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Abstract: In this study, a new method for manipulating energy flow in a 3D vector field is proposed.
In this method, an azimuthally-polarized beam with a noncanonical vortex, the X-type vortex, is
focused in a high-numerical aperture system. It is found that, instead of the invariance of the energy
flow which is characteristic of the traditional vortex (i.e., canonical vortex), both the longitudinal and
the transverse energy flows in virtue of the X-type vortex rotate around the beam center as the beam
propagates, and this rotational behavior (including the maxima location and the rotational angle)
can be adjusted by the anisotropic parameter and the order the X-type vortex. Through defining a
complex transverse Poynting field and applying the equivalence principle, the transverse energy flow
and its topological reactions are discussed in the focal plane. Our result shows that, by changing the
anisotropic parameter of the X-type vortex, rich topological reactions will occur, resulting in various
distribution patterns of the energy flow, such as multi vortex-type singularities around the beam
center. Our research demonstrates newly-observed features of the X-type vortex and also provides a
simple method to manipulate energy flows both along longitudinal and transverse directions, which
will be useful in optical manipulations.

Keywords: Poynting vector; optical vortex; singularity; energy flow

1. Introduction

The energy flow of light has been studied for more than 100 years since the possibility
of backward energy was revealed in the near-focus field in 1919 [1]. Later, in 1959, the
energy flow was also analyzed near the Airy rings in a classical article [2]. Because of
its important role in both fundamental and applied research, the study of energy flow
has become more vigorous in recent decades [3–23]. In fundamental research, the energy
flow provides a natural method for exploring the most intimate features of an optical
field, such as the (intrinsic) energy flow being divided into a spin part and an orbital
part corresponding to the two different angular momenta of an optical field [3–6], which
reflects the physical nature of light; the behaviors of the energy flow can connect to the
topological reactions of optical singularities, which supports a method of explaining the
special features of singular optics [7,8]. On the other hand, energy flow has been utilized
in optical manipulations. The absorptive particle can move along the direction of the
energy flow and the velocity of the movement is proportional to the modulus of the
energy flow [9,10]. Recently, beams with backward energy flow have also attracted a lot
of interest for their role as a ‘tractor’ to exert pulling force on a particle in manipulation
schemes [11–16]. Many methods have been proposed in manipulating energy flows, such as
tailoring the phase structures [6,17,18] and/or polarization distributions [19–22]. Research
on energy flow continues to be expanded on in fundamental and applied optics [16,23].

An optical vortex usually refers to the canonical vortex with a constant phase gradient
around its center [8,24–26]. Since it has peculiar characteristics, such as carrying orbital
angular momentum, the optical vortex has been studied extensively and utilized in a
wide range of applications, such as in optical tweezers [27], optical communications [28],
imaging [29], microscopy [30,31], etc. The vortex also plays a key role in most research on
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the manipulation of energy flows [12,14–20,22]. Besides the well-known canonical vortex,
there also exists the noncanonical vortex, which has not received as much attention in most
studies [32–36]. For a noncanonical vortex, the phase gradient is no longer constant along
the azimuthal direction; thus, there will exist an ‘anisotropic parameter’ characterizing
the phase distribution, which actually provides more freedom for beam structure [33,36].
Very recently, an X-type vortex, as one type of the noncanonical vortex, was proposed, and
it was found that this noncanonical vortex could shape the intensity distribution in rich
structures in 3D vector fields [36]. In this article, we will use the X-type vortex and show its
effects on energy flows.

2. Materials and Methods

The X-type vortex is a type of noncanonical optical vortex, with an anisotropic phase
distribution [36]. The transverse field of an optical beam embedded with an X-type vortex
can be expressed as:

V(X)(x, y) = A(x, y)
(√

x2 + y2
)l (x + iσcy)l(√

x2 + σc2y2
)l , (1)

where σc is the anisotropic parameter determining the phase distribution and l (l ∈ N)
represents the order of the vortex. When σc = ±1, the X-type vortex degenerates into a
conventional (canonical) vortex. It is also convenient to re-write the Equation (1) in the
polar coordinates (x = ρcosφ, y = ρsinφ):

