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Abstract: A Light-Emitting Diode (LED) has a nonlinear characteristic, and it contains fundamental
limitations for the performance of Visible Light Communication (VLC) systems in indoor environ-
ments when using intensity modulation with Orthogonal Frequency Division Multiplexing (OFDM).
In this paper, we investigate this nonlinear characteristic with analysis and proposal. At first, we
identified the LED nonlinear characteristics in terms of bit-error performances. After analysis, we
propose initial predistortion schemes to mitigate the nonlinearity matters. In the predistortion
schemes, the nonlinear distortion compensation model contains predistortion features with the LED
inverse characteristics. Considering a Direct-Current-biased Optical OFDM (DCO-OFDM) system,
we compared the Bit-Error Rate (BER) performances with and without compensation via simulations.
The performance on the LED with the compensation showed LED nonlinearity could significantly
improve the bit-error performance. In addition, with consideration that the predistortion model is in-
sufficient to represent LED distortion, we investigated possible opportunities of distortion correction
using Bidirectional Long Short-Term Memory (BLSTM), one of the leading deep learning approaches.
Its result showed promising improvement of the distortion compensation as well.

Keywords: nonlinearity; VLC; LED; predistortion; coefficient approximation; BLSTM

1. Introduction

Growing demands for high data rates and low latency communication systems, partic-
ularly in indoor and in-building environments, contribute to the significant consideration
of the usage of 60 GHz and above unlicensed frequency bands in the United States [1]. Re-
cently, optical spectrum research focused on indoor wireless communication [2]. Significant
interests of Terahertz (THz) or above level communications on 6G development show the
possible opportunities of the optical spectrum in the perspectives of wireless networks,
interactive communications, mobility service, internet of things, and even bio-tissues [3].
Especially in the case of mobility service for in-building, its communication systems have
to consider VLC for high data rates instead of current wireless systems such as NB-IoT or
LoRaWAN [4].

Since the optical spectrum is in the frequency range of at least 300 GHz, multicarrier
OFDM modulation can be the possible candidate for the robust modulation scheme in that
spectrum for indoor visible light communications [5]. OFDM has the advantages of a high
data rate and bandwidth efficiency. It also provides a scheme to mitigate intersymbol inter-
ference caused by multipath propagation. However, in VLC, the LEDs’ nonlinear behavior
can severely affect OFDM’s performance due to its high Peak-to-Average Power Ratio.

For LEDs, the power amplifier operates up to the saturation for maximum power,
and it may cause unwanted nonlinear distortion in amplitude and phase in this power
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operation. Signal clipping issue in the amplifier is another critical matter for OFDM [6].
The back-off to the average input power ensures that the amplifier avoids saturation, but
the problem still exists that the back-off may deteriorate power efficiency. Linearization
through predistortion is another method to compensate for the PA nonlinear distortion.

Since the LED is the primary source of nonlinearity, the baseband OFDM signal in VLC
systems is modulated with the instantaneous power on the optical carrier called intensity
modulation. Asymmetrically Clipped Optical OFDM (ACO-OFDM) and DCO-OFDM are
two primary forms of OFDM with intensity modulation. In order to produce a positive
signal, the bipolar OFDM signal in DCO-OFDM is superimposed on a bias point. On
the other hand, the OFDM signal in ACO-OFDM is unipolar modulated by only the odd
sub-carriers, and the unipolar modulation suppresses the signal at zero levels [7]. In this
paper, we select DCO-OFDM for spectral efficiency.

For the investigation of the nonlinear distortion, various bias points are considered.
A power back-off scheme is a possible option for the OFDM signal to set the distortion
levels with LED operation near the bias point in a quasilinear segment of the LED char-
acteristic. After sampling the LED transfer function, the predistortion method consists of
the table format of the inverse of the characteristic function and compensates for the LED
nonlinearity [8]. However, this method has data measurement issues in that the system
must directly identify the LED data characterization. An adaptive normalized least mean
square (NLMS) algorithm can be another technique to estimate correct LED bias data [9].
To compensate for the nonlinearity, it directly predicts the distortion levels given the envi-
ronmental changes instead of using the fixed values of the existing Memory Look-Up-Table.
High complexity in the algorithm becomes one of the remaining issues in practicality. In
other words, a simple predistortion approach is necessary to resolve the distortion matters
with preserving practical usability.

