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Abstract: Light-slowing effect at band edges in photonic crystals (PCs) is widely utilized to enhance
optical absorption. However, according to the Bragg scattering theory, photonic bandgaps (PBGs) in
traditional all-dielectric one-dimensional (1-D) PCs shift towards shorter wavelengths as the incident
angle increases. Therefore, light-slowing effect in traditional all-dielectric 1-D PCs is also angle-
sensitive. Such angle-sensitive property of light-slowing effect in traditional all-dielectric 1-D PCs
poses a great challenge to achieve wide-angle absorption. In this paper, we design an angle-insensitive
PBG in a 1-D PC containing hyperbolic metamaterials based on the phase-variation compensation
theory. Assisted by the angle-insensitive light-slowing effect at the angle-insensitive band edge, we
achieve wide-angle absorption at near-infrared wavelengths. The absorptance keeps higher than
0.9 in a wide angle range from 0 to 45.5 degrees. Besides, the wide-angle absorption is robust when
the phase-variation compensation condition is slightly broken. Our work not only provides a viable
route to realize angle-insensitive light slowing and wide-angle light absorption, but also promotes
the development of light-slowing- and absorption-based optical/optoelectronic devices.

Keywords: photonic crystal; hyperbolic metamaterial; photonic bandgap; band edge; light slow-
ing; absorption

1. Introduction

Optical absorption plays an important role in various optical/optoelectronic devices,
such as solar cells [1,2], photodetectors [3,4], sensors [5,6], and gas analyzers [7,8]. Over
the past two decades, a series of resonant microstructures have been proposed to enhance
optical absorption [9–20]. Particularly, researchers discovered that light-slowing effect can
occur at the band edges in photonic crystals (PCs) [21–23]. Assisted by the light-slowing
effect at the band edges, optical absorption can be greatly enhanced [24–27]. As a typical
kind of PC, all-dielectric one-dimensional (1-D) PCs have attracted great interest [28–32]
since they can be easily fabricated by the electro-beam vacuum deposition [33] and the
magnetron sputtering techniques [34]. However, according to the Bragg scattering theory,
photonic bandgaps (PBGs) in traditional all-dielectric 1-D PCs will shift towards shorter
wavelengths (i.e., angle-sensitive) as the incident angle increases [28,33–37]. Therefore,
light-slowing effect in traditional all-dielectric 1-D PCs is also angle-sensitive, which poses
a challenge to achieve wide-angle absorption. To date, how to achieve angle-insensitive-
light-slowing effect in 1-D PCs has remained an open theoretical problem. If one can
achieve angle-insensitive light-slowing effect in 1-D PCs, wide-angle absorption can also
be realized.
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Over the past decade, a kind of strongly anisotropic metamaterial called hyperbolic
metamaterials (HMMs) has attracted immense attention since they possess potential ap-
plications in PBG engineering [38–41], spontaneous emission controlling [42], perfect
absorbers [43,44], and lasers [45]. Particularly, by introducing HMMs into 1-D PCs, re-
searchers realized a new class of PBGs called angle-insensitive PBGs under transverse
magnetic (TM) polarization [46–48]. Such special 1-D PCs can be called 1-D PCs containing
HMMs (PCCHs). Different from blueshift PBGs in traditional all-dielectric 1-D PCs, band
edges of angle-insensitive PBGs in 1-D PCCHs remain almost unshifted as the incident
angle increases [46–48]. The angle-insensitive property of PBGs in 1-D PCCHs provides us
a possibility to achieve angle-insensitive light slowing effect. In this paper, we design an
angle-insensitive PBG in a 1-D PCCH based on the phase-variation compensation theory
in [46]. Then, we utilize the angle-insensitive light slowing effect at the angle-insensitive
band edge in the designed 1-D PCCH to achieve wide-angle absorption at near-infrared
wavelengths. At the short-wavelength angle-insensitive band edge (λ = 1702.0 nm), the
absorptance keeps higher than 0.9 in a wide angle range from 0◦ to 45.5◦. Compared
with the reported wide-angle absorbers based on 2-D and 3-D structures [19,49,50], the
proposed wide-angle absorber based on 1-D lithography-free structure can greatly re-
duce the fabrication costs. Next, we also prove that the wide-angle absorption is robust
when the phase-variation compensation condition is slightly broken. Our work not only
provides a viable route to realize angle-insensitive light slowing and wide-angle light
absorption, but also promotes the development of light-slowing- and absorption-based
optical/optoelectronic devices.