V(X)(ρ, φ) = A(ρ, φ)ρleilarctan(σc tan φ), (2)

Which shows that the phase is a nonlinear function of azimuthal direction φ and the
phase gradient along the φ direction equals lσc/

(
cos2 φ + σ2

c sin2 φ
)
. Examples of the phase

distributions are depicted in Figure 1a, where the plot with l = 1 and σc = 1 represents
the conventional (canonical) vortex with order 1, and one can see that the phase changes
uniformly along the φ direction. The phases in the plots with σc > 1 change faster near the
x-axis, where the phase in the plot with σc < 1 changes faster near the y-axis.
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Figure 1. A strongly focusing system with an X-type vortex beam as the incident field.

Next, we will use this X-type vortex to construct a 3D vector field in a high numerical
aperture (NA) system. First, consider a high NA system with a semi-aperture angle α and
a focal length f . The focus of this system is located at point O, the origin of the Cartesian
coordinate system, see Figure 1b. Then, assume that a Gaussian beam embedded with
an X-type vortex is incident upon this focusing system, i.e., the complex amplitude of the

incident field can be expressed by Equation (2) with A(ρ, φ) = exp
(
− ρ2

w2
0

)
, where w0 is the

waist size. This X-type vortex can be generated by using a phase-spatial light modulator or
a programmable q-plate [37–39]. According to the Richards-Wolf vector diffraction theory,
the electric/magnetic field at a point P(ρs, φs, zs) in the focal region can be written as [2]
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U(ρs, φs, zs) = − ik f
2π

α∫
0

2π∫
0

V(X)(ρ, φ) QE(H)(θ, φ)
√

cos θeikzs cos θ

×eikρs sin θ cos(φ−φs) sin θdθdφ,
(3)

where U(ρs, φs, zs) represents the 3D electric field (E(ρs, φs, zs)) or magnetic field
(H(ρs, φs, zs)), and where k = 2π/λ is the wave number with λ denoting the wavelength
of the free space. QE(θ, φ)(QH(θ, φ)) is the polarization matrix of the electric (magnetic)
field, which can be expressed as

QE(H)(θ, φ) =

cos θ + sin2 φ(1− cos θ)
(cos θ − 1) cos φ sin φ
− sin θ cos φ

a(θ, φ) +

 (cos θ − 1) cos φ sin φ
cos θ + cos2 φ(1− cos θ)

− sin θ sin φ

b(θ, φ), (4)

where a(θ, φ) and b(θ, φ) are the weight functions for the x-polarized and y-polarized com-
ponents of the incident beam, respectively. Assume this incident beam is also azimuthally
polarized with order m; thus, for the electric field:(

a(θ, φ)
b(θ, φ)

)
=

(
− sin mφ

cos mφ

)
, (5)

and for the magnetic field: (
a(θ, φ)
b(θ, φ)

)
=

(
− cos mφ
− sin mφ

)
. (6)

For simplicity, from here on, we only consider the case of m = 1; the other cases can
be derived in the same way. By substituting Equations (5) and (6) into Equation (4), we can
obtain two simple expressions for the polarization matrix:

QE(θ, φ) =

− sin φ
cos φ

0

, (7)

QH(θ, φ) =

− cos θ cos φ
− cos θ sin φ

sin θ

. (8)

thus, the electric field E(ρs, φs, zs) and magnetic field H(ρs, φs, zs) in the focal region can be
calculated as:

E(ρs, φs, zs) =

 ex
ey
ez

 = −ik
∫ α

0
L(θ)

Ix(θ, φ)
Iy(θ, φ)

0

dθ, (9)

H(ρs, φs, zs) =

 hx
hy
hz

 = −ik
∫ α

0
L(θ)

− cos θ Iy(θ, φ)
cos θ Ix(θ, φ)
sin θ Iz(θ, φ)

dθ, (10)

where

L(θ) =
√

cos θe−( f sin θ)2/w2
0 f l(sin θ)l+1eikzs cos θ , (11)

and

Ix(θ, φ) =
∫ 2π

0

− sin φ(cos φ + iσc sin φ)l(√
cos2 φ + σc2 sin2 φ

)l eikρs sin θ cos(φ−φs)dφ, (12)

