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Abstract: In this letter, we construct the neural network (NN)-based transceiver to compensate for
the varying inter-symbol-interference (ISI) effect in visible light communication (VLC) systems. For
processing variable-length sequences, the convolution neural network (CNN) is utilized, and then
the residual network structure is further leveraged at the receiver part to enhance the performance.
To cope with varying ISI, the pilot sequence, instead of channel side information (CSI) obtained by an
additional module, is integrated into the framework to recover the data sequence directly. Simulation
results show that the symbol error rate (SER) performance of the proposed NN-based transceiver can
outperform separately designed transceiver schemes and approach the ideal perfect CSI (PCSI) case
with a few pilot symbols or even no pilot.

Keywords: visible light communication (VLC); neural network (NN); deep learning; autoencoder
(AE); transceiver design

1. Introduction

Visible light communication (VLC) [1] has recently been widely researched by academia
and industry, due to its advantage of simultaneous lighting [2] and communication. For
low complexity and cost, intensity modulation using light emitting diodes (LED) and
direct detection with a photodetector (PD) is commonly employed in the VLC system.
However, there are some challenges that create an obstacle to the development of VLC.
First, the nonlinearity characteristic of LEDs is significant. Thus, the transmitted signal
usually satisfies the peak intensity constraint. Second, due to the limited bandwidth of
LED, efficient constellation modulation [3] is applied for a higher data rate. Third, the
reflected signal leads to the inter-symbol-interference (ISI), which should be compensated
by extra equalization [4] or error correction code.

Machine learning, especially deep learning [5], is now penetrating every facet of
wireless communication [6]. The general method of deep learning is comprised of two types:
in one respect, the individual parts of communication systems, such as pilot design [7],
channel estimation and detection [8], are replaced by a learned efficient neural network
(NN); in the other respect, the end-to-end learning of the whole communication system
creates a new paradigm for joint optimization of transceivers [9]. Due to the similarity
of autoencoder (AE) and communication systems, several works have been completed
on transceiver design using AE to further promote the performance of transceivers. The
early works of NN-based transceivers focus on the additive white Gaussian noise (AWGN)
channel model, which deserves more practical consideration for application. In [10], the
authors focus on the continuous data transmission and synchronization issue in the receiver.
However, the ISI is neglected, and a stacked fully connected neural network is inefficient.
In [11], the pilot and data are trained together in the AE; however, the fading channel is the
only single path and the sequence length is limited due to the fully connected structure.
In [12], Zhu et al. provide the convolution neural network (CNN) structure, which is
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adequate for sequence training. Still, the simulated ISI channel is static and not practical
for varying models.

During the next several years, similar approaches are migrated to enhance the perfor-
mance of transceivers in the VLC domain, where typical characteristics, such as unipolarity
of signal [13], illumination requirements [14,15] and nonlinearity of channel [16], should
be sufficiently considered. In [17], for higher bandwidth efficiency, the VLC orthogonal
frequency division multiplexing (OFDM) system with the stochastic ISI model is optimized
with the AE approach. However, the ISI is mainly eliminated by the cyclic prefix, which can
be further modified through the deep learning method. Meanwhile, in [18], to explicitly
integrate the channel side information (CSI) into AE VLC system, the classic model-based
method is required to estimate CSI in the receiver, which adds extra complexity to the
whole system. Similarly, for more real-life application constraints, Ref. [19] proposed
VLCnet, which takes into account illumination level, flicker influence and channel impulse
response. However, an additional minimum mean square error (MMSE) equalizer with
real CSI is still required in practical implementation.

In this letter, we propose an NN-based transceiver for the VLC system over the ISI
channel with the modified AE model, which extends the work [20] focusing on the single
path channel and CSI obtained by the traditional method. The contribution of this paper
can be summarized as follows:

(1) To handle the sequence input issue, we propose the AE framework with a 1-D
convolution (Conv1D) layer structure. Meanwhile, the residual network structure is utilized
at the receiver to improve training performance. The whole architecture is flexible for
processing continuous transmission signals, which is prevalent in current communication
systems.

(2) To the best of the author’s knowledge, it is the initial work to integrate the pilot
sequence and data sequence into the transceiver design with NN in the VLC domain. This
joint structure enables the optimization of transmitter and receiver with implicit channel
estimation in the whole system. Thus, the additional channel estimation part using the
traditional method can be eliminated. The pilot-assisted transceiver enables the receiver to
recover the data sequence directly without explicit CSI.

The simulation results demonstrate that the symbol error rate (SER) performance of
the proposed transceiver can outperform the individually designed transceiver scheme
and approach the ideal perfect CSI (PCSI) case with a few pilot symbols for above 2 level
modulation or even no pilot for a 2 level case.

