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Abstract: We demonstrate 60 GHz separation optical two-tone signal generation at arbitrary C-band
wavelengths without involving complicated optical wavelength filtering. By utilizing a polarizer,
the selective suppression of undesired low-order optical sidebands has been proven and optimized
based on model analysis. By utilizing this scheme in conjunction with the optimized parameters,
more than 20 dB of suppression of undesired optical sidebands have been successfully achieved over
a 40 nm wavelength range. This scheme allows us to generate optical two-tone signals at the desired
wavelength.

Keywords: microwave photonics; optical modulation; optical polarization; optical two-tone signals;
RF photonics

1. Introduction

A phase-synchronized pair of monochromatic lightwaves with stable frequency spac-
ing plays an important role in the complementary use of radio-wave (RF) signals and
lightwaves, i.e., in the field of microwave photonics. Such a lightwave-pair is called as an
optical two-tone (OTT) signal. Since the RF signal obtained from the direct detection of
the OTT signal has a stable frequency, this can be applied to the convergence of optical
and wireless communications [1], high-resolution-image broadcasting [2], precise clock
distribution [3,4], radar measurement [5], and THz signal generation [6]. Not limited in the
complementary use of an RF signal and lightwaves, some advantages are there in RF fre-
quency upconversion, such as low phase noise, frequency tunability, increase in the output
signal frequency and allowance of some optical techniques such as optical amplification.

Wide frequency-separation OTT signals are especially useful because of the demand
for millimeter-waveband RF signals; therefore, several types of OTT signal generation
schemes have been explored. One involves constructing a phase-locked loop for light-
waves [7]. Its offset range currently reaches 17.8 GHz [8] due to phase noise (linewidth)
suppression of the semiconductor lasers constituting the optical phase-locked loop. How-
ever, a significant problem remains in further increasing the bandwidth: it requires broad
loop-BW, which implies that the closed-loop should be as short as possible. In contrast,
there is another approach that employs optical modulation to generate optical sidebands [9],
which is facilitated by the development of a waveguide-type optical modulator equipped
with traveling-wave electrodes [10,11]. In this scheme, the optical frequency spacing of
the generated OTT signals is mainly dominated by the driving frequency of the optical
modulator, and it can be exceeded by extracting a pair of higher-order optical sidebands
generated by deep optical modulation.

Several approaches have been demonstrated for sideband extraction. The straightfor-
ward way is to filter an optical signal in the wavelength domain [12–14], which involves the
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precise adjustment of transmission/rejection wavelength ranges when the wavelength of
the OTT signals should be changed. Additionally, their optical-frequency separation is lim-
ited by the steepness of the optical filter in the wavelength axis. The other approaches are
investigated using a modulation order-dependent interference by utilizing an I-Q optical
modulator [15–17] and periodic phase shifts of each optical sideband given by RF signals;
the desired optical sidebands survive to become OTT signals via constructive optical in-
terference, while unnecessary optical sidebands disappear due to the destructive optical
interference [18–20]. The approach is an optical filter-free operation, allowing for the optical
wavelength flexibility to endure. However, the optical phase offset must be specifically
stabilized to achieve low-spurs operation in long term, and an optical modulation device
should be densely integrated to increase the degree of frequency multiplication (i.e., the
ratio of frequency spacing of OTT signals against the frequency of the RF signal driving
the optical modulator). Although densely-integrated optical modulation devices have
been reported [21–25], further dense integration would be limited via a fabrication process
and physical parameters such as wavelength of the lightwave and refractive indices of
materials.

Another approach involves using the polarization of light as one degree of freedom.
While some attempts were conducted using a polarization modulator in a polarization-
maintaining Sagnac interferometer (PMSI) [26,27], one of the issues was stability degrada-
tion. In these approaches, BOTH polarization modes of PMSI were utilized, so that the
output signal would be unstable due to a fluctuation in polarization by temperature via re-
tardation in optical fibre. Deviation of the bias voltage of the polarization modulator would
also induce degradation of its performance. A system for stabilizing static optical phases
must be required, as well as the approaches based on an integrated optical modulator.
Furthermore, the analytically obtained optimization results were complicated.

