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Abstract: Based on the dipole blockade effect and with the aid of the superatom (SA) model, we
propose a scheme to investigate the correlated evolution of two Rydberg sub-superatoms (SSAs),
formed by two spatially separated atomic Rydberg sub-ensembles but in the same blockade region.
Starting from the pure separable states, we investigate the in-phase or anti-phase correlated dynamics
and explore how two Rydberg SSAs entangle with each other mediated by a single Rydberg excitation.
Starting from the entangled states, we discuss the robustness of the system against decoherence
induced by the dephasing rate. Our results show that both the correlated evolution of two Rydberg
SSAs and their collective-state entanglement are usually sensitive to the number of each Rydberg SSA.
This allows us to coherently manipulate the Rydberg ensemble over long distances from the single-
quantum level to the mesoscopic level by changing the number of atoms. Furthermore, the method
for dividing an SA into two SSAs and obtaining their spin operators without any approximation can
be readily generalized to the case of many SSAs. It may have potential promising applications in
quantum information processing and provide an attractive platform to study the quantum-classical
correspondence, many-body physics and so on.

Keywords: superatom; dipole blockade; entanglement; correlated evolution

1. Introduction

Due to many exaggerated properties such as very strong interaction between atoms
and long lifetime, the neutral Rydberg atom is becoming an extremely attractive platform to
build quantum gates in quantum computation [1–8], to realize quantum simulations [9–13], to
observe plasma [14–17], etc. It is therefore said that theoretical and experimental investigations
with Rydberg atoms are ubiquitous in various aspects of the quantum optics and quantum
information. In fact, the basic principles of many applications stem mainly from the idea of
dipole blockade effect, in which the strong Rydberg interaction shifts the energy levels of
nearby atoms out of resonance when an atom is already in the Rydberg state. As a result,
simultaneous excitation of Rydberg ensembles driven by a resonant laser field is inhibited
within the so-called blockade region. This enables us to design quantum devices at the level
of individual quanta [18–38].

Distance-dependent interaction between Rydberg atoms allows great flexibility in
coherent optical control [39,40]. On the one hand, atoms are usually well-localized spatially
for precisely controlling the Rydberg interactions. For example, achieving in-phase (anti-
phase) dynamics of Rydberg excitations in a bipartite atomic system and entanglement of
Rydberg atomic pair in a quadripartite atomic system, where the atoms are neatly arranged
in space [41,42]. However on the other hand, without precisely controlling interactions,
the quantum information tasks can also be accomplished very well as long as the system
enters the rigid Rydberg blockade regime, for example by implementing a mesoscopic
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Rydberg gate with a single auxiliary atom and a superatom (SA) [43]. A so-called Rydberg
SA is an atomic ensemble that allows for only a single Rydberg excitation shared by
whole ensemble within a blockade region. Therefore, it can be used directly to explain the
collective phenomena. The level configuration of the Rydberg SA is usually complicated
than its elementary atoms except for some special cases, which mainly depends on the
energy level of the elementary atom and the laser fields. For example, a Rydberg SA consists
of an ensemble of two-level cold atoms in the same blockade region, and can be coherently
driven to form an effective two-level configuration by the laser field [44–46]. As a result, it
behaves like its elementary atoms, namely a typical absorbing medium. While driving an
ensemble of three-level ladder Rydberg atoms into an EIT configure by the coupling field
and the probe field, the SA of the same level configuration can be used to simulate this
system well only when the probe fields are so weak that only one excitation is populated in
the intermediate excited state [47].