2. VLC System Model With ISI

The common ISI VLC model can be given as in Figure 1, where the light-of-sight
(LOS) path is the dominant one and the reflected path by the wall causes the multipath
distortion. The validation of the model has been experimentally illustrated in [21] under
the off-the-shelf devices and standard indoor environments. Due to the slowly changing
property (compared to the baud rate), the ISI VLC model is usually regarded as a linear
time-invariant system during multiple symbols duration. For the validity of channel
estimation, data and pilot sequence experience the same channel condition. Referring
to [22], the received signal containing data and pilot can be written as:

y(t) = h(1)(t)⊗ x(t) + h(2)(t)⊗ x(t− τd) + w(t), (1)

where h(1)(t) and h(2)(t) are the impulse response for the LOS path and the reflected path,
respectively, x(t) is the transmitted signal, τd is the transmission delay for the second path,
w(t) is the AWGN.
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Figure 1. Two paths ISI model in VLC system.

Assuming a matched filter with the impulse response of the LOS path, then we can
obtain the discrete time model as [18]:

y = Hx + w, (2)

where y = (y1, y2, · · · , yN)
T is the received signal, x = (x1, x2, · · · , xN)

T is the transmitted
signal, w = (w1, w2, · · · , wN)

T is the AWGN with mean 0 and variance σ2. H is a Toeplitz
matrix containing the shifted two path channel coefficients and (i, j)-th element [H]ij is
expressed as:

[H]ij =


1 + γ(1− ∆), for j = i,
γ∆, for j = i− 1,
0, else,

(3)

where ∆ = τd/T = (dISI − d)/(cT) is the normalized delay, d is the LOS path transmission
distance, dISI is the reflected path transmission distance, c is the speed of light and T is
the symbol time interval. In the indoor VLC model, the channel DC gain ratio γ can be
calculated as:

γ = h(2)/h(1) = ρd4/d4
ISI, (4)

where ρ is the walls reflectivity factor. The channel DC gain h of an optical link can be
obtained as:

h =


(m+1)Sn2

2πd2 sin2(Ψc)
cosm(φ)Ts(Ψ) cos(Ψ), 0 ≤ Ψ ≤ Ψc,

0, Ψ > Ψc.
(5)

The order of Lambertian emission is m = − ln 2/ ln(cos Φ1/2), φ is the angle of
irradiance, Ψ is the angle of incidence and other parameters are introduced in Table 1.

Table 1. VLC system parameter.

Parameter Value

Room Dimension (Length × Height) 3 m × 3 m

LED position (1.5 m, 3 m)

LED beam width Φ1/2 60◦

PD detector area S 0.1 m × 0.1 m

PD field of view (FOV) Ψc 90◦

Refractive index of a lens at a PD n 1.5

Optical filter gain Ts(Ψ) 1

Walls reflectivity factor ρ 0.53

Symbol time interval T 10−8 s
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3. Autoencoder Model

Here, we propose the NN framework in Figure 2 to solve the transceiver design issues
in the above section. For the flexibility of the processing sequence, we leverage Conv1D
layers in the AE model. To compensate for the varying ISI, the pilot sequence is creatively
incorporated into the NN-based transceiver.
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Figure 2. NN-based transceiver framework for VLC system.

In the transmitter part, data and pilot, which represent random and fixed value
sequences, respectively, are input into the corresponding transmitter NNs. All the data
sequences sd ∈ {1, · · · , M}Nd and pilot sequences sp = 1Np×1 are mapped into one-hot
vectors, whose index value is 1 and other values are all 0. The Conv1D layer enables the
input vectors to be convolved and added by trainable convolution kernels and biases,
respectively, which offer efficient mutual operation between the kernel-size-dependent
nearby independent symbols instead of redundant distant symbols in a fully connected
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structure. Detailed parameters of all Conv1D layers, including filters number, kernel
size and activation function, are provided in Table 2. The last Conv1D layers in the pilot
transmitter, data transmitter and receiver employ a ‘valid’ padding scheme, while other
Conv1D layers utilize the ‘same’ scheme. The strides are configured as 1. The rectified
linear unit (ReLU) activation function used in majority layers produces nonlinearity and
superior convergence performance, while the linear function employed in the layers before
constraint layers guarantees that the signal space will not be adjusted. For satisfying the
non-negative and peak power constraint of the sent light signal, that is, xi ∈ [0, A], i =
1, · · · , N, a weighted sigmoid activation function is utilized in the constraint layer, that is,
A× sigmoid(·), where A is the peak power constraint.

Table 2. Structrue of Autoencoder.