These problems have been solved using a configuration where a bi-directional single
Mach-Zehnder optical modulator (MZM) is nested in only ONE polarization mode of the
modified PMSI [28–31]. In this article, we describe how this approach allows us to generate
OTT signals at arbitrary wavelengths. Our scheme promises wavelength tunability and
simplicity; it only requires wavelength changes for the seed lightwave of the OTT signal
generator, and it is free from the precise adjustment of an optical band-rejection filter. In
Section 2, the operation principle is described by introducing an analysis model to derive
an equation of an output lightwave signal from the proposed configuration. The analytical
results are also discussed. In Section 3, we describe a proof-of-principle experiment. Based
on the obtained optical spectra and their derivatives, we show that this scheme is suitable
to generate the OTT signals for C-band wavelengths. In Section 4, we summarize the OTT
signal generation scheme.

2. Principle
2.1. Output Signal from Polarization-Maintaining Sagnac Interferometer

Figure 1 shows a model for generating wavelength-tunable optical two-tone signals,
which is composed of a push-pull-driven MZM within one mode of a PMSI [30,31]. In
this setup, P-polarized incident lightwaves propagate in the clockwise direction, while
S-polarized ones propagate in the counter-clockwise direction. Due to the polarization-
rotation element (PRE), both components become S (TE) polarized at the MZM. Incident
lightwave E0, composed of the P-polarization component E0P and S-polarization component
E0S, is described as

E0 =

[
E0S
E0P

]
=

[
E0 cos α
E0 sin α

]
(1)

where α is the angle of the polarizer placed at the input port of polarizing beam splitter
(PBS), and E0 is the lightwave amplitude just after passing through the polarizer. Here-
after, the polarization-extinction ratio (i.e., the inverse of attenuation of the polarization
component when the insertion loss of the polarizer is omitted) is denoted as ξ, while in
Equation (1) the effect of the polarization extinction ratio is omitted because the dominant
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term of each polarization component belongs to its polarization axis. The lightwaves after
passing through the MZM and PRE become

ECCW =

[
0

−TMZM(∆θ, θB)E0S

]
=

[
0

−TMZM(∆θ , θB)E0 cos α

]
(2)

and

ECW =

[
TMZM(η∆θ, θB)E0P

0

]
=

[
TMZM(η∆θ, θB)E0 sin α

0

]
(3)

for counter-clockwise propagation ECCW and clockwise propagation ECW, respectively.
Here, we assume that the polarization extinction ratio of the PBS is infinite; however, the
effect of its finite polarization extinction ratio results in lightwave power loss due to leakage
at the empty port of the PBS in the PMSI. Note that, at the PRE, the P-polarized lightwave
is converted into an S-polarized one, and vice versa. TMZM (∆θ, θB) is the transmittance
of the MZM that is driven by a sinusoidal RF signal with an angular frequency of ω0 and
induced optical phase ∆θ, which is given by

TMZM(∆θ, θB) = cos(∆θ sin ω0t + θB), (4)

if the insertion loss of the MZM is omitted. θB is the phase bias of the MZM, and hereafter
θB is assumed to be π/2; i.e., the MZM is driven under the null-bias condition. η is the
ratio between the two induced optical phases, and |η| is assumed to be less than 1. So,
the attenuation of the RF signal amplitude to achieve the ratio is 1/|η|. In Figure 1, a set
of induced optical phases (∆θ and η∆θ) is independently shown, but actually, the set can
beprepared by utilizing RF signal reflection or circulation. Adopting the MZM possessing
RF termination ports, we can simultaneously induce two optical modulations with different
modulation indices [29]. Using this feature, we modulate the two circulating lightwaves
independently, with modulation indices of ∆θ and η∆θ for ECCW and ECW, respectively.
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MZM in PMSI with PRE. PBS: polarizing beam splitter, PRE: polarization-rotation element, POL: 

Figure 1. Analysis model of wavelength-tunable optical two-tone signals generation based on an
MZM in PMSI with PRE. PBS: polarizing beam splitter, PRE: polarization-rotation element, POL:
polarizer. Blue solid arrows and red solid arrows depict the electric field (polarization) of lightwave
propagating in the PMSI in the clockwise direction and the counter-clockwise direction, respectively.
In the configuration, lightwaves propagate according to black open arrows. Dashed arrows indicate
the RF signal modulating lightwave in the PMSI.