Similar to the mean-field method, the Rydberg SA model is becoming a paradigmatic
example for studying many-body physics as well, especially for large systems, mainly be-
cause the problem of exponentially increasing system size with the particle number can be
circumvented to a certain extent. Such a valuable resource has been widely used to explore
the novel features caused by the interatomic interaction in the field of quantum optics such
as implementation of many-body Rabi oscillations [48], generation or synthesis of collective
states [49–51], exploration of Rydberg electromagnetically induced transparency (EIT) [47,52],
realization of Rydberg electromagnetically induced grating (EIG) [53,54] and so on. A new
physical interface between the collective atomic excitation and optomechanics is initially
established by coupling a cavity with a moving membrane to a Rydberg SA [44,55–57], which
offers a degree of freedom involving single-photon behavior. Not only is Rydberg SA a
powerful tool for fundamental studies of the quantum many-body dynamics, but also plays
an important role in application areas. Some work with Rydberg SA has also focused on
realizing quantum computation and implementing quantum information tasks [45,58,59] by
taking advantage of other merits of Rydberg SA, for example easy manipulation, robustness
against the decoherence and excellent scalability. Most interestingly, recent study shows that
an SA usually realized via a Rydberg blockade can be regarded as a topologically protected
quantum memory. In the regime, the quantum coherence of the subradiant edge state of the
SA is robust to random noises. This paves the way to the quantum computation and quantum
optics based on topological edge states [46].

In this work, we investigate the correlated evolution of the collective Rydberg excita-
tions and the quantum entanglement between two Rydberg sub-superatoms (SSAs) that
formed by two atomic sub-ensembles trapped in two spatially distinct optical dipole traps
but in the same blockade region. When the condition of all atoms in the same blockade
region is guaranteed, we first reduce the total Hamiltonian of m atoms to a very simple one
where only one SA is driven into a two-level configuration by an enhanced Rabi frequency√

mΩ with Ω as the Rabi frequency. Second, to independently manipulate two SSAs, we
directly rewrite the effective one-body Hamiltonian according to the collective-state repre-
sentation and obtain a two-body Hamiltonian. Finally, by solving numerically the two-body
Lindblad master equation with varying the single-photon detuning and the numbers of the
atoms of two Rydberg SSAs, the correlated evolutions of two SSAs are investigated when
the system is prepared in the non-entangled states. The type of the maximal entangled
state, as a byproduct of evolution, are determined with the help of the correlated dynamics
analysis. We emphasize that dynamical control of in-phase and anti-phase behaviors can
be achieved by changing flexibly the number of atoms and the single-photon detuning,
from the single-atom level to the mesoscopic level. In addition, we discuss the robustness
of the system against the dephasing rate arising from the long-lived Rydberg state and
find that the lifetime of different entangled states are all dependent on the number of each
SSA. Our results pave the way for coherent manipulation of the strongly coupled systems
over long distances, generating mesoscopic entanglement, exploring the classical–quantum
correspondence, etc.
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2. Model and Equations

As is well known, two Rydberg atoms will undergo strong interaction if they are
excited to the high-lying Rydberg state simultaneously. Then the Hamiltonian of an
ensemble of m two-level Rydberg atoms driven by a single-mode laser field with frequency
ω reads (hereafter we take h̄ = 1)

Ĥ =
m

∑
j=1

(
∆jn̂j + Ωjσ̂

+
j + Ωjσ̂

−
j

)
+

m

∑
i<j

Vijn̂in̂j, (1)

where ∆j is the single-photon detuning of the driving laser from the Rydberg state |rj〉.
n̂j = |rj〉〈rj| denotes the projection operator to the Rydberg state of an atom at position j
and σ̂+

j = |rj〉〈gj| (σ̂−j = |gj〉〈rj|) describes jth atom raising (lowering) operator with the
ground state |gj〉. The terms Ωj and Vij account for Rabi frequency of the driving laser field
and the vdW coupling strength between two atoms, respectively. Without loss of generality,
we focus here on the case of homogeneous coherent coupling, i.e., ∆j = ∆ and Ωj = Ω.