Especially in the case of mobility services, indoor mobility transportation becomes a
possible scenario due to the LED light in the building. As shown in Figure 1, using LED
lights in the hallway, the building or infrastructure can broadcast the information and data
specifically designed for mobility services, indoor navigation maps, announcements, and
over-the-air updates. In that communication system scene, the mobility devices such as
scooters, bicycles, or autonomous robots are in a nonstationary position, and their channels
have a line of sight with a few reflections, which means the channel condition is the Rician
fading. In addition, those mobile devices are battery-critical, and energy efficiency is one
of their top priorities. In other words, the VLC communication systems in this mobility
service have to consider dynamic environmental conditions and effectiveness to combat
LED distortion.

In this paper, we propose two approaches: (1) the predistortion method, effectively
using the coefficient approximation without sampling the LED transfer function, and (2) the
Bidirectional LSTM Approach to training the LED distortion correction without knowing
the LED modeling. When we compare the BER performances of these two approaches
to the case without compensation, the result confirms the possible improvement of LED
distortion in the VLC OFDM system.

This paper is organized as follows. Section 2 illustrates the development procedure
of the LED model and distortion. Sections 3 and 4 introduce the OFDM model, initial
predistortion modeling, and the coefficient approximation scheme for LED distortion
correction. Section 5 discusses the possible deep learning application for this VLC system
to implement predistortion. Section 6 compares system performances of 16 Quadrature
Amplitude Modulation (QAM) and 64 QAM in predistortion modeling and deep learning
schemes. After presenting performance results, we conclude our paper in Section 7.
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Figure 1. A general example scenario of Visible Light Communication applications for mobility
services in indoor environments. The bicycle and scooters are driving or paused in the building
or tunnel in this scene. Note that the line of sight between LED and mobility devices is available
with multiple reflections. (Scooter icon in Vehicle and Travel Pack designed by Wishforge Games,
www.wishforge.games), accessed on 3 January 2022.

2. Nonlinear Characteristics of Different LEDs in the VLC System

In the ideal condition, we consider an ideal LED as a distortion-free diode. We also
define the input port signal as the driving current and the output port signal power as
the emitted optical power. LEDs also exhibit nonlinearities, introducing distortions on the
emitted signal [10]. Since the physical models, which include the dynamic rate equation
model [10], failed to approximate practical LEDs, we model the static transfer function of
the LED output power, Py (t), with polynomials shown in Equation (1).

Pout(t) = Z b [Iin(t) - IDC]n 1
n=0

where ;,,(t) is the driving current, Ipc is the bias current, and b, is the n-th order power
coefficient of the transfer function. Although polynomial orders are required toben =5
to realistically model transfer functions, a second-order polynomial is proven to be a fair
description [11]. The polynomial function in question is

Pout (£) =bo + b1 (Liy (t) — Inc) + ba(Lin(t) — Inc)? )

In this paper, we set the normalized current Ipc = 0.5, and by, b1, and by are the Direct
Current (DC) constant, the linear coefficient, and the second-order nonlinearity coefficient.
Moreover, it is also known that an LED has constant behavior. As a result, the derivation of
Pyt (t) with respect to I;;, () must be 0 < Py (t) < 1.