Iy(θ, φ) =
∫ 2π

0

cos φ(cos φ + iσc sin φ)l(√
cos2 φ + σc2 sin2 φ

)l eikρs sin θ cos(φ−φs)dφ, (13)



Photonics 2022, 9, 998 4 of 14

Iz(θ, φ) =
∫ 2π

0

(cos φ + iσc sin φ)l(√
cos2 φ + σc2 sin2 φ

)l eikρs sin θ cos(φ−φs)dφ. (14)

The energy flow, which is described by the time-averaged Poynting vector P, can now
be written in terms of the expressions of these 3D electric and magnetic fields, as in [3,12]:

P ∝ Re[E×H∗] =

 px
py
pz

 =

 Re[eyh∗z ]
−Re[exh∗z ]

Re[exh∗y − eyh∗x]

, (15)

where Re[·] means the real part and the superscript * denotes the complex conjugate. The
following discussions on the energy flow are mainly based on the equations derived in
this section.

3. Results and Discussions

In this section, we first discuss the behaviors of the energy flow as the beam propagates.
After that, the properties of the transverse energy flow in the focal plane will be analyzed.

3.1. Longitudinal Energy Flow along the Propagation Direction

Let us first analyze the longitudinal energy flow, which is the longitudinal component
of the Poynting vector pz along the propagation direction. When σc = 1, i.e., the case
for the canonical vortex, the integral with azimuthal angle φ in Equations (12)–(14) can
be calculated and the first kind of Bessel functions with trigonometric functions will be
obtained. Since the relations of the transverse components of the electric field and the
magnetic field (see Equations (9)–(13)), it can be calculated easily that pz has a circular
symmetry, i.e., pz

(
ρs, φs + ∆φ, zs

)
= pz(ρs, φs, zs), with ∆φ being an arbitrary azimuthal

angle. This means that the longitudinal energy flow is uniformly distributed along the
azimuthal direction, which can be seen in Figure 2b. In addition, when σc 6= 1, the X-type
vortex (noncanonical case), this symmetry will be broken, see Figure 2a,c).
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Figure 2 depicts the distribution of the longitudinal component pz in different trans-
verse planes along the propagation direction, where the order of the beam is chosen as l = 1
and the anisotropic parameter σc = 0.5 in plot (a), σc = 1 plot (b), and σc = 2 in plot (c). In
this figure, the semi-aperture angle α is set as 60◦, and, unless otherwise specified, α = 60◦

in this article. In this figure, pz is always positive except certain points where pz = 0, which
implies that the longitudinal energy flow (if it exists) always points to the +zs direction.
Through observing this figure, we can obtain the hypotheses that: (a) for any value of
σc (when l = 1), the maximum of the energy is located at the focus on the focal plane,
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while, when the propagation distance is far from the focal plane, the maximum/maxima
is/are gradually ‘thrown out’ of the beam center; (b) for σc 6= 1 (the X-type case), Pz has
two maxima in the transverse plane (which has a distance from the focal plane). Also, for
|σc| < 1, the two maxima in the −zs space are more likely to stay in the second and fourth
quadrants and, in the +zs space, to stay in the first and third quadrants. For |σc| > 1, the
trend is just the opposite; c) more interestingly, when σc 6= 1, the distribution pattern of Pz
rotates in a counterclockwise manner along the beam propagation direction. This indicates
that the X-type vortex leads to a rotation of the longitudinal energy flow as the beam propagates. In
the following, this rotational behavior will be examined more deeply.

First of all, in order to characterize this rotational behavior quantitively, a rotational
angle ϕr is introduced, as shown in Figure 3. ϕr is defined as the azimuthal angle of
one maximum point of pz. In this study, to remain consistent, this maximum point is
always chosen as the one near the +xs axis from the −zs space. In other words, first, we
fix one maximum point in the −zs space (the condition for this point is that it is near the
+xs axis), then we follow the position of this point as the beam propagates and record
its rotational angle ϕr. For instance, in Figure 3, the maximum point is the one in the
fourth quadrant and ϕr is about −37◦. Thus, the variation in the rotational angle ϕr with
the beam propagation can be drawn, and, as shown in Figure 4, four curves of ϕr for
σc = 0.1, 0.5, 2, and 10 are depicted. In this figure, the range is −14λ < zs < 14λ and the
order l = 1. From this figure, the rotational behavior and its counterclockwise manner of
the longitudinal energy flow pz can be seen more clearly. The accumulated rotational angle
(here denoted by