Driven by a resonant laser field, an ensemble in the same dipole blockade region con-
tains at most one Rydberg excitation due to ∑m

i<j Vij → ∞. We call this phenomenon the
blockade effect. In this case, an ensemble of m two-level Rydberg atoms within the block-
ade volume can be safely regarded as an SA with two collective states |G〉 = |g〉⊗m and
|R〉 = ∑m

j |g1, . . . , rj, . . . , gm〉/
√

m. Accordingly, the system can be described by an effective
model where the two-level SA is driven by the enhanced laser filled with a Rabi frequency√

mΩ. As a result, the quantum dynamics of this system are governed by the effective Hamil-
tonian

Ĥe = −∆N̂ +
√

mΩ
(
Ŝ+ + Ŝ−

)
, (2)

where N̂ = |R〉〈R| and Ŝ+ = |R〉〈G| (Ŝ− = |G〉〈R|) are the collective projection operator
and collective raising (lowering) operator in the superatomic description, respectively.

As shown in Figure 1a, ml atoms and mr = m− ml atoms are trapped in two spa-
tially separated optical dipole traps but keep in the same blockade region. The two
sub-ensembles of atoms in respective traps can be regarded as two SSAs. The size of
SSA is only determined by the number of atoms in corresponding traps, i.e., the big-
ger (smaller) SSA we label here refers to the one contains more (less) atoms regard-
less of the atomic distribution. Each SSA has two collective states |Gµ〉 = |G〉⊗mµ and
|Rµ〉 = ∑

mµ

j |g1, . . . , rj, . . . , gmµ〉/
√mµ (µ = l, r) (see Figure 1c). According to the definition

of the collective states, one can easily establish the relation among them: |G〉 = |Gl〉|Gr〉
and |R〉 =

(√
ml |Rl〉|Gr〉+

√
mr|Gl〉|Rr〉

)
/
√

m. Accordingly, the effective Hamiltonian (2)
changes into a two-body Hamiltonian

Ĥe = −
∆
m
(ml n̂l + mrn̂r)

+ Ω
[√

ml σ̂
+
l (1− n̂r) +

√
mr(1− n̂l)σ̂

+
r + h.c.

]
+

∆
m
(ml n̂l n̂r + mrn̂l n̂r)−

√
mlmr∆

m
(
σ̂+

l σ̂−r + σ̂−l σ̂+
r
)
. (3)

Note that here we have already extracted the collective sub-operators of the left and
the right SSAs from the global collective operators of the original SA, i.e., the projection
operator n̂µ = |Rµ〉〈Rµ| and the raising operator σ̂+

µ = |Rµ〉〈Gµ| (µ = l, r). In Equation (3),
the first two lines denote a not free Hamiltonian for two SSAs because excitation of one
Rydberg SSA depends on the other and they are driven by the laser field with different Rabi
frequencies

√
ml(1− 〈n̂r〉)Ω and

√
mr(1− 〈n̂l〉)Ω, respectively. Here, 〈n̂µ〉 is the mean

value of the operator n̂µ under an arbitrary state. The last line represents a cross blockade
and exchange interaction Hamiltonians, respectively. They indicate one SSA excited to its
collective Rydberg state blockades the other Rydberg excitation [60,61]. Essentially, the
self-blockade interaction between Rydberg atoms in the same blockaded region (see the
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final term in Equation (1) has already translated into a cross blockade and an exchange
interaction between two SSAs. Undoubtedly, the two SSAs are strongly correlated with
each other.

Figure 1. (a) The big (Rb) and the small (r) of the concentric circles denote the borders of the blockade
region and the optical dipole trap, respectively. d denotes the distance between two optical dipole
traps and d > r. The overlap (shading region) of two big circles represents the blockade region for
all atoms randomly distributed in two optical dipole traps by setting geometrical parameters to the
appropriate values. (b) Level structure for a Rydberg atom. Two atoms with simultaneous Rydberg
excitations interact via van der Waals (vdW) potential. (c) Level structures for a SA and its two SSAs:
due to the blockade effect, a big SA containing m atoms can be divided into two little ones, i.e., the
left SSA and the right one, representing the sub-ensemble of ml atoms trapped in the left trap and the
sub-ensemble of mr atoms trapped in the right one, respectively.