At PBS, these lightwaves are combined and projected onto the polarizer. The lightwave,
after passing through the polarizer, EOUT, can be described as
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EOUT = TPOL[ECCW + ECW]

=

[
cos α sin α
− sin α cos α

][
1 0
0 1/

√
ξ

][
cos α − sin α
sin α cos α

]
×
[

TMZM(η∆θ, θB)E0P
−TMZM(∆θ, θB)E0S

]
= E0 sin 2α

2 {TMZM(∆θ, θB) + TMZM(η∆θ, θB)} ×
[

cos α
− sin α

]
+ E0√

ξ
{TMZM(η∆θ, θB) sin2 α− TMZM(∆θ, θB) cos2 α} ×

[
sin α
cos α

]
,

(5)

where the first and second terms correspond to the lightwave amplitude parallel and
perpendicular to the axis of the polarizer, respectively. TPOL is the amplitude transmittance
of the polarizer:

TPOL =

[
cos α sin α
− sin α cos α

][
1 0
0 1/

√
ξ

][
cos α − sin α
sin α cos α

]
. (6)

If the orthogonal axis of EOUT is chosen to be parallel and perpendicular to the polarizer,
the lightwave E′OUT can be expressed as

E′OUT = T′POL[ECCW + ECW]

=

[
1 0
0 1/

√
ξ

][
cos α − sin α
sin α cos α

][
TMZM(η∆θ, θB)E0P
−TMZM(∆θ, θB)E0S

]
= E0

[
sin 2α

2 {TMZM(∆θ, θB) + TMZM(η∆θ, θB)}
−1√

ξ
{TMZM(∆θ, θB) cos2 α− TMZM(η∆θ, θB) sin2 α}

]
.

(7)

The lightwave coming back to the polarizer from the PMSI is projected with a different
angle, −α.

2.2. Suppression of First-Order Sideband for Third-Order Sideband Extraction

Eout is composed of many optical-frequency components when MZM is driven by
strong sinusoidal RF signals. However, assuming that infinite ξ, Equations (5) and (7) imply
that some optical-frequency components of Eout become zero under a certain condition.
This fact can be derived by expanding the term TMZM(∆θ, θB) + TMZM(η∆θ, θB) using the
m-th order Bessel function of the first kind Jm(x):

TMZM(∆θ, θB) + TMZM(η∆θ, θB)

= +j
∞
∑

m=−∞
[J2m+1(∆θ) + J2m+1(η∆θ)] ej(2m+1)ω0t (8)

Then, the (2m + 1)-th order optical sidebands disappear when the following equation is
satisfied:

J2m+1(∆θ) + J2m+1(η∆θ) = 0. (9)

From the above equation, adequate parameters can be obtained for suppressing ±1st order
optical sidebands (i.e., m = –1, 0) in the lightwave composed of –3rd~+3rd order optical
sidebands. Note that, ideally, the null-biased MZM does not generate even-order optical
sidebands. Although there are many solutions satisfying Equation (9), we focus on those
with a negative η which can be achieved by a π-phase shift of the RF signal modulating
clockwise lightwave [30,31]; i.e., η is in the range from –1 to 0. Additionally, η = –1 is
not suitable, because Equation (9) is satisfied for arbitrary ∆θ and m, meaning that all
sidebands disappear. Figure 2a shows the plot of J1(x) versus x to find a numerical solution
of Equation (9), and the pairs of the solution are shown in Figure 2b.



Photonics 2022, 9, 194 5 of 12

Photonics 2022, 9, x FOR PEER REVIEW 5 of 13 
 

 

2 1 2 1( ) ( ) 0.m mJ Jθ η θ+ +Δ + Δ =  (9)

From the above equation, adequate parameters can be obtained for suppressing ±1st order 
optical sidebands (i.e., m = –1, 0) in the lightwave composed of –3rd~+3rd order optical 
sidebands. Note that, ideally, the null-biased MZM does not generate even-order optical 
sidebands. Although there are many solutions satisfying Equation (9), we focus on those 
with a negative η which can be achieved by a π-phase shift of the RF signal modulating 
clockwise lightwave [30,31]; i.e., η is in the range from –1 to 0. Additionally, η = –1 is not 
suitable, because Equation (9) is satisfied for arbitrary Δθ and m, meaning that all side-
bands disappear. Figure 2a shows the plot of J1(x) versus x to find a numerical solution of 
Equation (9), and the pairs of the solution are shown in Figure 2b. 

(a) (b) 

Figure 2. (a) A solution of Equation (9) for m = 0 and Δθ = 2.485, and (b) the combination of η and 
Δθ satisfying Equation (9). 

