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Abstract: The determinant of a Mueller matrix M plays an important role in both polarization algebra
and the interpretation of polarimetric measurements. While certain physical quantities encoded
in M admit a direct interpretation, the understanding of the physical and geometric significance
of the determinant of M (detM) requires a specific analysis, performed in this work by using the
normal form of M, as well as the indices of polarimetric purity (IPP) of the canonical depolarizer
associated with M. We derive an expression for detM in terms of the diattenuation, polarizance and a
parameter proportional to the volume of the intrinsic ellipsoid of M. We likewise establish a relation
existing between the determinant of M and the rank of the covariance matrix H associated with M,
and determine the lower and upper bounds of detM for the two types of Mueller matrices by taking
advantage of their geometric representation in the IPP space.

Keywords: Mueller matrix; polarization optics; polarimetry; depolarization

1. Introduction

Mueller polarimetry is nowadays a well-known and useful optical characterization
technique providing substantial information on a huge variety of materials and structures
from many areas of science and engineering. Consequently, the physical interpretation of
the information encoded in a measured Mueller matrix is a particularly relevant objective.

Despite the recognized importance of the role the matrix determinant plays in the
algebraic structure of Mueller matrices [1,2], its physical interpretation is incomplete so far,
and a specific analysis in the general case of depolarizing Mueller matrices is still missing.

As shown in Section 3, the interpretation problem can be tackled effectively by combin-
ing the concepts of the normal form of a Mueller matrix M and the indices of polarimetric
purity (IPP) of its canonical depolarizer. As a result, the specific properties of the deter-
minant of M (detM) follow directly from those of certain fundamental quantities that are
intrinsic to the polarimetric behavior of the interaction represented by M. This approach
likewise makes it possible to determine the lower and upper limits of detM, as well as to
identify its feasible regions in the purity space for type-I and type-II canonical depolarizers,
thus providing a deeper insight in the understanding of the nature and properties of detM.

Prior to addressing the problem, the necessary concepts and conventions are reported
in Section 2.

2. Theoretical Background

The concept of Mueller matrix is based on that of the Jones matrix. In fact, any
linear polarimetric interaction where the Stokes vector s of the incident electromagnetic
wave is transformed into another Stokes vector s

′
= Ms, M being the Mueller matrix,
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can be considered as an ensemble average of basic interactions that can be represented by
respective Jones matrices. As a result, M can be expressed as [1,3,4].

M = L 〈T⊗ T∗〉L †, L ≡ 1√
2


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

, (1)

where superscripts * and † stand for complex conjugate and conjugate transpose, re-
spectively; the brackets indicate ensemble average; and the 2 × 2 complex matrix T is
the Jones generator [4] of M. In general, T fluctuates as a consequence of the generally
partial spatial, spectral or temporal coherence of the light-matter interaction phenomenon
taking place during the polarimetric measurement process [5,6]. That is, even though the
interaction of a photon with a single atom or molecule is necessarily nondepolarizing and
therefore can be represented through the Jones formalism alone, the overall macroscopic
interaction during measurement (typically involving a measurement time much larger
than the polarization time [7,8] of the emerging polarization state) results in the averaging
expressed by Equation (1).

The statistical nature of M becomes evident if its elements mij (i, j = 0, 1, 2, 3) are
expressed as linear combinations of the second-order moments of the fluctuating elements
tkl (k, l = 1, 2) of T through the expansion of Equation (1). The second-order moments of
the elements tkl can be rearranged into a Hermitian matrix H that has the mathematical
structure of a covariance matrix [9–11], i.e., it is positive semidefinite.

The expressions that relate the elements mij of M and its associated covariance matrix
H are

H = 1
4

3
∑

k,l=0
mkl

(
σk ⊗σ∗l

)
, mkl = tr

[(
σk ⊗σ∗l

)
H
]
,

σ0 =

(
1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
,

(2)

where ⊗ stands for the Kronecker product and σi (i = 0, 1, 2, 3) constitutes a set composed
of the 2 × 2 identity matrix and the Pauli matrices.

Any Mueller matrix M can be written as [12–14]

M ≡ m00M̂, M̂ ≡
(

1 DT

P m

)
, (3)

where m00 is the mean intensity coefficient (MIC), i.e., the transmittance or reflectance for
incident unpolarized light; D and P are the diattenuation and polarizance vectors, with
absolute values D (diattenuation) and P (polarizance); and m is a 3×3 submatrix.