This paper is organized as follows. In Section 2, we recall the angle-sensitive property
of the absorption based on the light slowing effect at the band edge in traditional all-
dielectric 1-D PC. In Section 3, we design an angle-insensitive PBG in a 1-D PCCH based
on the phase-variation compensation theory in [46] and then utilize the angle-insensitive
light slowing effect at the angle-insensitive band edge to achieve wide-angle absorption
at near-infrared wavelengths. Besides, we change the layer thickness to slightly break
the phase-variation compensation condition to analyze the robustness of the wide-angle
absorption. Finally, the conclusion is given in Section 4.

2. Angle-Sensitive Absorption Based on Light Slowing Effect at Band Edge in
Traditional All-Dielectric 1-D PC

In this section, we recall the angle-sensitive property of the absorption based on the
light-slowing effect at band edge in traditional all-dielectric 1-D PC. The all-dielectric 1-D PC
can be denoted by (AB)10. The refractive indices of dielectrics A and B are set to be nA = 1.5
and nB = 2.5, respectively. The thicknesses of A and B layers are set to be dA = 270.0 nm
and dB = 240.0 nm, respectively. According to the transfer matrix method [51], we write a
MATLAB code to calculate the transmittance spectrum of the all-dielectric 1-D PC (AB)10 at
normal incidence under TM polarization, as shown in Figure 1a. According to the boundary
conditions of the electromagnetic fields, the transfer matrix of a layer can be represented by
a 2× 2 matrix. Then, the total matrix of the whole structure can be expressed as the product
of the transfer matrices of all the layers. Next, the transmittance/reflectance/absorptance
spectra can be calculated by the elements of the total transfer matrix. The incident medium
is set to be air and the exit medium (substrate) is set to be BK7 glass with a refractive index
nS = 1.515 [52]. One can see that a PBG emerges in the wavelength range from 1699.9
to 2469.0 nm. The short- and the long-wavelength band edges are marked by P1 and P2
in Figure 1a. To show the absorption property of the band edges, we add the material
loss into the lossless all-dielectric 1-D PC to construct a lossy all-dielectric 1-D PC. Now,
the refractive index of dielectric B is selected to be nB = 2.5 + 0.08i. Figure 1b give the
absorptance spectrum of the lossy all-dielectric 1-D PC (AB)10 at normal incidence under
TM polarization. One can see that two absorptance peaks emerge at the short- and the
long-wavelength band edges. Specifically, the peak values of two absorptance peaks reach
0.712 and 0.609. To confirm that the absorptance peaks originate from the light-slowing
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effect, here we calculate the group refractive index ng based on the theory in [53]. The real
part of the effective refractive index of the 1-D PC can be calculated by [53]

Re[neff(ω)] =
arg[t(ω)]c

dTotalω
, (1)

where t(ω) represents the transmission coefficient of the 1-D PC, c represents the light
velocity in vacuum, ω represents the angular frequency of the incident light, and dTotal
represents the total thickness of the 1-D PC, respectively. Then, the group refractive index
of the 1-D PC can be calculated by [53]

ng(ω) = Re[neff(ω)] + ω
d{Re[neff(ω)]}

dω
. (2)
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Figure 1. (a) Transmittance spectrum of the lossless all-dielectric 1-D PC (AB)10 at normal incidence
under TM polarization. (b) Absorptance and (c) group refractive index spectra of the lossy all-
dielectric 1-D PC (AB)10 at normal incidence under TM polarization.

According to Equations (1) and (2), we calculate the group refractive index spectrum
of the lossy all-dielectric 1-D PC (AB)10 at normal incidence under TM polarization in
Figure 1c. Clearly, at two band edges, the group refractive indices are greatly enhanced
to 3.418 and 2.908, respectively. The corresponding group velocities are only 0.293c and
0.344c, respectively. Hence, two absorptance peaks originate from the light-slowing effect
at two band edges.