∫
ϕr) from −14λ to 14λ is quite big, which is more than 100◦ in all four

of these cases. Also, this rotation can be manipulated by the propagation distance zs and
the anisotropic parameter σc. As |zs| increases and/or σc moves further from 1, the rota-
tional behavior becomes more obvious and the accumulated rotational angle

∫
ϕr becomes

bigger:
∫

ϕr = 112.6◦ for σc = 0.1, and 10 and
∫

ϕr = 100.4◦ for σc = 0.5, 2. As |zs|
approaches +∞,

∫
ϕr is infinitely nearer to 180◦. In addition, the curves for σc = 0.1

and 10 are the same except for a constant difference, which is also the case for σc = 0.5
and 2. This is because, in each group, these two values of σc are reciprocal of each other,
and, according to Equations (1) and (2), replacing σc with 1/σc is equivalent to exchanging
the x and the y coordinates. Furthermore, one also can find that the curves which are very
near focus are very steep; this is mainly caused by the dramatic changing of the wavefront
spacings in the high NA system [40,41].
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In the above analysis, the beam order l is set as 1, and, here, we will show that changing
the order l can also manipulate the rotational behavior of pz. The distribution of pz along
the propagation direction for the X-type vortex with order 2 (l = 2) is illustrated in Figure 5.
By observing Figure 5 with Figure 2, we can find: (a) for l = 2, the beam center is always
hollow, i.e., the energy of pz is mainly distributed around the beam center, which is the main
difference in the distribution of pz between l = 2 and l = 1. Further, more generally, for
any l 6= 1, the distribution of pz always exhibits a hollow shape. This result can be obtained
directly from the expression of ex, ey, and Pz, using Equations (9)–(15). Consider the simplest
case σc = 1;from Equations (12) and (13) we can obtain Ix(y) = Cx(y) Jl±1(kρs sin θ), with
Jl±1 being the first kind of Bessel function. This expression implies that, only when l = 1,
the ex and ey (also hx, and hy) will not be zero along the zs axis (ρs = 0) (note in this article
l ∈ N). Therefore, pz (ρs = 0) = 0 for any l 6= 1. Furthermore, since a property of the Bessel
function is that, as l increases, the radius of the hollow part widens, which can be observed
from the comparison of Figures 3 and 5. Although these two results can be derived from
the properties of the Bessel function, they can be easily generalized to the case of σc 6= 1.
(b) The longitudinal component pz in l = 2 also has a similar two maximum points and
rotational behaviors to those in l = 1. For σc 6= 1, pz has two main maxima in the transverse
plane instead of maximum rings of σc = 1, and the positions of the maxima are located in
the same quadrants as in in l = 1. More importantly, the distribution pattern of pz also
rotates in a counterclockwise manner along the propagation direction, which is the same as
it is in l = 1.
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Similarly, the rotational angle ϕr for l = 2 can also be drawn, as shown in Figure 6. By
comparing Figure 6 with Figure 4, one can see that the rotation for l = 2 goes more smoothly
as the beam propagates, and the accumulated rotational angle for l = 2 is generally bigger
than its corresponding one for l = 1, i.e.,

∫
ϕr (l = 2) = 117.5◦ >

∫
ϕr (l = 1) = 112.6◦ for

σc = 0.1, 10, and
∫

ϕr (l = 2) = 108.9◦ >
∫

ϕr (l = 1) = 100.4◦ for σc = 0.2, 5. Also, it is
not hard to calculate that, as l increases, this accumulated rotational angle

∫
ϕr becomes

slightly bigger.
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3.2. Transverse Energy Flow along the Propagation Direction

Transverse energy flow is one of the characteristics of 3D vector optical fields. In
addition to pz, the transverse energy flow, pxy =

