructive events [18,19]. These studies have
mainly focused on verifying the feasibility of radiation tests on GaN power devices, but
lack sufficient exploration and interpretation in terms of SEB.

In this paper, we report on the first use of a femtosecond pulsed laser to study the SEB
mechanism in GaN power devices. A laser test method is described, and the efficiency of
the laser energy is calculated. Next, a normally-off GaN HEMT power device was scanned
using a femtosecond pulsed laser by varying the incident laser energy and the device
drain bias voltage until SEB occurred. During the process, we obtained information about
changes in the electrical properties and detected burnout sensitive areas of the device. SEM
was used to evaluate the microscopic failure of the destroyed device. Finally, the irradiated
device was electrically tested to analyze the SEB mechanism. The same SEB damage modes
were observed using the pulsed laser as in the heavy ion experiment. Analysis of the
laser irradiated data is performed to determine the dominant features of SEB and the
propagation path of the leakage current in the device.

2. Test Device and Circuit

The test device used in this study is a normally-off GaN HEMT power device belonging
to the Panasonic PGA26 series, which is a hybrid drain-gate injection transistor (HD-GIT)
with a drain-source threshold voltage of 600 V. Figure 1 shows the device surface and cross-
sectional view. The structure consists of a substrate (Si), a nucleation layer, a GaN buffer
layer, an AlGaN barrier layer, a metal layer and a Si3N4 passivation layer [see Figure 3]. By
adding additional p-GaN to the gate and drain regions, holes can be injected to increase
the threshold voltage and suppress current collapse at drain voltages of up to 800 V with
high reliability [20]. In addition, the substrate of the device is in conductive contact with
the back metal, and it can be grounded together with the source in use [21].
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Figure 1. The schematic diagrams of the test device. (a) The device surface view. (b) Cross-
sectional views.

The complete test circuit for this device is provided in Figure 2. An RC network is
used to ensure that the current in the drain path is limited during the test process, and to
prevent failure extension of the circuit threatening experimental safety due to excessive
current when SEB occurs. The input power supply is filtered to stabilize the fluctuation
values of the output current, so that changes in the electrical properties of the device could
be better obtained.
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Figure 2. The complete test circuits.

3. Pulsed Laser Test Method

The back of the GaN HEMT power device is completely covered with metal electrodes.
For laser testing, the front-side package of the device should be removed, and the pulsed
laser is incident from the front side, as shown in Figure 3. When conducting pulsed laser
experiments, the laser beam is focused through the dielectric layer in the active region
around 2DEG of the GaN layer to generate photoelectric interaction [13,16,19]. When the
converted charge of the effective laser energy exceeds the withstand threshold, SEB of the
device occurs.
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Figure 3. Schematic diagram of the pulsed laser incident on the device from the front side.

When using pulsed lasers for SEB experiments on GaN power devices, some critical
factors need to be determined to ensure laser penetration depth and energy utilization.

The first is the laser wavelength based on the two-photon absorption (TPA) mecha-
nism. TPA means the absorption of two photons simultaneously at high laser intensities
to produce a single electron-hole pair, while only acting significantly near the focus of
the beam. The increase in beam size in the transmission path makes the laser intensity
insufficient to produce TPA, which offers better spatial resolution and longer penetration
depth than the single-photon absorption (SPA) mechanism in GaN devices. In this paper,
the wavelength of the pulsed laser chosen for the test is 620 nm, and its photon energy can
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reach 2 eV. The GaN bandgap is 3.4 eV and the energy of two photons of the laser light
is greater than the difference between the two energy levels, so that TPA can occur in the
active region.

In addition, the interaction of the device materials with the laser is essential in the
laser energy transfer process. It should be determined whether the material generates
optical losses due to its own absorption effects. The laser is incident from the front side,
passing through the passivation layer and the barrier layer in sequence to reach the active
region of the GaN layer. The Si3N4 bandgap is 5.1 eV, so the passivation layer does not
absorb laser light at 620 nm and the laser energy is barely lost. The thickness of the AlGaN
layer is within 100 nm. The thin thickness and wide bandgap allow the laser beam to
easily pass through the barrier layer. Therefore, the reduction in absorption by each layer
can be ignored for the effective laser energy, and the main influencing factor concerns the
interface reflectivity between the layers. Since the thickness of the dielectric layers in the
test device is not comparable to the laser wavelength, the interference influence caused by
etalon effects is not considered. The effective laser energy in the active region of the device
passing through the transmission process can be calculated by Formula (1).

Eeff = (1 − R1)(1 − R2)(1 − R3)E0 (1)

Eeff is the effective laser energy in the active region, R1 is the passivation layer reflec-
tivity, R2 is the reflectivity of the interface between the passivation layer and the barrier
layer, R3 is the reflectivity of the interface between the barrier layer and the buffer layer,
and E0 is the incident laser energy. Except for the passivation layer on the surface of the
device, the interface reflectivity should be determined by the materials on both sides of it
when the laser light enters. The Fresnel formula can be used to correct the parameters that
are needed.