Now we discuss the angle-dependence of the absorption. Figure 2a gives the absorp-
tance spectrum of the lossy all-dielectric 1-D PC (AB)10 as a function of the incident angle
under TM polarization. One can clearly see that as the incident angle increases, the PBG
strongly shifts towards shorter wavelengths. Therefore, two absorptance peaks (shown by
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blue dashed lines) will also shift towards shorter wavelengths. Specifically, as the incident
angle increases from 0◦ to 60◦, the short-wavelength absorptance peak strongly shifts from
1698.4 to 1557.7 nm and the long-wavelength one strongly shifts from 2476.3 to 2100.7 nm.
Figure 2b also gives the group refractive index spectrum of the lossy all-dielectric 1-D PC
(AB)10 as a function of the incident angle under TM polarization. As demonstrated, two
group refractive index peaks exhibit blueshift property. Such angle-sensitive property of
the light slowing effect gives rise to the angle-sensitive property of the absorptance peaks.
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Figure 2. (a) Absorptance and (b) group refractive index spectra of the lossy all-dielectric 1-D PC
(AB)10 as a function of the incident angle under TM polarization. (c) IFCs of dielectrics A and B under
TM polarization.

The blueshift property of the PBG in all-dielectric 1-D PC can be explained by the
Bragg scattering theory. It is known that the propagating phase within a unit cell of the
all-dielectric 1-D PC can be expressed as functions of the wavelength and the incident
angle, i.e.,

Φ(λ, θ) = kAz(λ, θ)dA + kBz(λ, θ)dB, (3)

where kAz and kBz represent the z components (perpendicular to the interface) of the wave
vectors within dielectrics A and B, respectively. Substituting the relative permittivity of
dielectric A or B (εA or εB) into the Maxwell equations, we obtain the equation of the
iso-frequency curve (IFC) of dielectric A or B under TM polarization [54]

k2
x

εA
+

k2
Az

εA
= k2

0 =

(
2π

λ

)2
, (4)

k2
x

εB
+

k2
Bz

εB
= k2

0 =

(
2π

λ

)2
, (5)
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where kx represents the x components (parallel to the interface) of the wave vector and
k0 represents the wave vector in vacuum. From Equations (4) and (5), both the IFCs of
dielectrics A and B are circles, as schematically shown in Figure 2c.

Then, substituting kx = k0 sin θ into Equations (4) and (5), we obtain

kAz =
2π

λ

√
εA − sin2 θ. (6)

kBz =
2π

λ

√
εB − sin2 θ. (7)

Next, substituting Equations (6) and (7) into Equation (3), we can finally obtain

Φ(λ, θ) =
2π

λ

(
dA

√
εA − sin2 θ + dB

√
εB − sin2 θ

)
. (8)

From Equation (8), we have ∂Φ/∂λ < 0 and ∂Φ/∂θ < 0.
According to the Bragg scattering theory, the Bragg condition of the lowest-frequency

PBG can be given by [55]

Φ
(
λBrg, θ

)
=

2π

λBrg

(
dA

√
εA − sin2 θ + dB

√
εB − sin2 θ

)
= π, (9)

where λBrg represents the Bragg wavelength of the lowest-frequency PBG. As the incident
angle increases, the Bragg wavelength λBrg must decrease to maintain the Bragg condition
[Equation (9)] since ∂Φ/∂λ < 0 and ∂Φ/∂θ < 0. Therefore, as the incident angle increases,
the PBG in all-dielectric 1-D PC will shift towards shorter wavelengths. Equivalently, two
band edges of the PBG will also shift towards shorter wavelengths.

In Figure 3, we calculate the absorptance of the lossy all-dielectric 1-D PC (AB)10 as
a function of the incident angle at the short-wavelength band edge λ = 1698.4 nm under
TM polarization. One can see that the absorptance is sensitive to the incident angle due
to the angle-sensitive property of the light-slowing effect at the short-wavelength band
edge. As the incident angle increases from 0◦ to 80◦, the absorptance rapidly decreases
from 0.713 to 0.167. At an incident angle of 45◦, the absorptance is only 0.419. The angular
average absorptance in the angle range from 0◦ to 90◦ is only A = 0.433. To sum up, the
absorption based on the light slowing effect at band edge in traditional all-dielectric 1-D
PC is angle-sensitive, which poses a great challenge to realize wide-angle absorption.
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3. Wide-Angle Absorption Based on Angle-Insensitive Light Slowing Effect at
Angle-Insensitive Band Edge in 1-D PCCH