To describe the degree of nonlinearity, we define the nonlinearity parameter as  in
the source transfer function. It is the normalized output power corresponding to the input
current. For example, we assume that the LED has { = 0.5, derived as the linear line in
the transfer function shown in Figure 2. If the transfer function is concave, { > 0.5. If it is
convex, { < 0.5. LED is the prime example that has the concave characteristic [12]. The
coefficients of Equation (2) can be expressed in { as follows [11].

bo=¢ bi=1by=—-40+2 3)

Figure 2 shows the concave and convex curve examples. In this figure, the concave
curve is based on the red LED coefficient, but white and infrared LEDs also have concave
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curves. The experimental values of ¢ according to LED type 85 are 0.732 in red LEDs, 0.541
in infrared LEDs, and 0.582 in white LEDs [11]. However, the examples of fixed coefficient
values given LED types in the assumption are not consistent in the natural environment.
Depending on types and actual production, the coefficient value can be off. For that matter,
it would be reasonable to solve LED distortion issues under two assumptions: (1) The LED
nonlinear parameter value is a fixed one and consistent. (2) The LED nonlinear parameter
value can vary for each LED and is inconsistent. Note that our term inconsistency does
mean the slight change, not significant disruption, that the LED light-emitting type may
be changed. Given these two assumptions, we need to investigate the solutions for the
VLC system.
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Figure 2. A comparison among concave curve with { = 0.732, convex curve with 7 = 0.268, and linear
static transfer functions.

3. Initial Predistortion Modeling for LED Distortion Correction

As mentioned, Figure 3 shows the OFDM-based visible light communication transceiver
system, including a predistortion module. In the existing OFDM system without predis-
tortion, the transmitter processes signals with Inverse Fast Fourier Transform (IFFT) after
QAM modulation, and it expresses signals as the orthogonal frequency components. When
the system processes the IFFT output signal via LED modulation and transmits LED output,
its performance deteriorates due to the nonlinearity of LEDs and the generated distortion.
The distortion causes signal to become noise-sensitive and damages the orthogonality
between the frequency components. The result of the distortion is the substantially high
error performance at the receiver. To resolve this problem, the predistortion module, as
shown in Figure 3, can compensate for LED nonlinear matters and is placed in front of the
Digital-Analog Converter (DAC) for data transmission.

Since the goal is to design the predistortion module with the LED coefficient value, we
describe initial predistortion modeling schemes and then coefficient approximation under
the fixed value assumption for the predistortion module to compensate nonlinearity of
LED luminance. Note that both models use the distortion characteristic of bias signals, and
we discuss the nonfixed coefficient assumption case in the later section.
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Figure 3. A block diagram of OFDM transceiver using predistorter.

In the ideal condition, the primary method is to implement a predistortion by calculat-
ing the inverse function for Equation (2). We can reformulate (2) as

Pout(t) =balin (£)> + (b1 — 2baIpc) i (1) + (4)
bZI%C — blIDC + by

When we define g;,,,(t) as the inverse function of Equation (4), we can derive it as

o) = | Lh (4 Tl b ©)
&inv - bz in 4b% b2 2b2 DC

where I;; () is the input current to the predistortion module. Based on this inverse function,
we can design the predistortion module and correct LED distortion.

4. Proposed Predistortion Model with Coefficient Approximation

Since the inverse method from (5) includes a root within g;,,(t), it does require the
approximation approach within hardware modules for real-time implementation. For the
VLC system, the approximation approach shown in the inverse function is impractical.
We introduce a simple predistortion scheme using a simple coefficient approximation
to mitigate this issue. We propose implementing the predistortion using the coefficient
changed according to LED color without sampling the LED transfer function.

This method uses the static transfer function of Equation (2). We modify coefficients by,
b1, and by in (3) to the predistortion function. As mentioned, if < 0.5, the convex transfer
function can be obtained. Therefore, the 1 — { value is substituted instead of { of (3) and
coefficients. Now, those coefficients can be expressed as follows.

bo=1-0, bi=1 b =40-2 (6)

When the coefficients in (6) are substituted in (2), the polynomial predistortion function

g(t) is

g(t) = (4 = 2)(Lin(t) = Inc)® + Lin(t) = Inc = { +1 @)
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Figure 4 shows the nonlinearity of the LED, predistortion function, and linearized
LED transfer function. Concave curves have a characteristic of the nonlinearity of the
LED. Furthermore, convex curves are based on predistortion functions. If the predistortion
function g(t) enters the input [;;,(t) of the LED transfer function in (2), the final transfer
function becomes linear. { is determined according to the LED color. The proposed method
can process if we know the LED color. Therefore, the sampling for making the predistortion
like the conventional method is unnecessary. The proposed method has the advantage of
simplicity when implementing the predistortion module.
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Figure 4. Nonlinear, predistortion, and linearized LED transfer function.