The dynamical evolution of our system is governed by the two-body Lindblad master
equation for density operator ρ

ðtρ = −i[Ĥe, ρ] + L(ρ). (4)

Here, L(ρ) = LρL† − 1
2 (ρL†L + L†Lρ) describes dissipation processes arising from

Rydberg decay rates Γ with L =
√

Γ
(
σ̂−l ⊗ I + I ⊗ σ̂−r

)
.

The concept of inphase (antiphase), as a basic term in physics, means that two subsys-
tems in composite systems have identical (opposite) dynamic phases. They play the key
roles in modern control theory, especially in the study of synchronization. The first anti-
phase synchronization can be traced back to the 17th century, Christian Huygens observed
a couple of pendulum clocks mounted on the same wooden bar which oscillate in the
opposite direction with the same frequency [62]. About two decades ago, the in-phase and
anti-phase phenomena of synchronization were already ubiquitous in all areas of natural
sciences [63]. Even in the fields of the social sciences, one could find them as well [64]. Up
to now, they have led to a wealth of studies in diverse physical platforms, from classical
physics [65] to the quantum regime [66–71]. There are two major approaches to quantify
the in-phase (anti-phase) evolution between two SSAs: the first is directly estimating the
absolute value of the difference of Rydberg excitation probabilities for two subsystems
containing exactly the same number of atoms [41] and the second is the Pearson correla-
tion coefficient [72–75], which is usually adopted as a figure of merit to characterize the
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phase-matching degree when two subsystems evolve. In our model, for two local Rydberg
excitation probabilities Pl(t) and Pr(t), the Pearson correlation coefficient reads

Cp =

∫ t
0 [Pl(t′)− Pl ][Pr(t′)− Pr]dt′√∫ t

0 [Pl(t′)− Pl ]2dt′
√∫ t

0 [Pr(t′)− Pr]2dt′
, (5)

where Pµ =
∫ t

0 Pµ(t′)dt′/t (µ = l, r) denotes the time-averaged value of Rydberg excitation
probability over the time range from zero to t. The prefect in-phase and anti-phase dynamics
are exactly attained at Cp = 1 and Cp = −1, respectively.

Up to now, a universal entanglement measurement for any quantum system, espe-
cially for the high-dimensional systems and the multi-partite systems, has not yet found.
However, for two-qubit systems, concurrence is an effective tool to characterize entan-
glement. As we mentioned above, our system can be translated into a two-qubit system
by the collective-state representation; namely, $ is a 4× 4 matrix in the two-superatom
basis {|Gl〉, |Rl〉, |Gr〉, |Rr〉}. Therefore, we can use the concurrence to characterize the
entanglement between the left SSA and the right one, it reads [76]

C($) = max{λ1 − λ2 − λ3 − λ4, 0}, (6)

where λi (i = 1, 2, 3, 4) are the square roots of eigenvalues in decreasing order of the non-
Hermitian matrix $

(
σy ⊗ σy

)
$∗
(
σy ⊗ σy

)
. σy = [ 0 −i ; i 0 ] is a Pauli matrix and $∗ is

the complex conjugate of $. The concurrence C varies within the interval [0, 1] such that
C = 0 denotes no entanglement, while C = 1 denotes the maximal entanglement.