In this section, we will achieve wide-angle absorption based on the angle-insensitive
light slowing effect in an angle-insensitive band edge in a 1-D PCCH. First, we design
an angle-insensitive PBG based on the phase-variation compensation theory in [46]. The
1-D PCCH is composed of alternating HMMs (C layers) and dielectrics (D layers). The
HMM is mimicked by a subwavelength indium tin oxide (ITO)/silicon (Si) multilayer (EF)2

and the dielectric is selected to be Si with a refractive index of nD = 3.48 [56]. The whole
structure can be denoted by [(EF)2D]6, as schematically shown in Figure 4a. As a candidate
of plasmonic materials at near-infrared wavelengths, the relative permittivity of ITO can be
described by the Drude model [57]

εE = ε∞ −
ω2

P
ω2 + iγω

, (10)

where ε∞ denotes the high-frequency relative permittivity, ωP denotes the plasma angu-
lar frequency, and γ denotes the damping angular frequency. By fitting the experimen-
tal data, the values of the parameters can be obtained: ε∞ = 4, }ωP = 2.03 eV, and
}γ = 0.0827 eV [57].
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Figure 4. (a) Schematic of the 1-D PCCH [(EF)2D]6, where (EF)2 represents the HMM and D represents
the dielectric. (b) x and z components of the effective relative permittivity tensor of the subwavelength
ITO/Si multilayer (EF)2 as a function of the wavelength. The purple shadow region represents the
type-I HMM region.

According to the effective medium theory, the effective relative permittivity tensor of
the subwavelength ITO/Si multilayer (EF)2 can be expressed as [54]

=
εC =

 εCx 0 0
0 εCx 0
0 0 εCz

, (11)

where
εCx = f εE + (1− f )εF, (12)

1/εCz = f /εE + (1− f )/εF. (13)

Here f = dE/(dE + dF) represents the filling ratio of the subwavelength ITO layer
within the HMM. In the design, we select f = 0.5. According to Equations (12) and (13),
we calculate the x and the z components of the effective relative permittivity tensor of
the subwavelength ITO/Si multilayer (EF)2 as a function of the wavelength, as shown in
Figure 4b. It can be seen that the type-I HMM conditions Re(εCx) > 0 and Re(εCz) < 0 are
satisfied in the wavelength range from 1229.5 to 2445.6 nm (shown by the purple shadow
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region in Figure 4b). Hence, the subwavelength ITO/Si multilayer (EF)2 can be viewed as a
type-I HMM in the wavelength range from 1229.5 to 2445.6 nm.

Now, we briefly explain why angle-insensitive PBG can be realized in such 1-D PCCH
according to [46]. Substituting the relative permittivity tensor of HMM C [Equation (11)]
into the Maxwell equations, we can obtain the equation of the IFC of HMM C under TM
polarization [54]

k2
x

εCz
+

k2
Cz

εCx
= k2

0 =

(
2π

λ

)2
. (14)

Since Re(εCx) > 0 and Re(εCz) < 0, the IFC of HMM C is a hyperbola, as schematically
shown by the purple solid curves in Figure 5a. As the incident angle increases, the x com-
ponent of the wave vector kx also increases, giving rise to the increase in the z component
of the wave vector within HMM C kCz. Therefore, we have ∂kCz/∂θ > 0. Substituting
the relative permittivity of dielectric D (εD) into the Maxwell equations, we can obtain the
equation of the IFC of dielectric D under TM polarization [54]

k2
x

εD
+

k2
Dz

εD
= k2

0 =

(
2π

λ

)2
. (15)
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Clearly, the IFC of dielectric D is a circle, as schematically shown by the blue solid
curve in Figure 5a. As the incident angle increases, the x component of the wave vector
kx also increases, giving rise to the decrease in the z component of the wave vector within
dielectric D kDz. Therefore, we have ∂kDz/∂θ < 0. Since ∂kCz/∂θ > 0 and ∂kDz/∂θ < 0, it is
possible to realize ∂Φ/∂θ = 0 according to Equation (3) [46]. It is known that kzd represents
the propagating phase within a single layer. Hence, ∂Φ/∂θ = 0 is also called the phase-
variation compensation condition [46]. When ∂Φ/∂θ = 0, the total propagating phase
within a unit cell of the 1-D PCCH is insensitive to the incident angle. As a consequence,
the Bragg wavelength satisfying the Bragg condition is also angle-insensitive, giving rise
to an angle-insensitive PBG. To meet the phase-variation compensation condition, the
thicknesses of HMM (C layer) and dielectric (D layer) should satisfy [46]

dC =
λBrg

2
1

√
εD

[
1− Re(εCz)