(
px, py

)
, as it will be shown, can also

rotate with the beam propagating.
Figure 7 depicts the transverse energy flow pxy in different transverse planes along

the propagation direction. Here, the energy strength
∣∣∣pxy

∣∣∣ is presented by different colors
and the direction of pxy; the flow lines are drawn by black lines with an arrow. It can be
seen that, firstly, the distribution of the transverse energy flow pxy for σc 6= 1 can also rotate
along the propagation direction, and this rotation can be found to be counterclockwise.
This indicates that the X-type vortex can not only cause the rotation of the longitudinal flow pz,
but can also make the transverse energy rotate with the beam propagating. Similarly, the rotation
of the transverse energy flow can be measured quantitively by using the rotational angle
ϕr, while ϕr, here is defined with respect to the transverse energy distribution.
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The variation in the rotational angle ϕr for the transverse energy flow along the
propagation direction is drawn in Figure 8. One can see that the accumulated rota-
tional angle

∫
ϕr is slightly bigger than its corresponding longitudinal component, with∫

ϕr = 119.9◦ for σc = 0.1, 10 and
∫

ϕr = 116.6◦ for σc = 0.5, 2. It is worth noting that,
although the overall rotational tendency is counterclockwise, in the range of about |z| < λ,
pxy will show a short clockwise rotation. Due to the limitation of the sampling points
in Figure 7, this abnormal rotation cannot be seen. In Figure 9, the clockwise rotational
behavior is shown, and one can find that, in the range −0.8λ < zs < 0.8λ, the accumulated
clockwise rotational angle is about −22.6◦ for σc = 0.1, 10 and −36.9◦ for σc = 0.5, 2.
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Besides the effects of the propagation distance zs and the anisotropic parameter σc on
the transverse energy flow pxy, the beam order l, as we discussed for the longitudinal energy
flow, will also influence the rotational behavior of pxy. Figure 10 depicts the distributions of

the transverse energy
∣∣∣pxy

∣∣∣ along the propagation direction in the second-order case (l = 2).
It can also be seen that, generally, the transverse energy also rotates in a counterclockwise
manner as the beam propagates and, in Figure 11, the corresponding rotational angle ϕr
is shown, where the accumulated rotational angle

∫
ϕr = 123.9◦ for σc = 0.1, 10 and∫

ϕr = 116.8◦ for σc = 0.5, 2 in the range −14λ < zs < 14λ. We should note that
abnormal rotational behavior also exists in the second-order case, which can be seen in
Figure 12. It can be seen that this abnormal behavior is more complicated than it is in the
case of l = 1. When σc = 0.1, 10, the clockwise rotation is in a very narrow range, about
−0.2λ < zs < 0.2λ; however, the accumulated rotational angle

∫
ϕr is as big as −70.0◦,
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while, for σc = 0.5, 2,
∫

ϕr is about −18.4◦ within −0.8λ < zs < 0.8λ. This abnormal
rotational behavior occurs in the range closer to the focal plane, which may be caused by
the redistribution of the topological structure of the transverse energy flow on account of
the X-type vortex; this redistribution will be discussed in the following part.
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tex, which, as we discussed, cannot be observed in a traditional (canonical) vortex beam. 
Furthermore, the energy flow in all of the above cases rotates in a counterclockwise man-
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and the energy distribution, in virtue of the X-type vortex, also can exhibit interesting 
structures. Here, we will focus on the focal plane to examine these structures of the trans-
verse energy flow. 

First, we will look at the case of 𝑙 = 1. Figure 13 illustrates the transverse energy flow 
on the focal plane for different values of the anisotropic parameter 𝜎௖, where the energy 
strength is also denoted by color, and the black flow lines and the white arrows represent 
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propagation. Here, (a) σc = 0.1, 0.5; (b) σc = 2, 10. In both plots l = 2.
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In addition, here, we should note that the rotational angle ϕr describes the rotational
behavior of the transverse/longitudinal energy flow distribution (i.e., the energy flow
‘pattern’), which is quite different from the ‘skew angle’ observed in traditional vortex
beams [42,43]. The rotational behavior characterized by the ‘skew angle’ denotes the
direction of rotation of the Poynting vector reflecting the orbital angular momentum effect
of the vortex beams, while the rotation behavior discussed in this article is a kind of ‘energy
distribution’ rotation essentially coming from the inconstant phase gradient of the X-type
vortex, which, as we discussed, cannot be observed in a traditional (canonical) vortex beam.
Furthermore, the energy flow in all of the above cases rotates in a counterclockwise manner
due to the positive charge in the X-type vortex. If the topological charge of the X-type
vortex is negative, i.e., σc < 0, and the charge is equal to −l (l ∈ N), the energy flow will
rotate clockwise.