The positive semidefiniteness of the covariance matrix H associated with (the generally
depolarizing) M leads to a general characterization of Mueller matrices through the non-
negativity property of the four eigenvalues (λ0, λ1, λ2, λ3) of H (expressed through four co-
variance conditions) or through other formulations equivalent to it [9–11,15–22]. In addition,
the fact that passive polarimetric interactions do not amplify the intensity of incident light
leads to the additional passivity condition m00(1 + Q) ≤ 1 where Q ≡ max (D, P) [11,23].
Thus, a given 4 × 4 real matrix is formally a Mueller matrix if and only if it satisfies the
four covariance conditions together with the passivity condition.

In analogy to the degree of polarization of a two-dimensional polarization state,
a complete quantitative characterization of the structure of polarimetric purity of the
interaction represented by M is provided by the indices of polarimetric purity (IPP) [24,25].

P1 = λ̂0 − λ̂1, P2 = λ̂0 + λ̂1 − 2λ̂2, P3 = λ̂0 + λ̂1 + λ̂2 − 3λ̂3,[
λ̂i = λi/trH = λi/m00, i = 0, 1, 2, 3

]
,

(4)



Photonics 2022, 9, 246 3 of 10

where the eigenvalues of H have been taken in decreasing order (λ0 ≥ λ1 ≥ λ2 ≥ λ3) so
that the IPP satisfy the property 0 ≤ P1 ≤ P2 ≤ P3 ≤ 1 [24].

Mueller matrices that do not decrease the degree of polarization of any totally polar-
ized incident electromagnetic wave are called pure (or nondepolarizing), and depolarizing
otherwise. An overall measure of the closeness of a given M to a pure Mueller ma-
trix is provided by the depolarization index [26] (or the degree of polarimetric purity)

P∆ =
√

2P2
1 + 2P2

2 /3 + P2
3 /3/

√
3 [24]. Pure Mueller matrices have the genuine property

P∆ = 1, while P∆ < 1 for depolarizing Mueller matrices. Wherever appropriate, pure
Mueller matrices are denoted generically as MJ in order to distinguish them from generally
depolarizing Mueller matrices.

Given a Mueller matrix M, there are many ways to express it as the product of simpler
Mueller matrices, M = Mn . . . M2M1, so that the interaction represented by M is polarimet-
rically indistinguishable from that of the sequential action of the serial components M1, M2

. . . Mn.In particular, serial decompositions of the form M
′
= MR2M MR1, where MR1 and

MR2 are retarder Mueller matrices, are called dual retarder transformations [27]. They have
the peculiarity of preserving the determinant (i.e., detM

′
= detM ), as well other physically

meaningful algebraic quantities of M such as the MIC m00, the diattenuation D ≡ |D|, the
polarizance P ≡ |P|, the degree of spherical purity PS ≡ ‖m‖F/

√
3 (where ‖m‖F stands

for the Frobenius norm of m) [28,29], the indices of polarimetric purity P1, P2, P3, and the
degree of polarimetric purity P∆.

Another kind of serial decomposition of M that is useful for the physical interpretation
of detM is the so-called normal form decomposition of M [13,30–32].

M = MJ2M∆MJ1, (5)

where MJ1 and MJ2 are pure Mueller matrices, while the canonical depolarizer M∆ adopts
one of the following two type-I and type-II canonical forms M∆d and M∆nd depending
on whether the auxiliary matrix N ≡ G MTG M, with G = diag (1,−1,−1,−1), is
diagonalizable or not [31,32].

M∆d = d0 diag
(

1, d̂1, d̂2, εd̂3

)
,

M∆nd = m00


1 −1/2 0 0

1/2 0 0 0
0 0 â2/2 0
0 0 0 â2/2

,

[
0 ≤ d̂3 ≤ d̂2 ≤ d̂1 ≤ 1, ε ≡ detM/|detM|, 0 ≤ â2 ≤ 1

]
.

(6)

Decomposition (5) can be interpreted as stating the polarimetric equivalence of the
action of M and that of the consecutive actions of a nondepolarizing system MJ1, a canonical
depolarizer M∆ and another nondepolarizing system MJ2.