5. Deep Learning Approach for Possible VLC System Enhancement

In previous sections, we showed our proposed predistortion scheme with the coef-
ficient approximation for nonlinear distortion compensation based on the performance
results. We also explained that coefficient approximation could be considered the practical
approach for actual implementation. However, we believe that, in Rician fading, the pro-
posed methods did not fully address LED nonlinearity issues in the two aspects. One is the
modeling of LED distortion. The LED modeling formula, including our LED modeling, can
often be ill-posed and poorly represented in LED distortion patterns.

In addition to the distortion modeling, each LED produced might not follow the same
distortion characteristics as theoretical LED models, and our predistortion scheme based
on the theoretical model may be ill-conditioned in the actual situation. Thus, instead of the
LED modeling for correction, our focus must shift to the direct correction of LED distortion.
For instance, our proposed approximation modeling schemes assume that the transmitter
and receiver are stationary with the same coefficients. In the practical situation, the LED
distortion coefficients can be different in each produced LED case, and a slight value-off
can cause significant performance degradation. Hence, this VLC also has to correct LED
distortion directly with the adaptation of these coefficient changes. To resolve the correction
problem, we must consider using deep learning approaches, as the possible candidates.

To find the best estimate of the model of the data and systems, deep learning al-
gorithms, such as CNN and LSTM, gained recent popularity in various communication
systems applications, including VLC research. This deep learning approach can also be
appliable to solve this distortion problem. In this paper, we introduce one of the deep
learning applications for possible VLC system enhancement, the so-called BLSTM.
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5.1. Bidirectional LSTM Approach for the Distortion Correction

Unlike the classification and detection based on image processing, sequential data such
as voice samples or text sentences correlate between present and past times. A Recurrent
Neural Network (RNN) is the prime example of processing input data with network
weights and structure. It also preserves the sequences of the data with the network hidden
states. However, RNN has severe issues with vanishing and exploding gradient programs
for the training and optimization process, resulting in the incapability of learning long-term
knowledge. Long Short-Term Memory (LSTM) is one of the main algorithms to resolve
these issues with RNN. LSTM contains multiple activation function modules called gates
to overcome the gradient matters. This LSTM system contains memory that takes previous
and current states as input, as shown in Figure 5.

LSTM Cell Unit

Ci—1

ht— 1 ht
—

Lt

Figure 5. A basic diagram of the LSTM unit. Note that it is known to be the general struc-
ture of modern LSTM unit, and the similar and identical LSTM units are referred to in various
literature [13-16].

Each element in the LSTM unit, so-called a gate, leads the LSTM unit to store and
discard the data information. Apart from input and output gates, the forget gate is another
key LSTM feature that controls knowledge preservation in LSTM units. Details of each
parameter in Figure 5 are below [13,14]. Note that ¢ and tanh are defined as the sigmoid
function and the hyperbolic tangent activation function.

it =0 (Wixy + Uihy_q + b;) (8)

fi :O'(fot + ufht—l + bf) )
Ct =fiCi—1 +1:Ct (10)
=£1Cs_1 + istanh(Wexy + Uchy 1 + be) (11)

Or =0c(Wox; + Uphy_1 + by) (12)
hy =Oytanh(Cy) (13)

Note that i;, f;, C, Oy, and h; are the input gate, forget gate, memory cell, output gate,
and hidden state at time step ¢, respectively. In addition, W;, Wy, Wo, and W are the input
weight matrices of parameters i, f, O, and C, and Uj, Uf, Uy, and U, are the hidden layer
weight matrices of parameters 7, f, O, and C. In each formula, b;, b iz b,, and b, are the
biased parameters for i, f, O, and C. Once the LSTM unit took previous memory cells and
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hidden states from the previous LSTM units as C;_; and h;_1, it processed the following
sequential input at times t and x; to produce the present memory cell and hidden state, C;
and h;.