3.3. Transverse Energy Flow in the Focal Plane

The transverse energy flow pxy, including the flow lines (or the Poynting vectors) and
the energy distribution, in virtue of the X-type vortex, also can exhibit interesting struc-
tures. Here, we will focus on the focal plane to examine these structures of the transverse
energy flow.

First, we will look at the case of l = 1. Figure 13 illustrates the transverse energy flow
on the focal plane for different values of the anisotropic parameter σc, where the energy
strength is also denoted by color, and the black flow lines and the white arrows represent
the energy flow lines and the transverse Poynting vectors, respectively. It can be found, on
one hand, that, when σc < 1 (plots (a) and (b)) there are two energy maxima located on the
xs-axis, while, as σc increases from 0.1, 0.5, 1, and 2 to 10, the energy maxima move from
the xs-axis to the ys-axis, and, especially in the case of conventional vortex (σc = 1), the
transverse energy is distributed uniformly along the azimuthal direction, i.e., there are no
longer any maximum points. On the other hand, the flow lines for the conventional vortex
(σc = 1) rotate around the beam center azimuthally and form circular shaped trajectories,
while, when σc 6= 1, i.e., for the X-type vortex, the trajectories of these flow lines around
the beam center become elliptical. More specifically, the energy flow lines near the outer
sides of the maxima (such as the flow lines near |xs| > 0.8λ in plot (a), and the flow lines
near |ys| > 0.8λ in plot €) derivate from the azimuthal trajectories around the beam center
in the case of σc 6= 1, which implies that, although the topological charge of the energy
flow in the beam center does not change in virtue of the X-type vortex for l = 1, the new
Poynting singularities will be formed as σc changes, i.e., the topological structure of the
energy flow on the focal plane is changed. This redistribution of the topological structure
is more obvious and typical as l gets bigger, and, here, we adopt the case of l = 2 as an
example for further analysis, which is depicted in Figure 14.

The transverse energy flow pxy (with flow lines and vectors) in the focal plane with
the anisotropic parameter changing from 0.1, 0.5, 1, and 2 to 10 for l = 2 is drawn in
Figure 14. It can be seen that there exist three main singular points in the focal plane,
the ‘original’ Poynting singularity at the beam center, ‘O’, and two (constructed) off-axis
singularities ‘A’ and ‘B’. When σc = 0.1 (plot (a)), points A and B are located on the xs-axis
with topological charge +1, while the point O has a charge of −1. As σc increases to 0.5, the
two off-axis singularities A and B move closer to the beam center, and, when σc arrives at 1,
the points A and B merge with original point O, resulting into a new singular point O+
with topological charge +1, as shown in plot (c). This process obeys the conservation law
of topological events. While, as σc continues to increase, the singular point O+ splits into
three singularities again, the off-axis singularities A and B no longer exist on the xs-axis;
instead, they are located on the ys-axis.



Photonics 2022, 9, 998 11 of 14

Photonics 2022, 9, 998 11 of 15 
 

 