As shown in [33], the Poincaré sphere mapping by M̂∆d = M∆d/d0 and M̂∆nd =
M∆nd/m00 determines the respective canonical ellipsoids E∆d and E∆nd with respective
semiaxes (d̂1, d̂2, d̂3) and (1/3, â2/

√
3, â2/

√
3) Note that, in the case of nonsingular pure

Mueller matrices, which necessarily are of type-I, E∆d is the entire unit sphere itself and an
alternative geometric representation has been introduced by Tudor and Manea [34].

To complete this summary of concepts, which are necessary to interpret the de-
terminant of a Mueller matrix, let us recall that any depolarizing Mueller matrix M
can be expressed through its arbitrary decomposition as a linear combination of pure
parallel components

M =
r
∑

i=1
ki
(
m00i M̂Ji

)
,
(
M̂Ji

)
ts = tr

[
(σt ⊗σ∗s )

(
ŵi ⊗ ŵ†

i

)]
,

ki =
1

m00i(ŵ†
i H−ŵi)

, r = rankH,
(

r
∑

i=1
ki = 1

)
.

(7)
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where the subscripts t,s are those of the elements of the pure parallel components MJi,
ŵi (i = 1, . . . , r) is a set of r linearly independent unit vectors belonging to the image
subspace of the covariance matrix H associated with M, and H− denotes the pseudoinverse
of H defined as H− = UD−U†. U is the unitary matrix that diagonalizes H, whereas
D−D− is the diagonal matrix whose r first diagonal elements are 1/λ 1, 1/λ 2, . . . , 1/λ r
and whose last 4− r elements are zero [35,36]. Consequently, M admits infinite possible
parallel decompositions in terms of sets of r pure components, including the well-known
Cloude (or spectral) decomposition [9], for which ŵi is precisely the eigenvector of H.

The physical interpretation of parallel decompositions is that of the sample represent-
ing M being decomposed into a number r of elements, spatially distributed over the area
illuminated by the probing light [1].

The above most general formulation of the arbitrary decomposition shows that the
minimum number of pure parallel components of M is given by the integer parameter
r = rankH [35,36].

3. Physical Interpretation of the Determinant of a Mueller Matrix

From the normal form (5) of a given Mueller matrix, it follows that

detM=m4
00detM̂J2detM̂∆detM̂J1 = m4

00

(
1− D2

1

)2(
1− D2

2

)2
detM̂∆, (8)

where m00 is the MIC of M, and D1 and D2 are the respective polarizance-diattenuations of
the pure components MJ1 and MJ2 (recall that P = D for a pure component).

Therefore, apart from the dependence on D1 and D2, the value of detM is gov-
erned by that of detM̂∆ which takes the following expressions for the type-I and type-II
canonical depolarizers

detM̂∆d = ε d̂1d̂2d̂3

(
0 ≤ d̂3 ≤ d̂2 ≤ d̂1

)
, detM̂∆nd = â2

2/16 (0 ≤ â2 ≤ 1). (9)

These expressions show that detM̂, whose sign coincides with that of detM̂∆(see
Equation (8)), is always nonnegative for type-II matrices and can be either positive, negative
or zero for type-I Mueller matrices.

Leaving aside its sign, detM̂∆ provides a scaled measure of the volume, 4πd̂1d̂2d̂3 /3,
or 4πâ2

2 /27, of the canonical ellipsoid associated with the corresponding normalized
canonical depolarizer M̂∆. Accordingly, we will write detM̂∆ ≡ V (with detM̂∆d ≡ Vd and
detM̂∆nd ≡ Vnd) and will call V the volume coefficient of M̂∆.