R =

(
n1 − n2

n1 + n2

)2
(2)

R is the interfacial reflectivity, and n1 and n2 are the refractive indices of the different
interface side materials. When the laser wavelength is 620 nm, the refractive indices of
Si3N4 and GaN are 2.04 and 2.31, respectively [22]. Typically, the refractive index of AlGaN
decreases as the Al content increases, but the Al content of AlGaN layers in commercial
GaN power devices is commonly kept confidential. Under this optical condition, the
refractive index of AlGaN ranges from 2 to 2.32 with variation in Al content [23]. Applying
these refractive indexes in the Fresnel equation and the laser transmission process, we
obtain an effective laser energy rate of 87.83–88.14%. The Al content has little influence on
the effective laser energy, and the pulsed laser energy was well utilized in the test.

4. Experimental Results and Discussion
4.1. Pulsed Laser Test

The femtosecond pulsed laser used in this study has a pulse width of 35 fs and a single
pulse energy frequency of 5000 Hz. The device was scanned by laser light, the scanning
movement rate was 5000 µm/s, and the diameter of the focused spot was about 1 µm.

In the test, the value of the drain current ID is observed to determine whether the
device electrical performance is abnormal and the burnout sensitive areas. When the
gate-source voltage VGS = 0 V, the device is turned off. The drain-source voltage VDS is set
to 500 V. As shown in Figure 4, current transient changes are observed when the laser scans
to the irradiation-sensitive areas of the device, and the change amplitude of ID increases as
the laser energy increases at 2 nJ and 4 nJ. When the laser energy is up to 4.5 nJ, SEB occurs.



Photonics 2022, 9, 270 5 of 11Photonics 2022, 9, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 4. Current variation under different laser energies when VDS = 500 V. 

When the device is scanned, as shown in Figure 5a, current transient changes appear 
regularly [see Figure 6a]. This indicates that the device is sensitive at a certain structural 
location. When the device is scanned, as shown in Figure 5b, the laser performs a unit 
structure test of the device. A larger current transient occurs when the laser scans to a 
certain drain edge [see Figure 6b], which is the sensitive area. More accumulated charges 
are generated by the continuous irradiation of the laser to the sensitive area. The scans are 
performed over the full chip, and the step size in the x and y directions are the length and 
width of the device surface, respectively. 

  
(a) (b) 

Figure 5. Schematic diagrams of the laser scanning method. (a) Cross-scan with repeating structure 
direction. (b) Forward-scan with a unit structure direction. 

  
(a) (b) 

Figure 6. Electrical properties of the laser scanning method when VDS = 450 V. (a) Cross-scan with 
repeating structure direction. (b) Forward-scan with a unit structure direction. 

Figure 4. Current variation under different laser energies when VDS = 500 V.

The current change depends on the effective energy deposition in the active region at
the sensitive areas. The stronger the incident energy, the more photons are available for
TPA, and the more electron-hole pairs will be generated in the active region, which in turn
leads to an increase in the device current. When the maximum current that the device can
withstand is exceeded, SEB occurs. The current change before burnout is consistent with
the heavy ion experimental phenomenon [12].

When the device is scanned, as shown in Figure 5a, current transient changes appear
regularly [see Figure 6a]. This indicates that the device is sensitive at a certain structural
location. When the device is scanned, as shown in Figure 5b, the laser performs a unit
structure test of the device. A larger current transient occurs when the laser scans to a
certain drain edge [see Figure 6b], which is the sensitive area. More accumulated charges
are generated by the continuous irradiation of the laser to the sensitive area. The scans are
performed over the full chip, and the step size in the x and y directions are the length and
width of the device surface, respectively.
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4.2. SEM Verification

SEM was used to perform microscopic failure analysis of the device to identify its
burnout sensitivity areas and cause of burnout. Since SEB was induced by the pulsed laser,
the damage due to laser thermal accumulation ablation should be excluded first. As shown
in Figure 7, the laser ablation aperture plane size within 1.5 µm in diameter and 4 µm in
longitudinal depth only produces damage to the passivation layer; while the SEB aperture
plane size is up to about 30 µm and longitudinal burnout damages the GaN layer with a
depth of more than 10 µm, directly affecting the layer structure. The difference between the
two apertures phenomenon is obvious, so the failure caused by laser thermal ablation is
excluded in the study.
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Figure 8 indicates that the drain is more severely damaged than other regions, and
there are more fracture voids at this more sensitive location. During the laser scanning
process, current transients are more likely to appear at the edge of the drain. The testing
result is consistent with the SEM microscopic observation. Zhang, R. et al. demonstrated
that the internal electric field intensity of HD-GIT GaN HEMT power devices is higher at
the p-GaN near the drain than other locations [24]. When laser photons hit the drain region,
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TPA collides and ionizes to generate electron-hole pairs, which increases the number of
carriers in the originally high electric field in this region, leading to critical overvoltage
transients and transient currents in the drain. Although conventional GaN HEMT devices
are almost incapable of avalanche, the p-GaN structure retains some avalanche capability
with holes injected from the heterojunction layer. At high VDS, when photons penetrate into
the p-GaN vertical region with high electric field [25], continuous impact ionization and
avalanche may occur, so that the local internal voltage can instantly exceed the withstand
capacity and trigger extremely high current, resulting in vertical breakdown failure of the
device [see Figure 8b]. Figure 9 reveals the leakage path between the drain, the gate and
the source in the lateral direction after burnout. The rupture damage is not only distributed
in the direction of the heterojunction, but also extends to the buffer layer, which may add to
the possibility of a leakage path. These findings verify the observation results of the heavy
ion experiments from a microscopic perspective.
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4.3. SEB Mechanism Analysis