on one hand, that, when 𝜎௖ < 1 (plots (a) and (b)) there are two energy maxima located 
on the 𝑥௦-axis, while, as 𝜎௖ increases from 0.1, 0.5, 1, and 2 to 10, the energy maxima move 
from the 𝑥௦-axis to the 𝑦௦-axis, and, especially in the case of conventional vortex (𝜎௖ = 1), 
the transverse energy is distributed uniformly along the azimuthal direction, i.e., there are 
no longer any maximum points. On the other hand, the flow lines for the conventional 
vortex (𝜎௖ = 1) rotate around the beam center azimuthally and form circular shaped tra-
jectories, while, when 𝜎௖ ≠ 1, i.e., for the X-type vortex, the trajectories of these flow lines 
around the beam center become elliptical. More specifically, the energy flow lines near the 
outer sides of the maxima (such as the flow lines near |𝑥௦| > 0.8𝜆 in plot (a), and the flow 
lines near |𝑦௦| > 0.8𝜆 in plot €) derivate from the azimuthal trajectories around the beam 
center in the case of 𝜎௖ ≠ 1, which implies that, although the topological charge of the 
energy flow in the beam center does not change in virtue of the X-type vortex for 𝑙 = 1, 
the new Poynting singularities will be formed as 𝜎௖ changes, i.e., the topological structure 
of the energy flow on the focal plane is changed. This redistribution of the topological 
structure is more obvious and typical as 𝑙 gets bigger, and, here, we adopt the case of 𝑙 =2 as an example for further analysis, which is depicted in Figure 14. 

 
Figure 13. The transverse energy flow in the focal plane for 𝑙 = 1: (a) 𝜎௖ = 0.1; (b) 𝜎௖ = 0.5; (c) 𝜎௖ =1; (d) 𝜎௖ = 2; (e) 𝜎௖ = 10. 

 
Figure 14. The transverse energy flow on the focal plane for 𝑙 = 2: (a) 𝜎௖ = 0.1; (b) 𝜎௖ = 0.5; (c) 𝜎௖ =1; (d) 𝜎௖ = 2; (e) 𝜎௖ = 10. 

Figure 13. The transverse energy flow in the focal plane for l = 1: (a) σc = 0.1; (b) σc = 0.5; (c) σc = 1;
(d) σc = 2; (e) σc = 10.

Photonics 2022, 9, 998 11 of 15 
 

 

on one hand, that, when 𝜎௖ < 1 (plots (a) and (b)) there are two energy maxima located 
on the 𝑥௦-axis, while, as 𝜎௖ increases from 0.1, 0.5, 1, and 2 to 10, the energy maxima move 
from the 𝑥௦-axis to the 𝑦௦-axis, and, especially in the case of conventional vortex (𝜎௖ = 1), 
the transverse energy is distributed uniformly along the azimuthal direction, i.e., there are 
no longer any maximum points. On the other hand, the flow lines for the conventional 
vortex (𝜎௖ = 1) rotate around the beam center azimuthally and form circular shaped tra-
jectories, while, when 𝜎௖ ≠ 1, i.e., for the X-type vortex, the trajectories of these flow lines 
around the beam center become elliptical. More specifically, the energy flow lines near the 
outer sides of the maxima (such as the flow lines near |𝑥௦| > 0.8𝜆 in plot (a), and the flow 
lines near |𝑦௦| > 0.8𝜆 in plot €) derivate from the azimuthal trajectories around the beam 
center in the case of 𝜎௖ ≠ 1, which implies that, although the topological charge of the 
energy flow in the beam center does not change in virtue of the X-type vortex for 𝑙 = 1, 
the new Poynting singularities will be formed as 𝜎௖ changes, i.e., the topological structure 
of the energy flow on the focal plane is changed. This redistribution of the topological 
structure is more obvious and typical as 𝑙 gets bigger, and, here, we adopt the case of 𝑙 =2 as an example for further analysis, which is depicted in Figure 14. 

 
Figure 13. The transverse energy flow in the focal plane for 𝑙 = 1: (a) 𝜎௖ = 0.1; (b) 𝜎௖ = 0.5; (c) 𝜎௖ =1; (d) 𝜎௖ = 2; (e) 𝜎௖ = 10. 

 
Figure 14. The transverse energy flow on the focal plane for 𝑙 = 2: (a) 𝜎௖ = 0.1; (b) 𝜎௖ = 0.5; (c) 𝜎௖ =1; (d) 𝜎௖ = 2; (e) 𝜎௖ = 10. 

Figure 14. The transverse energy flow on the focal plane for l = 2: (a) σc = 0.1; (b) σc = 0.5;
(c) σc = 1; (d) σc = 2; (e) σc = 10.