To go deeper into the exploration of the achievable values of detM̂∆ in terms of the
three IPP (P1, P2, P3), it is worth considering the canonical purity space Σ∆ defined as the
tetrahedron determining the feasible region for the IPP [24,25] and shown in Figure 1,
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Figure 1. The canonical purity space Σ∆ associated with M∆ consists of the tetrahedron determining
the feasible region for the indices of polarimetric purity (IPP) of M∆ [24,25]. Points O, A, B and C
correspond respectively to (O) equiprobable mixture of four parallel components (perfect depolarizer);
(A) equiprobable mixture of three spectral components; (B) equiprobable mixture of two spectral
components, and (C) single-component system (pure Mueller matrices).
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Recall that the IPP of a Mueller matrix M provides complete quantitative information
on the structure of polarimetric purity of M and, therefore, determines the minimum
number r of parallel components of M (with r = rankH = rankH∆, H∆ being the co-
variance matrix associated with M∆). In particular, r = 1⇔ P1 = P2 = P3 = 1 (point C);
r = 2⇔ 1 = P2 > P1 (segment BC, vertex C excluded); r = 3⇔ 1 = P3 > P2 (face ABC,
segment BC excluded); and r = 4⇔ 1 > P3 (solid tetrahedron OABC, face ABC excluded).
Comprehensive analyses of the different regions of Σ∆ in terms of the minimum number r
of parallel components of M can be found in Refs. [1,24].

The specific features of V are next analyzed separately for type-I and type-II Mueller matrices.

3.1. Determinant of the Type-I Canonical Depolarizer

In the case of type-I Mueller matrices, it turns out that there is a peculiar relation
between Vd and the polarimetric purity of M∆d. In fact, the value Vd = 1 (i.e., the canonical
ellipsoid coincides with the entire Poincaré sphere) is characteristic of pure Mueller matrices.
Conversely, the minimal value Vd = 0 is achieved for different physical situations associated
with the different possible types of type-I singular depolarizers described in Ref. [37]. These
are associated with degenerate canonical ellipsoids with one, two or three zero semiaxes,
with the latter being the only one corresponding to the particular case of the perfect
depolarizer (P∆ = 0), whose Mueller matrix has the form M∆d = d0diag (1, 0, 0, 0).

The expressions for the diagonal elements of M̂∆d in terms of its associated IPP can be
found in [38].

d̂1 = (2P2 + P3)/3, d̂2 = P1 + (P3 − P2)/3, εd̂3 = P1 − (P3 − P2)/3. (10)

Therefore, the sign of detM̂∆d, determined by ε, is positive if and only if the inequality
P3 < 3P1 + P2 holds. This inequality may be satisfied by Mueller matrices with r = 1, 2, 3, 4.
In particular, all pure Mueller matrices (r = 1) correspond to the unique case where M̂∆d is
simply the identity matrix and, consequently, they have nonnegative determinants.

By considering the intersection of the plane P3 = 3P1 + P2 with the purity space, the
feasible region for type-I canonical depolarizers with positive determinant (P3 < 3P1 + P2)
is determined by the irregular tetrahedron OBCD (face OBD excluded), hereafter denoted as
Σ∆d+, see Figure 2a. Regarding the case detM̂∆d = 0, the combination of Equations (9) and
(10) shows that it corresponds to P3 = 3P1 + P2 (i.e., d̂3 = 0; recall that 0 ≤ d̂3 ≤ d̂2 ≤ d̂1)
whose feasible region, Σ∆d0, in the purity space is given by the triangular area OBD (edges
included). Finally, detM̂∆d is negative if and only if P3 > 3P1 + P2, which corresponds to
the irregular tetrahedron OABD (face OBD excluded), hereafter called Σ∆d−, see Figure 2b.

Photonics 2022, 9, x FOR PEER REVIEW 6 of 10 
 

 

as dΔ +Σ , see Figure 2a. Regarding the case ˆdet 0dΔ =M , the combination of Equations (9) 
and (10) shows that it corresponds to 3 1 23P P P= +  (i.e., 3

ˆ 0d = ; recall that 3 2 1
ˆ ˆ ˆ0 d d d≤ ≤ ≤

) whose feasible region, 0dΔΣ , in the purity space is given by the triangular area OBD 
(edges included). Finally, ˆdet dΔM  is negative if and only if 3 1 23P P P> + , which corre-
sponds to the irregular tetrahedron OABD (face OBD excluded), hereafter called dΔ −Σ , 
see Figure 2b. 

  

(a) (b) 

Figure 2. (a) The purity space dΔ +Σ  for canonical depolarizers with positive determinant is given 
by the tetrahedron OBDC (face OBD excluded). (b) The purity space dΔ −Σ  for type-I canonical de-
polarizers with a negative determinant is given by the tetrahedron OABD (face OBD excluded). The 
purity region 0dΔΣ  for type-I canonical depolarizers with a zero determinant is determined by the 
plane triangular section OBD of the canonical purity space ΔΣ , shown in Figure 1 by the plane 

3 1 23P P P= + . 