3. Results and Discussions

In our work, we adopt the realistic parameters for numerical simulations on temporal
evolutions of the local Rydberg excitations, the Pearson correlation coefficient, and the
concurrence. Our theoretical model is illustrated in Figure 1b, where levels |g〉 and |r〉
are encoded in two states |5S1/2, F = 2, mF = 1〉 and |90S, J = 1/2, mJ = 1/2〉 of cold
87Rb, respectively, with the spontaneous decay rate Γ = 0.02 MHz, the Rabi frequency
Ω = 2.0 MHz, and the vdW coefficient C6 ' 2π × 1.67× 1013 s−1µm6 [41,77]. Then the
blockade radius can be obtained by Rb ' [C6/

√
Ω2 + 4∆2]1/6 [78], e.g., Rb = 11.3 µm with

∆ = 50 MHz. Furthermore, to guarantee that all atoms trapped in two optical dipole traps
are in the same blockade region, as shown in Figure 1a the geometric relation d + 2r ≤ Rb
must be satisfied. We here choose d = 5 µm and r = 3 µm to meet this condition. Other
specific parameters are indicated in respective figure captions if needed.

To demonstrate good reliability and confirm the validity of our approach, we plot in
Figure 2 the dynamical evolution of collective Rydberg excitation probabilities based on the
original Hamiltonian (1) and the effective two-body Hamiltonian (3) under two kinds of
initial states with different numbers of atoms. For simplicity, but without loss of generality,
we choose the Rydberg excitation probability Pl of left SSA as our observable to compare.
As a result, the calculations based on the two Hamiltonians agree remarkably well with
each other. Therefore, we can conclude that the original Hamiltonian can be replaced safely
by the effective Hamiltonian with our parameters. Note that, from now on, all numerical
simulations are performed based on the effective Hamiltonian and thereby the formidable
obstacle that the Hilbert space dimension grows exponentially with the number of particles
can be completely removed.
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Figure 2. Time evolutions of collective Rydberg excitation probabilities Pl are calculated based on the
original Hamiltonian (1) (thick curves) and the effective Hamiltonian (3) (thin curves), respectively.
The solid black curve, the dashed blue curve, the dashed–dotted red curve, and the dotted green
curve denote the different numbers of atoms (a): (ml , mr) = (1, 1), (2, 2), (3, 3) and (4, 4) when the
initial state is prepared in |Gl〉|Gr〉 and (b): (ml , mr) = (1, 2), (2, 3), (3, 4) and (4, 5) when the initial
state is prepared in |Rl〉|Gr〉. Other parameters are given at the beginning of Section 3.

3.1. Time Evolution Starting from the Separable Collective States

In this subsection, we explore how two SSAs entangle with each other mediated by a
shared Rydberg excitation in the short-time evolution (Ωt = 4). To this end, we investigate
in detail the local collective Rydberg excitations and their correlated behaviors, namely,
in-phase or anti-phase time evolution when two SSAs are initially prepared in two kinds of
separable (non-entangled) collective states (I): |Gl〉|Gr〉 and (II): |Rl〉|Gr〉.

In case (I), the whole ensemble becomes a nonlocal and homogeneous medium be-
cause all the ground-state atoms confined in two traps share equally at most one Rydberg
excitation and they can be excited synchronously towards the Rydberg state with equal
probabilities whenever the driving field works. Therefore, as shown in Figure 3a1–c1, the
bigger the SSA, the higher the collective Rydberg excitation probability. In spite of the
difference in size, two SSAs exhibit good in-phase oscillations as manifested by Cp ≡ 1 in
Figure 3a2–c2. As a result, the left SSA must be in the collective ground state |Gl〉 as the
right one is already in its collective Rydberg state |Rr〉, and vice versa. Then, the maximally
entangled symmetric state |ψ+〉=(|Gl〉|Rr〉+ |Rl〉|Gr〉)/

√
2, as a byproduct of correlated

evolution, can be obtained with two equal-sized SSAs (see Figure 3b2).
When the single-photon detuning is introduced, Figure 3d1 indicates that two Rydberg

SSAs always exhibit pretty good in-phase oscillations over the entire time evolution as
manifested by Cp ≡ 1, regardless of the laser field frequency and the size difference between
two SSAs. While Figure 3d2 shows that the maximal concurrence Cmax is symmetrical
about the single-photon detuing ∆ = 0 and the number of the left SSA ml = m/2 (m is even
here) and reaches its peak value at (∆, ml)=(0, m/2). The reason is that both single-photon
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detuning and the size difference cannot change the nonlocality of the ensemble but can
change the collective Rydberg excitation probabilities via weakening the effective Rabi
frequency.