Part Layer Filters Kernel Size Activation

Pilot transmitter

Conv1D Np lp ReLU
Conv1D M lp ReLU
Conv1D 1 1 Linear

Constraint - - Sigmoid

Data transmitter

Conv1D Nd lp ReLU
Conv1D M lp ReLU
Conv1D 1 1 Linear

Constraint - - Sigmoid

Receiver

Conv1D Nd lp ReLU
Conv1D M lp ReLU
Conv1D M lp ReLU
Conv1D M 1 Softmax

In the channel layer, both data and pilot sequences are firstly multiplied by an ISI
Toeplitz matrix, whose row vectors are the shifted multipath channel vectors. Then, the
noise generated from a standard normal distribution with a fixed variance σ2 = 1/SNR,
where SNR is the signal-to-noise ratio, is added into the distorted sequences.

At the receiver part, if the noisy pilot sequence is only concatenated with the data
sequence, it is notoriously hard for the receiver NN to treat pilot and data distinctively based
on the provided modest NN scale. Therefore, for the sake of addressing the influence of the
pilot, the noisy pilot sequence yp is reshaped into pilot matrix Yp = 1Nd×1yp

T ∈ RNd×Np ,
and then data sequence yd is concatenated together into the matrix [yd, Yp] ∈ RNd×(1+Np).
An intuitive explanation of these operations is illustrated in Figure 3. In the leftmost part
of Figure 3, the three boxes represent the pilot sequence while the next six bold boxes
represent the data sequence. With the proposed concatenation method, in the following
convolution operations, all the pilot symbols can influence the detection of the data symbol
by implicit joint channel estimation and equalization. The concrete performances depend
on the eventually learnable NN parameters. To enhance the capability of the NN receiver
and accelerate its convergence, we leverage the residual network structure, which means
the inputs and outputs of specific layers are added together. We use the softmax activation
function in the last layer to transform the input values into a probability vector over all
possible messages. The loss function of the training process is the categorical cross-entropy
of a data sequence, which is given as:

Lloss = −
M

∑
m=1

um log ûm, (6)

where um represents the mth index value of one-hot vector u and ûm is the corresponding
estimated value.

The NN structure and parameters are conceived empirically. Extensive hyper-parameters
searching, which might enhance the eventual performance, is not under consideration for
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brevity. The NN is trained using the back-propagation algorithm. The data and correspond-
ing label are the same randomly generated signal sequence in the AE unsupervised learning
strategy. Once the training process of NN is completed, the transmitter part can send the
data and pilot sequence using the NN or simplified lookup table. Based on the perfectly
synchronized pilot and data, the receiver can recover the data sequence straightforwardly
without estimating the CSI explicitly.
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Data 

Pilot 2
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8
9

1
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6
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21 3

21 3
21 3

21 3

21 3
21 3
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*

Concatenate

Figure 3. Visualization explanation of ‘Reshape’ and ‘Concatenate’ layers.

4. Simulation Results

Based on the channel model in Figure 1, we simulate two typical PD positions (around
the corner/in the middle of the room) and the average performance to verify the effec-
tiveness of our proposed method. The basic parameter configuration for the VLC system
is given in Table 1. The PD’s positions and corresponding parameters are presented in
Table 3.

Table 3. PD positions and corresponding parameters.

PD Position (m) d (m) dISI (m) γ ∆

(0.1, 0) 3.31 3.4 0.48 0.03

(1.5, 0) 3 4.24 0.13 0.41

We set the sequence length of data and pilot as Nd = 100 and Np ∈ {3, 10}, respectively.
The tested constellation set cardinality M ∈ {2, 4}. The SNR is defined as 1/σ2 here
and peak power as A = 1. The multipath channel coefficients are generated randomly
considering the PD uniformly appears in the x axis, that is, the PD’s coordinate (xPD, yPD)
satisfies xPD ∼ U [0, 3m], yPD = 0.

In our baseline method, we use M-PAM for data and pilot sequences with length
Nd = 100 and pilot value xp ∈ {[0, 1, 0]T , [1, 1, 1]T} at the transmitter. As for the receiver,
minimum mean square error (MMSE) channel estimation result or PCSI is provided, and
then maximum likelihood sequence estimation (MLSE), using the Viterbi algorithm [23],
is utilized.

In our simulation, we use TensorFlow 2.0 and Python 3.6. During the training process,
100, 000 samples are employed for 50 epochs. For every 10 epochs, the progressively
increasing batch size from set {64, 128, 256, 512, 1024} is employed. The Adam optimizer is
used and the learning rate decreases with the ‘loss’ monitor factor 0.1, the patience 2, the
initial learning rate 0.001 and the minimum learning rate 0.00001. For training effectiveness,
the early-stopping strategy is applied with the ‘loss’ monitor and the patience 5.