Since the IPP determine the value of r, negative values of ˆdet dΔM  correspond to 
3r =  or 4r = , that is, when det 0<M  the arbitrary decomposition of M [36] has three 

or four pure components. Conversely, Mueller matrices with 1r =  or 2r =  (i.e., having 
one or two arbitrary components) feature det 0≥M . As a consequence, the tetrahedron 

dΔ −Σ  (face OBD excluded) of the type-I canonical depolarizers corresponds uniquely to 
Mueller matrices with 3r =  or 4r =  whose determinant is negative. 

From Equations (9) and (10), ˆdet dΔM  can be expressed as follows in terms of the IPP 
of dΔM  

( ) ( )2 2 3
1 3 2 2 3 2 3

1ˆdet 9 2 3 2
27d P P P P P P PΔ  = + + − − M . (11) 

The nested structure of the IPP 1 2 3(0 1)P P P≤ ≤ ≤ ≤  implies that the two first addends 
of the right member are nonnegative, while the last one 3

3( 27)P−  is intrinsically nega-
tive. Therefore, 

3
3

ˆ27 det 1,dP Δ− ≤ ≤M  (12) 

so that the minimum achievable value, ˆdet 1 27dΔ = −M , is necessarily realized for the 

combined values 1 2 0P P= =  and 3 1P =  (point A of dΔΣ ). The maximum ˆdet 1dΔ =M  is 
genuine of pure Mueller matrices ( 1 2 3 1P P P= = = , 1r = , point C of dΔΣ ). 

Since 3 1 4P r=  <  and ˆdet 0 3,4d rΔ <  =M , we conclude that the above indi-
cated minimum value can only be achieved when 3r = , while ˆ1 27 det 1dΔ− < <M  for 
Mueller matrices with 4r = . 

Figure 2. (a) The purity space Σ∆d+ for canonical depolarizers with positive determinant is given
by the tetrahedron OBDC (face OBD excluded). (b) The purity space Σ∆d− for type-I canonical
depolarizers with a negative determinant is given by the tetrahedron OABD (face OBD excluded).
The purity region Σ∆d0 for type-I canonical depolarizers with a zero determinant is determined by
the plane triangular section OBD of the canonical purity space Σ∆, shown in Figure 1 by the plane
P3 = 3P1 + P2.
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Since the IPP determine the value of r, negative values of detM̂∆d correspond to r = 3
or r = 4, that is, when detM < 0 the arbitrary decomposition of M [36] has three or four
pure components. Conversely, Mueller matrices with r = 1 or r = 2 (i.e., having one or
two arbitrary components) feature detM ≥ 0. As a consequence, the tetrahedron Σ∆d−
(face OBD excluded) of the type-I canonical depolarizers corresponds uniquely to Mueller
matrices with r = 3 or r = 4 whose determinant is negative.

From Equations (9) and (10), detM̂∆d can be expressed as follows in terms of the IPP
of M∆d

detM̂∆d =
1

27

[
9P2

1 (P3 + 2P2) + P2
2 (3P3 − 2P2)− P3

3

]
. (11)

The nested structure of the IPP (0 ≤ P1 ≤ P2 ≤ P3 ≤ 1) implies that the two first
addends of the right member are nonnegative, while the last one (−P3

3 /27) is intrinsically
negative. Therefore,

− P3
3 /27 ≤ detM̂∆d ≤ 1 , (12)

so that the minimum achievable value, detM̂∆d = −1/27, is necessarily realized for the
combined values P1 = P2 = 0 and P3 = 1 (point A of Σ∆d). The maximum detM̂∆d = 1 is
genuine of pure Mueller matrices (P1 = P2 = P3 = 1,r = 1, point C of Σ∆d).

Since P3 = 1⇒ r < 4 and detM̂∆d < 0⇒ r = 3, 4 , we conclude that the above indi-
cated minimum value can only be achieved when r = 3, while −1/27 < detM̂∆d < 1 for
Mueller matrices with r = 4.

It should be noted that the values of m00, D1 and D2 are independent of detM̂∆d [31]
and, consequently, they affect neither the sign of detM nor the value of r.