εD

] , (16)

dD =
λBrg

2
1√

Re(εCx)
[
1− εD

Re(εCz)

] . (17)
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where λBrg denotes the designed Bragg wavelength, Re(εCx) and Re(εCz) are valued at
the designed Bragg wavelength. It should be noted that Equations (16) and (17) are
derived under two approximate conditions |Re(εCz)| � 1 and εD � 1 [46]. Figure 5b
gives the thicknesses of HMM (C layer) and dielectric (D layer) as a function of the Bragg
wavelength. In the design, we select the Bragg wavelength as λBrg = 1844.8 nm and obtain
the thicknesses of C and D layers: dC = 276.0 nm and dD = 115.0 nm. Since f = 0.5, we can
finally obtain the thicknesses of the subwavelength ITO and Si layers dE = dF = 69.0 nm.

According to the above design, we calculate the absorptance spectra of the designed
1-D PCCH [(EF)2D]6 at different incident angles 0◦, 30◦, and 60◦ under TM polarization, as
shown in Figure 6a. It should be noted that we use the realistic subwavelength multilayer
structure (EF)2 but not the homogeneous layer with the effective relative tensor in the
calculation on the absorptance spectra. The incident medium is set to be air and the exit
medium (substrate) is set to be BK7 glass with a refractive index nS = 1.515 [52]. One can
see that a PBG emerges around the designed Bragg wavelength λBrg = 1844.8 nm. Two
absorptance peaks emerge at the short- and the long-wavelength band edges. Specifically,
the peak values of two absorptance peaks reach 0.951 and 0.379. Interestingly, the positions
of two absorptance peaks are angle-insensitive. Figure 6b also gives the group refractive
index spectra of the designed 1-D PCCH (AB)10 [(EF)2D]6 at different incident angles 0◦,
30◦, and 60◦ under TM polarization. As demonstrated, at two band edges, the group
refractive indices are greatly enhanced to 5.272 and 8.105, respectively. The corresponding
group velocities are only 0.190c and 0.123c, respectively. Besides, two group refractive
index peaks exhibit angle-insensitive property. Such angle-insensitive property of the light
slowing effect gives rise to the angle-insensitive property of the absorptance peaks.
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To further see the angle-dependence of two absorptance peaks, we also calculate the
absorptance spectrum of the designed 1-D PCCH [(EF)2D]6 as a function of the incident
angle under TM polarization, as shown in Figure 6c. The blue dashed lines represent
the positions of two absorptance peaks. As the incident angle increases from 0◦ to 60◦,
the short-wavelength absorptance peak slightly shifts from 1702.0 to 1647.0 nm and the
long-wavelength absorptance peak slightly shifts from 2362.3 to 2360.3 nm. The short-
wavelength band edge shows a slight blueshift. The reason is that the approximate condi-
tion |Re(εCz)| � 1 is not satisfied well at the short-wavelength band edge [46]. Compared
with the absorptance peaks in the traditional all-dielectric 1-D PC (see Figure 2a), the
absorptance peaks in the designed 1-D PCCH exhibit superior angle-insensitive property,
which gives us an opportunity to achieve wide-angle absorption.

Then, we utilize the short-wavelength angle-insensitive absorptance peak to achieve
wide-angle absorption. Figure 7 shows the absorptance of the designed 1-D PCCH [(EF)2D]6