This topological event can be observed more obviously in a phase-type figure. Here,
we define a complex transverse Poynting field p(c)xy as:

p(c)xy = px + ipy, (16)

where px and py are still the x- and y-Poynting components, respectively. By applying
the equivalence of the vector field and its corresponding complex field, the topological
structure of the Poynting vector field can also be described by the phase-structure of p(c)xy .

Here, the phase singularity of p(c)xy is equivalent to the vector singularity of the Poynting
vector pxy, and, also, the topological charge of this phase singularity is equal to the charge
of the vector singularity. The contour plot of the phase of the complex transverse Poynting
field, arg

[
p(c)xy

]
(here arg[·] means the argument or the phase of p(c)xy ), is illustrated in

Figure 15, where the intersections of different contours indicate the phase singularities of
p(c)xy , which also means the Poynting (vector) singularity of the transverse energy flow pxy.
In order to observe the topological behavior more clearly, the plots with σc = 0.3 and σc = 3
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are added. The three main singular points A, B, and O are marked out in this figure, and it
is easy to see that, as σc increases, the points A and B, both with charge +1, move from the
xs-axis to merge with point O with charge −1, then to be created again on the ys-axis. In
addition to these three singularities and their topological reaction, we can also find other
singularities in Figure 15, i.e., the points at the contour intersections around points A, B,
and O, namely ‘surrounding singularities.’ As σc increases (Figure 15a–d), it can be seen
that these surrounding singularities will gradually annihilate each other and disappear
when σc = 1 (plot (d)), and, as σc continues to increase (Figure 15e–g), these surrounding
singularities emerge again with their positions having a 90◦ rotation. More specifically, it is
found that, for σc = 1, there is no surrounding singularity; instead, there exists a ‘singularity
ring,’ i.e., an edge-type singularity (denoted in white in Figure 15d). This means that the
multi vortex-type singularities of the energy flow appearing in the case of the X-type vortex
will degenerate into a simple edge-type singularity for a canonical vortex. Thus far, the
topological structures and the related reactions in the focal plane have been observed and
analyzed. It is found that the topological structures change greatly with the topological
reaction on account of the X-type vortex. Consequently, the transverse energy and flow
directions are re-distributed, which implies that, by adjusting the anisotropic parameter σc,
one can realize the manipulation of the transverse energy flows in the focal plane. Since the
particle will move along the energy flow direction, the multi-vortex-type singularities of
the transverse energy flow may provide a method to trap/rotate particles in the focal plane
and transport them from one axis to another. It is well-known that the energy distribution
strongly depends on the singular points; therefore, the topological reactions also mean that
the complicated topological structures and related the transverse energy distribution in
the transverse planes move nearer to the focus, which may be the reason for the abnormal
rotation discussed in previous section.
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4. Conclusions

In this article, the energy flow in a 3D vector field constructed by strongly focusing
azimuthally-polarized beams with an X-type vortex is studied. It is found that, in virtue of
the X-type vortex, the energy flow, including the longitudinal component and the trans-
verse component, can rotate along the propagation direction. By adjusting the anisotropic
parameter σc and the vortex order l of the X-type vortex, the location of the energy maxima
and the rotation angle can be manipulated. Different from the longitudinal energy flow,
the transverse energy flow will rotate inversely (i.e., in a clockwise manner) in a very short
propagation distance near the focus, which may be caused by the complicated topological
structures in that range. The transverse energy flow in the focal plane is also discussed,
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and it is found that the energy distribution can show very distinguishing patterns as the
anisotropic parameter σc varies. Through defining a complex transverse Poynting field
and applying the equivalence principle in singular optics, the topological behaviors of the
transverse energy flow are analyzed, which shows that, instead of the simple edge-type
singularity existing in the canonical vortex case (σc = 1), many vortex-type singularities
emerge in the X-type vortex case, and their locations and topological reactions are de-
termined by the anisotropic parameter σc. This research not only explores the physical
properties of the X-type vortex, but also provides a method to construct a rotating energy
flow with beam propagating and to form tunable energy flows in the focal plane, which may
have applications in optical manipulations, such as rotating particles along the longitudinal
or transverse directions, and in controlling the chirality of nanostructures [44,45].
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