As illustrated in this general structure of the LSTM unit, the data sequence is a forward
sequence. However, the data sequence information in forward and backward sequences
can be different, and understanding the backward data sequence can produce the data
prediction well. These are the main reasons why Bidirectional LSTM should be considered.

A brief block diagram of the BLSTM structure is shown in Figure 6. In this figure, the
BLSTM first processes the forward LSTM before processing the backward LSTM, and the
activation function produces the result [15]. Hence, this system contains the past and future
input data.

Yi—1 Yt Yi+1
Activation Activation Activation
Function Function Function
Backward
ht+ 1 !
ht +1
Forward

Figure 6. Bidirectional LSTM structure. Each LSTM unit in Figure 5 lines up in series in forward and
backward layers in this structure. Note that the length of BLSTM is the same as the number of LSTM
in the forward and backward layers.

BLSTM is a significant advancement of LSTM schemes that train the neural networks
with the forward and backward data sequences [17]. Eventually, it aims to train with the
data sequences to correct or predict future data. Existing example applications include
speech recognition and stock index prediction [18]. Since our VLC systems process contin-
uous time-domain signal data, LSTM becomes a suitable option for distortion correction.
However, traditional LSTM trained in the forward direction of the data or signal sequence
can become biased for signal correction. On the other hand, Bidirectional LSTM processes
the backward and forward of the signal sequences to train both sequence directions of the
signal. We consider the BLSTM for distortion correction in this paper.

5.2. Proposed Initial BLSTM-Based VLC System

From our VLC perspective, since the distortion occurs in the transmitter, it would be
reasonable to conduct the predistortion on the transmitter instead of the receiver. Figure 7
shows that the predistortion module must be placed right before the diode. In the predis-
tortion module, our BLSTM models are double in parallel, and each BLSTM structure is
designed with two BLSTM layers and a dense layer. For the correction purpose, the output
length of the BLSTM should be equivalent to the input length. Note that, due to the system
complexity and hardware capability, we designed the OFDM system with an FFT size of 32.

Several properties must be carefully considered for BLSTM design and training, such
as batch size, epoch, and data size. Since these parameters can impact the predistortion
correction performance, our investigation extended these parameters into our scope. Once
the BLSTM models are completed to train, the models are placed in the transmitter for
continuous use. When the VLC system conditions and environments are changed, we need
to retrain the BLSTM model, which is highly unlikely in the in-building environmental case.



Photonics 2022, 9, 198

9o0f 16

OFDM Transmitter BLSTM Predistortion Model

: | QAM Modulation | ' : —Input (32, 1) — :
X T ! : In-Phase Quadrature :
E | Serial-to-Parallel | E E v E
I Piidil 1 1 | BLSTM (70) BLSTM (70) ||
X | Complex Conjugate | ! , '
| I N Lo l l ;
l | IFFT | 1| BLSTM (90) BLSTM (90) | |
' TIJTTI] - ] | ' !
: | Parallel-to-Serial | ! . l l E
E l® | E Dense(32) Dense(32) '
E | Predistortion |—:—>i E
- 1 b :
! |Digital—to—Analog Converter | ! — Qutput (32’ ]_) ! !
E DC Bias ——| LED | ! (D : BLSTM Target Output Data
'"""""""""'é‘)"""-""' @ : BLSTM Input Data

Figure 7. An Initial design of Bidirectional LSTM in predistortion module from OFDM transmitter.
Note that, for training model, we consider input data as 2) and target output as (D.

6. Experiment Setup and Results

For the experiment result, we operated two experiments: (1) coefficient approximation-
based predistortion modeling and (2) BLSTM application. Note that we do not compare
both approaches directly in this paper since each has a different assumption.