as a function of the incident angle at the short-wavelength angle-insensitive band edge
λ = 1702.0 nm under TM polarization. One can see that as the incident angle increases from
0◦ to 45◦, the absorptance decreases smoothly from 0.951 to 0.902. Even at a large incident
angle of 80◦, the absorptance still reaches 0.444. The absorptance keeps higher than 0.9 in a
wide angle range from 0◦ to 45.5◦ and keeps higher than 0.8 in a wide angle range from 0◦ to
61.3◦. The angular average absorptance in the angle range from 0◦ to 90◦ reaches A = 0.788,
which is much higher than that in the traditional all-dielectric 1-D PC. Based on the angle-
insensitive light slowing effect at the short-wavelength angle-insensitive band edge in the
designed 1-D PCCH, we achieve wide-angle absorption at near-infrared wavelengths. It
should be pointed out that the mechanism to achieve wide-angle absorption in our work is
applicable in other wavelength ranges since the phase-variation compensation theory is
independent to the wavelength range.
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Finally, we discuss whether the wide-angle absorption is robust when the phase-
variation compensation condition is slightly broken. First, we reduce the thickness of C
layer by 5%, i.e., d′C = (1− 5%)dC while keeping the thickness of D layer unchanged,
i.e., d′D = dD. Figure 8a gives the absorptance spectrum of the 1-D PCCH [(EF)2D]6 as a
function of the incident angle under TM polarization. One can see that the positions of two
absorptance peaks are still angle-insensitive. As the incident angle increases from 0◦ to
60◦, the short-wavelength absorptance peak slightly shifts from 1668.9 to 1613.1 nm and
the long-wavelength absorptance peak slightly shifts from 2314.0 to 2312.3 nm. Figure 8b
gives the absorptance of the 1-D PCCH [(EF)2D]6 as a function of the incident angle at the
short-wavelength angle-insensitive band edge λ = 1668.9 nm under TM polarization. The
absorptance keeps higher than 0.9 in a wide angle range from 0◦ to 38.6◦. The angular
average absorptance in the angle range from 0◦ to 90◦ still reaches A = 0.769. Similarly,
we keep the thickness of C layer unchanged, i.e., d′′C = dC while reduce the thickness of
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D layer by 5%, i.e., d′′D = (1− 5%)dD. Figure 8c gives the absorptance spectrum of the
1-D PCCH [(EF)2D]6 as a function of the incident angle under TM polarization. One can
see that the positions of two absorptance peaks are still angle-insensitive. As the incident
angle increases from 0◦ to 60◦, the short-wavelength absorptance peak slightly shifts from
1668.0 to 1634.0 nm and the long-wavelength absorptance peak slightly shifts from 2319.7
to 2319.4 nm. Figure 8d gives the absorptance of the 1-D PCCH [(EF)2D]6 as a function
of the incident angle at the short-wavelength angle-insensitive band edge λ = 1668.0 nm
under TM polarization. The absorptance keeps higher than 0.9 in a wide angle range from
0◦ to 44.3◦. The angular average absorptance in the angle range from 0◦ to 90◦ still reaches
A = 0.786. To sum up, the wide-angle absorption is robust when the phase-variation
compensation condition is slightly broken.
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Figure 8. (a) Absorptance spectrum of the 1-D PCCH [(EF)2D]6 as a function of the incident angle
under TM polarization when d′C = (1− 5%)dC and d′D = dD. (b) Absorptance of the 1-D PCCH
[(EF)2D]6 as a function of the incident angle at the short-wavelength angle-insensitive band edge
λ = 1668.9 nm under TM polarization when d′C = (1− 5%)dC and d′D = dD. (c) Absorptance
spectrum of the 1-D PCCH [(EF)2D]6 as a function of the incident angle under TM polarization
when d′′ C = dC and d′′D = (1− 5%)dD. (d) Absorptance of the 1-D PCCH [(EF)2D]6 as a function of
the incident angle at the short-wavelength angle-insensitive band edge λ = 1668.0 nm under TM
polarization when d′′ C = dC and d′′D = (1− 5%)dD.

4. Conclusions

In summary, we design an angle-insensitive PBG in a 1-D PCCH based on the phase-
variation compensation theory. Assisted by the angle-insensitive light slowing effect
at the angle-insensitive band edge, we realize wide-angle absorption at near-infrared
wavelengths. At the short-wavelength angle-insensitive band edge (λ = 1702.0 nm), the
absorptance keeps higher than 0.9 in a wide angle range from 0◦ to 45.5◦. The angular
average absorptance in the angle range from 0◦ to 90◦ reaches A = 0.788, which is much
higher than that in the traditional all-dielectric 1-D PC. Besides, the wide-angle absorption
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is robust when the phase-variation compensation condition is slightly broken. These results
not only provide a viable route to realize angle-insensitive light slowing and wide-angle
light absorption, but also promote the development of light-slowing- and absorption-based
optical/optoelectronic devices.
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