In Figure 4, we consider the case M = 2. ‘AE NOCSI’ means that no pilot or CSI is
input into the receiver NN. The training SNR is given in the caption of Figure 4 (In the
‘NOCSI’ case, if the training SNR is too low or the same as using the pilot case, the final
SER performance will converge to a constant value in the high SNR domain; therefore,
we configure the training SNR slightly higher than using the pilot case). Once the NN
converges steadily, the learned data constellation S = {0, 1}, the same as the 2-PAM
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scheme, for all the symbols in the sequence and the pilot sequence is 1Np . It can be
seen from Figure 4a that when the PD locates around the corner of the room, the SER
performance of AE schemes using pilot or not is inferior to MLSE schemes with excellent
CSI conditions. However, Figure 4b demonstrates that AE schemes with a few pilot symbols
can approach the optimal MLSE with PCSI. The average SER performance in Figure 4c
further clarifies that in the majority positions in a room, AE can learn efficient transceiver
and baseline methods, and even without CSI, the receiver can still compensate for the
detrimental effect of ISI and can finally recover the sequence despite the limited decline in
the high SNR domain.
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Figure 4. The SER performance of input symbol constellation cardinality M = 2. The training
SNR = 16 dB for ‘NOCSI’ case and SNR = 13 dB for using pilot case. (a) PD position (0.1, 0) result.
(b) PD position (1.5, 0) result. (c) Average result of PD position following uniform distribution.

The AE results are slightly distinctive when M = 4. Similar to the M = 2 case, the
learned pilot sequence is 1Np . Nonetheless, the learned data constellation sets illustrated in
Table 4 indicate that the constellation sets of schemes (Almost all the learned symbols in the
sequence are mapped into the same constellation set. Only the last two or three symbols
are mapped into different sets, but the values are still similar. Here, we only focus on the
majority cases) using pilot converge to the equal-interval 4-PAM but the interval is irregular
without CSI, which agrees with the PCSI and noisy CSI case in [20]. It can be seen from
Figure 5 that the SER performance of ‘AE NOCSI’ significantly degrades compared with
AE using pilot. Thus, the importance of CSI is obvious for above 2 level modulation. With
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the aid of the pilot sequence, the SER curve can approach the results of MLSE with PCSI
in Figure 5b,c, which shows that the joint design of the transceiver using AE can reduce
the power consumption with fewer pilot symbols to meet the desired SER performance.
However, the performance is unfavorable in Figure 5a, similar to in Figure 4a, especially in
the high SNR case, where the ISI occupies a more important position than noise. To handle
these issues, one feasible strategy is to enlarge the pilot symbol number and leverage a
deeper NN structure, which deserves a delicate experimental validation in our future work.
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Figure 5. The SER performance of input symbol constellation cardinality M = 4. The training
SNR = 26 dB for ‘NOCSI’ case and SNR = 23 dB for using pilot case. (a) PD position (0.1, 0) result.
(b) PD position (1.5, 0) result. (c) Average result of PD position following uniform distribution.

Table 4. Learned constellation and baseline constellation for M = 4.

Case Constellation SET

4-PAM [0, 0.33, 0.67, 1]
AE NOCSI [0, 0.25, 0.56, 1]
AE Pilot-3 [0, 0.32, 0.65, 1]

AE Pilot-10 [0, 0.32, 0.66, 1]

5. Conclusions and Future Work

In this letter, we propose an NN-based transceiver design scheme to compensate
for the varying ISI effect in the VLC system. By leveraging the AE and CNN structure,
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the data and pilot sequence constellation mapping strategy at the transmitter, and the
direct sequence estimator at the receiver can simultaneously be obtained. Simulation
results demonstrate that the proposed transceiver can outperform the model-based method
especially when imperfect CSI is available with limited pilot symbols. The NN-based
transceiver design paradigm paves a new way for a bandwidth-efficient VLC system as the
high-speed information transmission requirement increased.

Three potential future works, which extend the application of the NN-based transceiver
for VLC systems, are discussed below. First, the channel factors adopted in the validation
process are relatively simple; thus, more complicated issues, such as hardware imperfection
and interference by environmental light, are suitable for sufficiently utilizing the NN’s
capability. Second, prevalent OFDM schemes are extensively applied for high-speed VLC
systems. An NN-based OFDM system desiring less pilot consumption is attractive. Eventu-
ally, the powerful Transformer [24] structure witnesses substantial breakthroughs in almost
all deep learning domains. A substitute with Transformer blocks for CNN layers might
lead to unexpected performance.
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