Figure 3. Calculated dynamics for an initial state of |Gl〉|Gr〉. (Left): time evolutions of collective
Rydberg excitation probabilities Pl (solid black curve) and Pr (dashed red curve); (right): of the
concurrence C (solid black curve), the Pearson correlation coefficient Cp (dotted blue curve), and the
fidelity F+(t) = |〈ψ(t)|ψ+〉|2 (dashed red curve) with |ψ+〉= 1√

2
(|Rl〉|Gr〉+ |Gl〉|Rr〉) under three sets

of parameters (a1,a2): (ml , mr, ∆) = (1, 15, 0); (b1,b2): (ml , mr, ∆) = (8, 8, 0); (c1,c2): (ml , mr, ∆) = (15, 1, 0).
Pearson correlation coefficient Cp (d1) and the maximal concurrence Cmax (d2) as a function of the
single-photon detuning ∆ and the number of atoms ml in the left subsuperatom for the evolution
time Ωt = 4. The total atom number m = 16 remains unchanged. Other parameters are given at the
beginning of Section 3.

The correlated dynamics in case (II) are more complicated than the ones in case (I). The
main reason is that the time evolution of the system is mostly affected by the pre-existing
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collective Rydberg excitation of the left SSA. Naturally, the probability distribution of
Rydberg excitation is usually concentrated in the left trap and then the nonlocal homoge-
neousness is broken. In this unbalanced medium, ml atoms will usually occupy the Rydberg
state with higher probability while mr atoms share the lower Rydberg excitation probability.
Specifically, as shown in Figure 4a1–c1 Pr is always less than Pl because ml � mr while Pr
is negligible because ml � mr for long-time evolution, the equivalence between maximal
Pr and Pl can be found only when ml = mr.

Figure 4. Calculated dynamics for an initial state of |Rl〉|Gr〉. (Left): time evolutions of collec-
tive Rydberg excitation probabilities Pl (solid black curve) and Pr (dashed red curve); (right):
of the concurrence C (solid black curve), the Pearson correlation coefficient Cp (dotted blue
curve), and the fidelities (F−(t) is a dashed red curve in (a2,c2), while f+(t) and f−(t) are
dashed red and dotted green curves in (b2), respectively) under three sets of parameters (a1,a2):
(ml , mr, ∆) = (1, 15, 0); (b1,b2): (ml , mr, ∆) = (8, 8, 20 MHz); (c1,c2): (ml , mr, ∆) = (15, 1, 2 MHz). Here,
F−(t) = |〈ψ(t)|ψ−〉|2 with |ψ−〉 = 1√

2
(|Rl〉|Gr〉 − |Gl〉|Rr〉), while f±(t) = |〈ψ(t)|φ±〉|2 with

|φ±〉 = 1√
2
(|Rl〉|Gr〉 − e±iπ/2|Gl〉|Rr〉). Pearson correlation coefficient Cp (d1) and the maximal con-

currence Cmax (d2) as a function of the single-photon detuning ∆ and the number of atoms ml in the
left subsuperatom for the evolution time Ωt = 4. The total atom number m = 16 remains unchanged.
Other parameters are given at the beginning of Section 3.
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When the initial state is |Rl〉|Gr〉, the correlated evolution of two SSAs is essentially
anti-phase because the left SSA must be deexcited and then the right one is excited whenever
the driving field works, they repeatedly exchange at most one Rydberg excitation. However,
the correlated dynamics is not uniform throughout the course of time evolution. Specifically,
in the first two cases (see Figure 4a1,b1), during the entire time evolution two SSAs exhibit
a pretty anti-phase oscillation as manifested by Cp(t) ≡ −1 in Figure 4a2,b2. Meanwhile,
in the last case, two SSAs exhibit an approximate anti-phase oscillation before Ωt = 0.3
and after that they are nearly uncorrelated as manifested Cp(t): −1 → 0 in Figure 4c1.
This transition again indicates that the global nonlocality is mainly dominated not by |Gr〉
(Pr vanishes here) but by |Rl〉. As a result, in the first two cases the maximally entangled
asymmetric state |ψ−〉 = (|Rl〉|Gr〉 − |Gl〉|Rr〉)/