3.2. Determinant of the Type-II Canonical Depolarizer

Both the volume coefficient Vnd = â2
2/16 and the degree of polarimetric purity

P∆nd =

√
1 + â2

2
6

=

√
1 + 16 Vnd

6
, (13)

of the type-II canonical depolarizer M∆nd are uniquely determined by the parameter â2,
see Equation (6). Consequently, Vnd and P∆nd reach their respective maximum values
Vnd = 1/16 and P∆nd = 1/

√
3 for â2 = 1, which in turn corresponds to two-component

type-II matrices (r = 2). Values Vnd < 1/16 and P∆nd < 1/
√

3 below the maximum ones
correspond to three-component type-II matrices (r = 3). The lower Vnd, the lower the
degree of polarimetric purity, down to Vnd = 0 and P∆nd = 1/

√
6, with the latter corre-

sponding to the case where the canonical ellipsoid E∆nd degenerates into a segment (type-II
singular depolarizer, see [37]). Note that P∆nd has the non-zero lower limit P∆nd min = 1/

√
6

because of the contribution to polarimetric purity of the residual polarizance and diattenu-
ation exhibited by M∆nd.

Let us now recall that P3(M̂∆nd) = 1 and P1(M̂∆nd) < 1 (which express the fact that
r = 1 and r = 4 are not achievable for M̂∆nd). Consequently, since the right- or left- product
of a Mueller matrix by a diattenuator preserves the value of r, type-II Mueller matrices
contain two or three arbitrary components, while pure systems (r = 1) and systems with
r = 4 are necessarily of type-I.

The expressions for the IPP of M̂∆nd in terms of the single parameter â2 are

P1 =
1− â2

4
, P2 =

1 + 3â2

4
= 1− 3P1, (14)

As shown in Figure 3, the feasible region for type-II canonical depolarizers in the
purity space is determined by the straight segment BD, given by the intersection of planes
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P3 = 1 and 3P1 + P2 = 1 (with the restriction 0 ≤ P1 ≤ P2). Note in passing that
Equations (9) and (14) lead to the following expressions for detM̂∆nd in terms of its IPP

detM̂∆nd = 1
16

[
1 + 16P1

(
P1 − 1

2

)]
=
(

1
9

)
1

16

[
1 + 16P2

(
P2 − 1

2

)]
,

(3P1 + P2 = 1, 0 ≤ P1 ≤ P2).
(15)
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They are consistent with the fact that, by its definition, the parameter â2 satisfies the
inequalities 0 ≤ â2 ≤ 1. Therefore,

0 ≤ detM̂∆nd ≤ 1/16. (16)

The minimum, detM̂∆nd = 0, corresponds to point D (P1 = P2 = 1/4, P3 = 1⇒ r = 3) .
The maximum, detM̂∆nd = 1/16, corresponds to point B (P1 = 0, P2 = 1, P3 = 1⇒ r = 2) .

It is remarkable that, while the segment BD of the purity space Σ∆d corresponds to
type-I canonical depolarizers with a zero determinant, only point D is associated with
type-II canonical depolarizers with a zero determinant.

As with type-I matrices, the values of m00, D1 and D2 are independent of detM̂∆nd [1,31],
and, therefore, they affect neither the sign of detM nor the value of r.

4. Discussion

Equation (8) shows that the determinant of a Mueller matrix M can be interpreted in
terms of four physical quantities that are invariant under dual retarder transformations,
namely, the MIC m00; the diattenuations, D1 and D2, of the pure serial components MJ1 and
MJ2 of the normal form M = MJ1 M∆ MJ2; and the volume coefficient V of the canonical
depolarizer M∆ of M. The smaller the values of m00 and V, the smaller |detM|, while the
smaller D1 and D2, the larger |detM| is.

One-component systems (r = 1) correspond to pure Mueller matrices and are rep-
resented by point C of the purity space Σ, see Figure 1. The determinant of any pure
Mueller matrix MJ can be expressed as detMJ = m4

00 (1− D2)
2, where D is the polarizance-

diattenuation of MJ and takes values in the interval 0 ≤ detMJ ≤ 1 [1]. Regarding the
determinant of the normalized version M̂J of MJ , it is exclusively determined by D, so
that detM̂J = 1 corresponds to retarders, regardless of whether the retardation effect is
accompanied by an isotropic attenuation (m00 < 1). Thus, detMJ = 0 corresponds to
perfect polarizers (D = 1), while detMJ = 1 is exclusively satisfied by transparent retarders
(D = 0, m00 = 1). Note that the property detM = 1 implies that the canonical ellipsoid
coincides with the entire surface of the Poincaré sphere (with homogeneous topological
distribution of the transformed states) and is genuine of retarders (either transparent or
affected by isotropic attenuation), so that there are no enpolarizing or depolarizing me-
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dia satisfying detM = 1 (the term enpolarizing refers to media whose diattenuation or
polarizance is nonzero).