To produce the results of VLC performances with coefficient-approximation-based
predistortion, given measured static transfer functions of white and infrared LEDs, a
quadratic polynomial of the LED in Equation (2) was applied as the general model of
the transfer function. This polynomial approximation has been widely popular to model
nonlinearity characteristics of LED or laser diodes [19]. Each graph shows two QAMs in
the simulation: 16 and 64.

For BLSTM experiment settings, we considered the input data as the distorted IFFT
signal and target output data as the IFFT signal after the LED shown in Figure 7. We utilized
our distortion model (2) to generate the distorted IFFT signal, but any distortion model or
existing data based on an LED can be applied for the training. After our initial investigation,
we confirmed that the BLSTM length must be more than input data size, which was 32
in our case. We also had to consider the limitation of computing resources and model
complexity as well. With considering our investigation and limitation, we set the length of
the Bidirectional LSTM as 70 and 90 for the first and second layers. Since we considered
the indoor mobility service as an operation environmental condition, we considered the
Rician fading with K factors from 4 to 20. For details of the BLSTM experiment setting, the
complete list of properties and experiment settings is in Table 1. In Table 1, note that we
used at least more than 25 million samples for experiment.

6.1. Experiment Results of Predistortion Modeling with Coefficient Approximation

We simulated the QAM performances of two predistortion schemes using (1) the
inverse function and (2) coefficient approximation along with the conventional scheme
without predistortion. Note that we set the simulation threshod as the BER reached to 10~°.

Figure 8 shows OFDM'’s BER performance using 256 subcarriers in 16 QAM and 64
QAM for the white LED. The results showed a 3.5 dB performance gain for all predistortion
schemes at BER 10~# in 16 QAM. For BER 10 * at 64 QAM modulation, each predistortion
required us to set SNR values at 16.5 dB in the inverse function scheme and 17 dB in the
coefficient modification scheme. In addition, the BER performance were deteriorated when
QAM levels were increased since symbols were closer in the constellation diagram.
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Table 1. Experiment properties and settings for VLC BLSTM experiments.

Properties and Settings Types and Values
(05 Ubuntu 20.04.3 LTS
Python 3.8.10
Tensorflow (incl. Keras) 2.7.0
CUDA 11.2
CPU Intel Xeon Silver 4208 Processor
GPU NVIDIA GeForce RTX 3080
LED Type White LED
FFT size 32
Modulation 16 QAM
Channel condition Rician fading channel
Rician K factor (dB) 4,8,12,16,20
Batch size 32, 64,128, 256, 512
Data size (per 10,000 samples) 2560, 5120, 7680, 10,240, 20,480, 25,600, 51,200
Epoch 1,2,3,5

White LED, AWGN Channel

10° ‘ ‘
5522;::—»1_‘;»\
107 i
e ]
[ass
L -2 4
o 10
\\ \X
108 F|— 16QAM without Predistortion ‘o E
> 16QAM with Predistortion by Inverse Function
-o- 16QAM with Predistortion by (1-7) O
-+ - 64QAM without Predistortion N
-x - 64QAM with Predistortion by Inverse Function N
- - 64QAM with Predistortion by (1-0) \
10 ‘ —
15

0 5
SNR(dB)

Figure 8. BER performances of the predistortion in 16/64 QAM modulation for white LED.

Figure 9 shows OFDM'’s BER performances using 256 subcarriers in 16 QAM and
64 QAM. In these simulations, we used the infrared LED. In this case, we also observed
that both predistortion schemes gained 1.5 dB performance at BER = 10~* with 16 QAM
compared to the scheme without predistortion. For 64 QAM modulation to meet target
BER 10~4, both predistortion schemes needed to set SNR values up to 16.5 dB.
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Infrared LED, AWGN Channel
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SNR(dB)
Figure 9. BER performances of the predistortion in 16/64 QAM modulation for infrared LED.