√
2 and the maximally entangled states

|φ±〉 = (|Rl〉|Gr〉 − e±iπ/2|Gl〉|Rr〉)/
√

2 can be obtained, respectively (as indicated with
two arrows in Figure 4b2). Note that here ±iπ/2 arises from the phase accumulated in the
collective Rabi oscillation between Gl (Gr) and Rl (Rr). While in the third case, an effective
entangled state can not be obtained due to the gradually vanishing correlation between
two SSAs, especially for the long-time evolution.

From Figure 4d1 we can find that Cp changes gradually from −1 to 0 with increasing
ml as ∆ = 0. This demonstrates once again that the correlated dynamics between two SSAs
mentioned above are sensitive to the number of atoms of each SSA and the single-photon
detuning. Figure 4d2 shows that the maximal entangled states can be obtained except
for ∆ = 0. Cmax, including the ones in the cases of (ml , mr) = (1, 15) and (ml , mr) = (1, 15),
seems to be unchanged via exchanging ml and mr. Though the values of concurrence in
the two cases are both slightly less than the ones in other cases, the core physics behind
them is rather different. In the former case, the reason for imperfect entanglement is that
the initial state |Rl〉 = |r〉 is a completely separable state, which will partly degrade the
quantum correlation as the system evolves. While in the latter, the reason is that two SSAs
are uncorrelated and the then quantum entanglement will vanish quickly for a longer time,
e.g., Ωt = 20 (see also the tendency of relevant curves in Figure 4c2).

3.2. Time Evolution Starting from the Entangled Collective States

In this subsection, we further investigate the correlated dynamics of two SSAs and
the robustness of the entangled states against the decay rate when the initial states are
prepared in the entangled states |ψ±〉 = 1√

2
(|Gl〉|Rr〉 ± |Rl〉|Gr〉).

Essentially, the entangled symmetric state |ψ+〉 may serve as the result of the in-phase
evolution, namely, simultaneous excitation and deexcitation. When system starts from
|ψ+〉, the initial evolution is usually dominated by the in-phase feature. However, in this
time two SSAs can not be excited simultaneously towards the collective Rydberg state but
the collective ground state due to the blockade effect, namely, Pl + Pr ≤ 1. As shown in
Figure 5b1, Pl and Pr decrease simultaneously from Pl = Pr = 0.5 and keep pretty in-phase
oscillation as manifested by Cp = 1 during the entire time evolution as ml = mr. However,
as ml 6= mr their correlated evolution switches from the in-phase dynamics (Cp = 1) to the
partially anti-phase dynamics (Cp = −0.5) when crossing the critical time Ωt = 0.8 (see
Figure 5a1,c1). Obviously, their dynamical phase shift originates from the difference of
ml and mr, that will affect the respective effective Rabi frequencies two SSAs experienced
(see Equation (3)). Figure 5d1 offers much richer physics, e.g., the correlated dynamics can
change from a pretty in-phase dynamics (ml = mr) to an absolute anti-phase dynamics
(ml 6= mr) usually with certain single photon detuning.
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Figure 5. Calculated dynamics for the initial states of |ψ+〉 (left column) and |ψ−〉 (right column),
respectively. Time evolutions of collective Rydberg excitation probabilities Pl (solid black curve),
Pr (dashed red curve) and Pearson correlation (dotted blue curve) coefficient Cp under three sets
of parameters: (a1,a2) (ml , mr) = (1, 15); (b1,b2) (ml , mr) = (8, 8); (c1,c2) (ml , mr) = (15, 1); (d1,d2)
Pearson correlation coefficient Cp as a function of the single-photon detuning ∆ and the number
of atoms ml with total atom number m = 16 for the evolution time Ωt = 4 in the last row. Other
parameters are given at the beginning of Section 3.