Adapting the parameter setting, the polarization of input (α = 45°) and output light-
waves can be drawn as Figure 3. While polarization of the lightwave launching into the 
PMSI is parallel to the axis of the polarizer (Figure 3a), ±1st-order optical sidebands of ECW 
(originating from the P-polarization incident lightwave) are flipped in their phase at a 
weak optical modulation while those of ECCW retains their phase. Then, as shown in Figure 
3b, the polarization of ±1st-order optical sidebands is perpendicular to the polarization 
axis of the polarizer. In contrast, ±3rd-order optical sidebands are sufficiently small for the 
S-polarization components due to the modulation index including a small |η|; hence, only 
the sidebands of the P-polarization are projected by the polarizer so that they become the 
desired output lightwave, as shown in Figure 3c. Under a negative η, the intensity of the 
desired ±3rd-order optical sidebands, P3, is approximately expressed as 

2
22

3 0 3 3
sin 2 ( ) ( ) ,

4
P E J Jα θ η θ Δ − Δ    (10)

when the components perpendicular to the axis of the polarizer are neglected. For the 
±1st-order optical sidebands, which are undesired components in the generated OTT sig-
nals, P1 is 

2
22

1 0 1 1
sin 2 ( ) ( )

4
P E J Jα θ η θ

 Δ − Δ   


  

22 2
1 1cos ( ) sin ( )

.
J Jα θ α η θ

ξ

 Δ + Δ +      

 
(11)
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satisfying Equation (9).

Adapting the parameter setting, the polarization of input (α = 45◦) and output light-
waves can be drawn as Figure 3. While polarization of the lightwave launching into the
PMSI is parallel to the axis of the polarizer (Figure 3a), ±1st-order optical sidebands of ECW
(originating from the P-polarization incident lightwave) are flipped in their phase at a weak
optical modulation while those of ECCW retains their phase. Then, as shown in Figure 3b,
the polarization of ±1st-order optical sidebands is perpendicular to the polarization axis
of the polarizer. In contrast, ±3rd-order optical sidebands are sufficiently small for the
S-polarization components due to the modulation index including a small |η|; hence, only
the sidebands of the P-polarization are projected by the polarizer so that they become the
desired output lightwave, as shown in Figure 3c. Under a negative η, the intensity of the
desired ±3rd-order optical sidebands, P3, is approximately expressed as

P3 ' E2
0

sin2 2α

4
[J3(∆θ)− J3(|η|∆θ)]2, (10)

when the components perpendicular to the axis of the polarizer are neglected. For the
±1st-order optical sidebands, which are undesired components in the generated OTT
signals, P1 is

P1 ' E2
0

[
sin2 2α

4 [J1(∆θ)− J1(|η|∆θ)]2

+
(

cos2 αJ1(∆θ)+sin2 αJ1(|η|∆θ)√
ξ

)2
]

.
(11)

From Equations (10) and (11), the optimum value of α is expected to be 45◦. Figure 4a
shows the dependence of P1/P3 on ∆θ for several |η|, assuming that ξ = 104 (40 dB). The
∆θ, giving the bottom of each dip, corresponds to the solution of Equation (9). With a
decreasing |η| (i.e., an increase in attenuation), the dip of each plot gradually shifts to the
higher ∆θ. Additionally, the dip becomes narrower with a decrease in |η|, originating
from the fact that the slope of J1(x) increases when the argument x is far from x0 = 1.841,
which gives a local maximum of J1(x0). This fact is also summarized in Figure 4b, which
show dependence of the maximum suppression ratio of the 1st-order optical sidebands
and 3 dB width of the dips versus |η|. This means that, by adopting a lower |η| (higher
attenuation), the suppression ratio is enhanced by more than 30 dB, while the suppression
ratio is degraded by deviations of η and ∆θ. A deviation in α has less of an effect on the
suppression ratio given a sufficiently high polarization extinction ratio, while the deviation
directly affects P3 and P1, as implied by Equations (10) and (11).
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0.398 (8 dB attenuation), 0.316 (10 dB attenuation), 0.251 (12 dB attenuation). Polarization extinction
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the maximum when |η| equals to 0.251.

Regarding the desired optical signal power P3, the output power is increased with
increase of ∆θ, according to the characteristic of J3(x). For focusing on conversion efficiency
from the input RF drive signal power, P3 normalized by ∆θ2 is plotted on Figure 4c for
several |η|. As can be seen, P3/∆θ2 is increased with a decreasing |η| and the ∆θ giving
the local maxima of each plot are gradually increased, in the range of 3–3.5 in ∆θ.