We have demonstrated that the laser-induced SEB formation and damage mode of the
GaN power device are consistent with the heavy ion results. In addition, the changes in
the electrical properties after irradiation were monitored to analyze the SEB mechanism,
including the main factors affecting it. Figure 10 shows the electrical properties of the
device under different conditions, where New 0 represents a brand new device, Failed
1 represents a SEB device after irradiation, and Failed 2 represents the SEB device with the
source-substrate connection line between cut off.
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The electrical properties of the device changes greatly before and after irradiation. As
shown in Figure 10 New 0, when the VGS is less than 1.5 V or even reversely turned on,
the unirradiated new device has essentially no ID and the device is in the off state. The
device is in a stable on state at a VGS above 1.5 V. However, as shown in Figure 10 Failed 1,
the gate of the irradiated failed device loses its control function. The ID remains almost
unchanged and slightly less than the normal new device on state current at the same VDS,
regardless of the VGS [see Figure 10a]. Moreover, the IG magnitude is related to VGS and
is independent of the positive and negative voltages about the gate [see Figure 10b]. The
gate of the unirradiated new device should truncate the conductive channel 2DEG in the
off state, so there is a short-circuit path between the destroyed drain and source in the
irradiated failed device, and the leakage path is not controlled by the gate. The new device
has almost no current when the gate and the source are grounded or reverse voltage is
applied between them. However, as shown in Figure 10b, Failed 1 current appears between
the gate and the source in the burnout device. IG is out of control: when VGS is reverse
biased, IG is the reverse current; when VGS is forward biased, IG is the forward current. The
flow direction of IG is consistent with the direction of the applied voltage, which means that
there is also a leakage path between the gate and the source at this time. The gate-source is
also shorted.

In order to determine the main factors of SEB, the wires connecting the source and
the substrate of the failed device are cut to allow the direct test of the drain-substrate
current. Figure 10a Failed 1 suggests the ID is 18.93 mA after SEB occurrence. However, the
current between the drain and the substrate [see Figure 10a Failed 2] is measured within
15.30 mA after cutting the source-substrate wires, accounting for the domination. There is
a large leakage current path penetrating from drain to substrate. Compared with the SEM
observations, the electrical property data can confirm that the vertical path located between
the drain and the substrate is the most dominant cause of damage under high voltage and
irradiation. Figure 10b Failed 2 indicates the reverse current appears between the gate and
the substrate when both of them are grounded, which is against common sense. So, we can
conclude that there is current flowing from the energized drain to the grounded gate. As
the gate voltage increases, the reverse current gradually decreases until the gate-substrate
current disappears when the gate-substrate voltage is 5 V. This phenomenon suggests that
there is also a leakage path between the gate and the substrate.

Combined with SEM verification, the vertical breakdown of the drain is the most
primitive and dominant. Figure 8 indicates great damage appearing in the drain region
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while the other areas are intact. Following the initial breakdown, the high leakage current
increases the energy loss of the device. When the energy deposition is greater than a certain
threshold, it will damage the GaN ordered atomic crystal lattice, which leads to melting
of the surrounding material, rapid cooling, recrystallization, generation of amorphous
material, and production of a high concentration of defects immediately. The presence of a
high concentration of defects in the AlGaN barrier layer increases the electric field above
the barrier, which facilitates the tunneling and impact ionization processes, increasing the
lateral leakage current and decreasing the breakdown voltage [26,27]. Under sustained high
VDS, these defects push the formation of a complete leakage path between the source and
drain in the lateral region. The p-GaN at the gate fails due to a sharp increase in the electric
field, and immediately loses all blocking capabilities, resulting in thermal runaway burning
damage to a large area, eventually leading to complete burnout of the device and failure of
electrical performance. The leakage paths of the SEB device are shown in Figure 11.
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5. Conclusions

We have demonstrated the damage mode of SEB in a GaN power device and proposed
the main mechanism of SEB with the formation of leakage paths induced by 620 nm laser.
The results of laser scanning and SEM observation both confirm that the edge of the drain is
the sensitive area of the device. We used SEM to verify the presence of a vertical breakdown
path at the drain, and a short circuit existing in the source, gate and drain. This is consistent
with the conclusion of the heavy ion experiments.

The electrical data after laser-induced SEB was used to confirm the drain vertical break-
down as the main initial damage factor. The damage caused by the high current of the drain
subsequently promotes the formation of a lateral leakage current, creating a thermal run-
away. A smaller leakage current path exists between the drain and the source and the gate
loses its modulation role. The test updates the functionality of femtosecond pulsed lasers
for use in integrated circuits (IC). It also provides an important reference for the application
and reinforcement design of GaN HEMT power devices in high radiation environments.
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