Similarly to the case of |ψ+〉, Figure 5a2,c2 show that two SSAs naturally exhibit an
anti-phase oscillation because the system prepared is the entangled asymmetric state |ψ−〉
which is regarded as the result of the anti-phase evolution. Due to ml 6= mr, the Pearson
correlation coefficient sightly deviates from the ideal value Cp = −1. When ml = mr, Pl
and Pr remain unchanged as also manifested by Cp = 1 during the entire time evolution.
The reason for this kind of non-trivial behavior is that the system is initially prepared in its
dark state |ψ−〉 (zero eigenvalue state of the system Hamiltonian (3)), which is only affected
by the negligible decay rate γ from the Rydberg state as system evolves. Figure 5d2 shows
that all but one exhibit anti-phase correlated dynamics because there is only one dark state,
namely the case of ml = mr.
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We finally discuss the decoherence process induced by the dephasing rate from the
collective Rydberg state. To this end, we enlarge the evolution time to Ωt = 12 because
the dephasing rate is very small. As shown in Figure 6a1,a2, the concurrence C decreases
linearly at a speed γt only in the case of ml = mr for |ψ−〉, while gradually decreasing
in an oscillatory manner in other cases. This is demonstrated again in that |ψ−〉 is the
dark state of the system. Figure 5b1,b2 shows that the concurrence is sensitive to the
number of the left SSA and is symmetric with respect to ml = m/2. This is because the
effective Rabi frequencies for two SAAs remain unchanged when ml and mr are exchanged
(see Equation (3)). In addition, the robustness of the system when the system is initially
prepared in the entangled symmetric state, ψ+ is generally higher than the one when the
system is initially prepared in the entangled asymmetric state ψ−. We understand that the
anti-phase dynamics, i.e., one SSA, is excited while the other is deexcited simultaneously,
canceling partially the coherence in analogy to the EIT.

Figure 6. Calculated dynamics for the initial states of |ψ+〉 (a1) and |ψ−〉 (a2), respectively. Time
evolutions of concurrence C. The solid black, the dotted blue, and the dashed red curves correspond to
the parameters: (ml , mr) = (1, 15), (ml , mr) = (8, 8), and (ml , mr) = (15, 1). (b) Maximal concurrence
Cmax as a function of the number of atoms ml with total atom number n=16 for the evolution time
12 > Ωt > 4 (as indicated with shading region in Figure 6a1,a2). The initial states are |ψ+〉 (black
squares) and |ψ−〉 (red circles), respectively. Other parameters are given at the beginning of Section 3.

4. Conclusions

In summary, we studied the correlated evolution and the quantum entanglement of
two strongly correlated Rydberg SSAs, which are Rydberg atomic ensembles trapped in
two optical traps but in the same dipole blockade region. When the system is initially
prepared, two kinds of pure non-entangled state, the in-phase and anti-phase correlated
dynamics between two Rydberg SAAs are investigated. As a byproduct of correlation
evolution, the maximally entangled states are obtained and their types can be confirmed
in terms of the correlated dynamics. When the system evolves starting from two kinds of
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entangled states, the process of decoherence are very different. The correlated dynamics
and the lifetime of the collective–time entanglement sensitive to the number of atoms are
found. Our results pave the way for coherent manipulation of the strongly coupled systems
over long distances, generating mesoscopic entanglement, exploring the classical–quantum
correspondence, etc.
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