To summarize the results from Figures 8 and 9, the white LED performance was
substantially improved compared to the infrared LED performance. However, the overall
BER performances of the white LED with predistortion schemes were still inferior to
infrared LED performance since the infrared LED operates on a lower frequency spectrum
than the white LED does. In addition, infrared LED performance without predistortion
had 2 dB more SNR gain than the white LED performance without predistortion.

Given the Rician fading conditions, our performance results showed that the Rician
fading might alter the performance. As shown on the Rician fading results in Figure 10, the
performance of the coefficient approximation predistortion method was still better than that
without any predistortion in low SNRs. Our results may conclude that the predistortion
modeling may mitigate the distortion matter but still can be affected by other conditions in
terms of Rician fading impacts.

6.2. Experiment Results of BLSTM Application

For the BLSTM experiment, we looked for three aspects: (1) performance impacts
on BLSTM parameters including batch size, data size, and epoch, (2) performance on K
factor values, and (3) performance over SNR. Since the distortion correction was trained at
the transmitter, we confirmed that SNR does not influence the training process but on the
test. We also considered the Rician fading for our experiment due to the possible mobility
service scene. The first preliminary experiment result is in Figure 11. In this graph, we can
confirm that once the K factor is increased, the VLC performance is improved as well. For
BLSTM-specific testing, we considered K factors 4 and 20 as the worst and best cases.
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Figure 10. BER performances with Rician fading, K = 4 in 16 /64 QAM modulation for white LED.

Performance Results of VLC BLSTM
(16 QAM, data size = 7680, epoch=>5, batchsize = 32)
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Figure 11. BER performances with various Rician fading factors, 16 QAM for white LED.

The performance results over batch size are in Figure 12. In Figure 12a,b, we observe
that when batch sizes were 32 and 256, the VLC outperformed as compared to the no
correction case. Note that batch size with 64 was outperformed on a K factor with 4 but
underperformed on a K factor with 20. Based on the results, we may conclude that batch
size is one of the critical parameters to tune the performance in a sophisticated manner.
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Performance Results of VLC BLSTM
(Rician K Factor =4, 16 QAM, data size = 7680, epoch=5)

Performance Results of VLC BLSTM
(Rician K Factor =20, 16 QAM, data size = 7680, epoch=5)
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Performance Results of VLC BLSTM
(Rician K Factor =4, 16 QAM, Batch Size = 64, data size = 7680)

Figure 12. BER performances over batch size with Rician fading channel 16 QAM for white LED:
(a) K Factor = 4; (b) K Factor = 20.

The performance results over the epoch are in Figure 13. In Figure 13a,b, we observe
that when the epoch was 1 and 5, the VLC outperformed as compared to the no correction
case. Note that, as time goes by, the more the number of epochs increases, the more
performance improvement is shown. Underperformed cases with epochs 2 and 3 proved
that very few training iterations do not significantly improve performance.

Performance Results of VLC BLSTM
(Rician K Factor =20, 16 QAM, Batch Size = 64, data size = 7680)

0.031 L ~&- No Correction | | 0.004 F ~©-No Correction | |
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-=—epoch =5
) 0.029 1)
g g 0.008
E 0.028 E
0.0025
0.027
0.026 0.002
0.025 — : : : : 0.0015 “ : : : :
14 14.5 15 15.5 16 14 145 15 15.5 16
SNR (dB) SNR (dB)
(a) (b)

Figure 13. BER performances over epoch with Rician fading channel 16 QAM for white LED:
(a) K factor = 4; (b) K factor = 20.

The performance results over data size are in Figure 14. Figure 14a,b show that when
data sizes were approximately over 204.8 million, the VLC outperformed much more
than in the no correction case. The performance results proved that, during the training
process, sufficient data must be prepared and, in our case, over about 205 million samples
are required to produce better performance. Insufficient data size may cause overfitting
problems, and the VLC system performs worse than in the no correction case.
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Performance Results of VLC BLSTM Performance Results of VLC BLSTM
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Figure 14. BER performances over data size with Rician fading channel 16 QAM for white LED:
(a) K factor = 4; (b) K factor = 20.