3. Experiments
3.1. Experimental Setup and Proof-of-Concept Experiment

For conducting an experiment, we evaluate the wavelength dependence of the ex-
tinction ratio (ER) of the MZM integrated into a Z-cut Lithium Niobate substrate [31].
Halfwave voltage and modulation bandwidth of the modulation electrodes were evaluated
to be 2.4 V and 23 GHz respectively, for each arm. The ER was designed to be more than
20 dB, and the insertion loss was evaluated to be 5.7 dB, at a wavelength of 1550 nm. To
evaluate the wavelength dependence of ER, optical-power transmission spectra of MZM
were obtained using a wavelength-swept light source (Agilent, 81689A) with a line-width
of around 1 MHz. Transmission spectra of MZM were measured under each of its null- and
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in-phase conditions at a wavelength of 1550 nm, and the condition was fixed during each
of the spectrum measurements. For wavelengths ranging from 1530 nm to 1570 nm, ERs of
more than 30 dB were obtained from the MZM. And, at the wavelength of 1550 nm, ER was
evaluated to be more than 40 dB. Then, the suppression of undesired even-order sidebands
and carriers is sufficiently guaranteed due to destructive interference within MZM.

Figure 5 shows the experimental setup for evaluating the wavelength tunability of the
OTT signal generator [30,31]. For the lightsource of the OTT signal generator, we employed
an external-cavity laser diode (Agilent, 81689A). By using a 2 × 2 optical coupler followed
by a polarization-maintaining optical circulator (OC), a polarizer (polarization extinction ra-
tio >35 dB) and a quarter-waveplate, the incident lightwave generated from the lightsource
was introduced into PMSI, which was composed of a polarizing beam splitter (polariza-
tion extinction ratio >21 dB, insertion loss <1.0 dB), PRE and MZM. To compensate for
the wavelength-dependence of polarization-mode dispersion of polarization-maintaining
optical fibers (PMFs), some PMFs were connected to couple its slow- (fast-) axis to the fast-
(slow-) axis of the other PMFs. In addition, a quarter waveplate was employed to rotate
the polarization of parasitic unmodulated lightwaves originating from the reflection at the
end of a PMF and/or PBS; hence, the parasitic unmodulated lightwaves were rejected by
the polarizer. Among the setup, the components with a narrow wavelength range were
the OC (1550 ± 30 nm) and the 2 × 2 optical coupler (1550 ± 20 nm), which restricts the
tunable range of the setup. However, the latter was used just for monitoring the launched
optical power, so that it can be removed from the setup. The bias voltage of the MZM was
adjusted to its null-bias condition at the wavelength of 1550 nm to suppress the optical
carrier and even-order optical sidebands using the MZM. During measurement, the bias
voltages were fixed. To drive the MZM, a 10 GHz RF signal was amplified (Ciao Wireless,
CA-910-4042) and applied to the MZM. The applied RF power was evaluated using a
conventional RF power meter (HP, 437B and 8481A). Using an optical spectrum analyzer,
the optical spectrum of the lightwave emitted from the OTT signal generator was evaluated.
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Figure 5. Experimental setup. Thin red lines are the RF signal connections, and double solid lines are
connections for lightwave. ECLD: External-cavity diode laser, S-F conv.: PMF connector coupling
a slow- (fast-) axis of the either PMF to a fast- (slow-) axis of the other, PM: optical power-meter,
OC: Optical circulator, POL: Polarizer, λ/4: quarter-waveplate, PBS: Polarizing beam-splitter, PRE:
Polarization-rotation element, MZM: Mach-Zehnder optical Modulator, OSA: optical spectrum
analyzer, 3 dB: 3 dB RF hybrid coupler, PS: RF phase shifter, and ATT: Attenuator.

3.2. Experimental Results Obtained from 1550 nm Seed Lightwave

Figure 6 shows the typical optical spectra of the experimentally obtained OTT signals
and the strongly modulated lightwave launching into PBS. The RF signal amplitude was
adjusted to set the modulation index ∆θ to 2.93, and the RF attenuation 1/|η| required
for selective polarization rotation was adjusted to 11 dB, i.e., two modulation indices ∆θ
and |η|∆θ (=0.83) were obtained from the single MZM. As can be seen, the ±1st-order
optical sidebands were suppressed by 34 dB by the polarizer, and the desired ±3rd-order
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optical sidebands were −28 dBm to −29 dBm. Although no feedback system was adopted
in the experimental setup simply placed in a room without strict thermal shielding, the
obtained optical output power was sufficiently stable; power fluctuation of the suppressed
±1st-order optical sidebands was within ±0.3 dB for 8 h. This implies that the phase
difference between the lightwaves circulating in PMSI does not fluctuate due to the use
of the same one polarization mode of PMSI. Using both polarization modes in the PMSI
composed of PMFs, unavoidable fluctuation in optical-phase difference would be induced
by temperature fluctuation. It should be noted that only the±1st-order optical sidebands to
be suppressed at the polarizer are involved in the effect of the phase-difference fluctuation,
while the other sidebands and carrier do not suffer from such an effect: although intensity
fluctuation of even-order ones including the carrier might originate from that of MZM bias,
and its degree is sufficiently small. Additionally, the other odd-order (in this case ±3rd-
and ±5th-order) ones do not undergo interference so that their intensity is also stable.
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of ±3rd-order sidebands, respectively.