Two-component systems (i.e., r = 2, described by segment BC of Σ∆d, vertex C ex-
cluded, see Figure 1) can correspond to either type-I or type-II Mueller matrices. In the first
case, 0 ≤ detM̂∆d < 1 and, therefore, 0 ≤ detM < 1, as follows from Equations (8) and (12)
(because 0 < m00 ≤ 1, 0 ≤ D1 ≤ 1 and 0 ≤ D2 ≤ 1 [37]). In the second case of type-II
matrices (for which only the point B of the segment BC is compatible with r = 2, see
Figure 3), detM̂∆nd = 1/16 and the volume of the type-II canonical ellipsoid takes its maxi-
mum achievable value 4π /27. Therefore, 0 < detM ≤ 1/16, as follows from Equations
(8) and (16). Note that, since, necessarily, in type-II Mueller matrices D1 < 1 and D1 < 1,
detM > 0.

In the case of type-I three-component (r = 3) Mueller matrices −1/27 ≤ detM̂∆d < 1
and, therefore, −1/27 ≤ detM < 1. The minimum (corresponding to point A of Σ∆d,
see Figure 2) is achieved by depolarizing Mueller matrices of the form MR2M∆dr3MR1,
where MR1 and MR2 represent retarders and the canonical type-I depolarizer M∆dr3 =
diag (1, 1/3, 1/3,−1/3) is expressible as an equiprobable incoherent mixture of its first
three spectral components,

M∆dr3 =
1
3

diag(1, 1, 1, 1) +
1
3

diag(1,−1, 1,−1) +
1
3

diag(1, 1,−1,−1). (17)

The value detM = 1 is excluded for depolarizing Mueller matrices (with two, three or
four components) but plays the role of a limit to which detM can tend asymptotically.

Three-component type-II Mueller matrices feature 0 ≤ detM̂∆nd < 1/16 (occupying
the segment BD, vertex B excluded, see Figure 3) and, therefore, 0 ≤ detM < 1/16.

Finally, four-component systems (occupying the tetrahedron OABC, face ABC ex-
cluded) correspond exclusively to type-I matrices for which −1/27 < detM̂∆nd < 1 and,
therefore, −1/27 < detM < 1.

Regarding type-I and type-II singular Mueller matrices, a comprehensive analysis and
classification can be found in [37], while certain peculiar features of Mueller matrices with
negative determinants have been studied in [39,40].

The detailed analysis of the achievable values of detM depending on the value of r for
type-I and type-II Mueller matrices is summarized in Table 1.

Table 1. Classification of 2D states (Pd = 1).

r = 1 r = 2 r = 3 r = 4

(P1 = P2 = P3 = 1) (P3 = P2 = 1, P1 < 1) (P3 = 1, P2 < 1) (P2 < 1)

Type-I 0 ≤ detM ≤ 1 0 ≤ detM < 1 −1/27 ≤ detM < 1 −1/27 < detM < 1

Type-II Not achievable 0 < detM ≤ 1/16 0 ≤ detM < 1/16 Not achievable

5. Conclusions

We have analyzed the physical significance of the determinant of a Mueller matrix M
in terms of intrinsic fundamental properties of M. These are the mean intensity coefficient
m00, and the diattenuations D1 and D2 of the pure components of the normal form of
M, together with its volume coefficient defined as a scaled measure of the volume of the
canonical ellipsoid associated with M. The canonical depolarizer M∆ of M (either in its
type-I or type-II forms) is crucial for the interpretation of detM and allows for meaningful
geometric representations in the purity space determined by the indices of polarimetric
purity of M∆. We have established the lower and the upper limits of detM, as well as the
various achievable regions in the purity space, and have physically interpreted these in
terms of the number of pure parallel components of M.
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