The BER performance of each batch size over SNR is in Figure 15. The figure shows
that the performance deteriorates when the batch size is increased. However, we also have
to understand that the batch size is equivalent to the step size in the optimization. Given
that each iteration time is fast when the batch size is large, the trade-off between batch size
and iteration time must be carefully considered under limited resources and time.

Performance Results of VLC BLSTM
(Rician K Factor =4, 16 QAM, data size = 7680)

0.05 +
0045 L O”/G—Q// |
[0
©
o
@ 0.04 - 1
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003} o———° 1
003 L o & . N — |
10?
Batch Size

Figure 15. BER performances of batch sizes over SNR with Rician fading K factor = 4, 16 QAM.

To summarize, our BLSTM models showed the possible performance improvement of
LED distortion. In addition, we only need to care for the transmitter AND no requirement
for the receiver to operate this approach. As described in the in-building mobility service
in Section 1, the mobility devices, including IoT applications, can use the same receiver
structure while experiencing enhanced BER performance of the VLC system. In other
words, they can spend less energy on the same VLC system experiences.
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7. Conclusions

In our paper, we observed the nonlinearity of LEDs, and it could significantly affect
the performance of optical OFDM transceiver systems. The compensated module using
predistortion can substantially enhance the OFDM system performance for performance
improvement. However, the existing compensation methods directly have to measure
LED nonlinearity or high complex characteristics. In the OFDM-based VLC system, we
proposed the practical predistortion scheme with coefficient approximation. The coeffi-
cient approximation showed the effectiveness of simple operations without a necessary
sampling of the LED transfer function by using the inverse function. By simply tuning
the coefficient, the OFDM system showed outperformed results compared to the system
without the predistortion.

In addition, we proposed a Bidirectional LSTM model to handle the variation and
distortion of LEDs without distortion modeling. We used the distortion data from our
distortion models for the training purpose, and the results showed the possible promise
of performance improvement. Possible discussion associated with BLSTM approaches is
as follows.

*  We used the simple BLSTM structure and improved distortion. However, our BLSTM
structure did not address the phase issues. Since the BLSTM model cannot handle
complex number data, we separated real and imaginary data and produced two
models. No consensus existed between the two trained models. A significant per-
formance improvement could be possible if we designed the BLSTM model with an
interconnected structure.

*  We considered the white LED case only in this experiment. To process red and infrared
LEDs, BLSTM models have to be retrained. Even if we retrained the model, it is not
guaranteed whether or not those models can produce the equivalent performance on
those diodes. Diode-specific model structure must be explored.

e Assuming we have no prior knowledge of LEDs, the distortion correction with one
model would simplify the system structure and reduce its complexity. To handle all
LED distortion into one model, we may need to design a deep learning structure more
complex than our tested BLSTM model.

¢ For our BLSTM model training, computing power is the primary factor in our pro-
posed VLC scheme, and our initial studies encountered the limitation of the computing
resources. Our future works must extend to various BLSTM layer lengths and struc-
tures, assuming we have considerable computer powers. When the VLC scheme
becomes part of the 5G NR light radio family, possible opportunities for our BLSTM
model are available to be trained into the cloud or multi-access edge computing (MEC)
on a large scale.

In addition to our work, it would be possible to extend our BLSTM approach to the
practical and effective implementation of the predistortion module and explore other deep
learning models and structures dedicated to the hardware module in VLC systems for
possible future work.
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Abbreviations

The following abbreviations are used in this manuscript:

LED Light-Emitting Diode

OFDM Orthogonal Frequency Division Multiplexing

ACO-OFDM  Asymmetrically Clipped Optical OFDM

DCO-OFDM  Direct-Current-biased Optical OFDM

DC Direct Current

AWGN Additive White Gaussian Noise

BER Bit-Error Rate

VLC Visible Light Communication

QAM Quadrature Amplitude Modulation

IFFT Inverse Fast Fourier Transform

FFT Fast Fourier Transform

SNR Signal-to-Noise Ratio

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

BLSTM Bidirectional Long Short-Term Memory
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