To evaluate the suppression of ± 1st-order optical sidebands, we experimentally
evaluate the dependence of the intensity on the induced optical phase ∆θ under the fixed η,
as shown in Figure 7. As can be seen, the intensity plots agree well with the analytically
obtained dip characteristic for RF attenuation 1/|η| = 11.5 dB, supporting the validity
of the model analysis shown in Figure 4a of Section 2.2. The 0.5-dB difference against the
RF attenuation in the setup (11 dB) may be due to the accumulation of the other insertion
losses such as DC blocks and bias tees, and the residual calibration error of the RF power
meter. The experimentally obtained intensity was −35 dB, which was restricted by the
lower limit of the optical spectrum analyzer used in the experiment and the ER of the
polarizer. The degree of the suppressed intensity is also evaluated under the condition of
satisfying Equation (9) for the negative η, which is shown in Figure 8. With a decrease in
∆θ, the intensity gradually decreased and followed the analytical result. Some deviation
in the experimental results would be mainly due to the deviations of RF power and RF
attenuator, besides instrument accuracy of the optical spectrum analyzer.
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Figure 9 shows RF spurs against ∆θ obtained from a photodiode (PD) with a 3 dB
bandwidth of 70 GHz (Finisar, XPDV3120R) and an RF harmonic mixer (HP, 11970U)
connected to an RF spectrum analyzer (HP, 8563E). First- (10 GHz) and fourth-order
(40 GHz) spurs were detected with the degree of ~−30 dB, mainly originating from the
beat of the desired components, their neighbor components (±2nd-order components), and
the ±1st-order components cut by the polarizer. In contrast, second-order (20 GHz) spurs
were relatively strong: around −10 dB against the desired lightwave components. These
spurs are due to the desired components and the ±5th-order components. Additionally,
these spurs were stronger than the expected power. Such a difference might be ascribed
to the effect of dispersion of optical fibers. However, the strength of these spurs might
not be significant: these RF frequencies are sufficiently far from the desired sextupled
signal frequency so that they can be rejected by RF signal processing such as using an RF
band-pass filter [29].
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3.3. Wavelength-Tunable OTT Signal Generation

Figure 10 shows the typical optical spectra of OTT signals obtained from the generator
with several seed lightwave wavelengths. The OTT signals were successfully generated
without increasing the spurs: for the intensity ratio of ±1st-order optical sidebands against
the desired ±3rd-order ones, more than 20 dB was achieved over a 40 nm wavelength
range in the C-band, owing to the wavelength-independent ER of the MZM and the
sufficiently high polarization extinction ratio of the polarizer in the broad-bandwidth range.
In acquisition of Figure 10, the bias voltage of MZM was fixed at its null point for the
wavelength of 1550 nm, to avoid a complicated adjustment of the bias voltage. Such a
constant voltage might also induces residual spurs due to a slight deviation in the bias
voltage condition from the null, when the wavelength of the seed lightwave shifts from
1550 nm. The suppression ratio would be further enhanced if we accept bias voltage
tracking according to the wavelength of the seed lightwave. Power fluctuations of the
desired OTT signals due to the seed-wavelength changes were within −25~−32 dBm.
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seed lightwave were adjusted to (a) 1530.06 nm, (b) 1540.05 nm, (c) 1550.05 nm, and (d) 1560.04 nm,
respectively.

4. Summary

We demonstrated an optical two-tone signal generation scheme at arbitrary wave-
lengths without involving complicated optical signal processing in the wavelength axis.
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Using an analytical approach, we optimized the driving condition for suppressing unde-
sired lightwave components and conducted a proof-of-principle experiment. Due to the
sufficiently high ER of the MZM and polarizer, the ±1st-order optical sidebands has been
suppressed with a ratio of more than 20 dB against the desired wavelength components.
Because this scheme requires no optical filters, it can be useful for generating optical two-
tone signals at arbitrary wavelengths and may be extended to RF signal measurement by
combining other microwave-photonics techniques.
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