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Abstract: Recently, the deep‑learning‑based PatchMatch method has been rapidly developed in 3D
reconstruction, based on which boundary regions are filled with other parts that most closely match
edge parts, but limited PatchMatch data hinder the generalization of themethod to unknown settings.
If various large‑scale PatchMatch datasets are generated, the process would require considerable
time and resources when performing neighborhood point‑matching calculations using random itera‑
tive algorithms. To solve this issue, we first propose a new, sparse, semi‑supervised stereo‑matching
framework called SGT‑PatchMatchNet, which can reconstruct reliable 3D structures with a small
number of 3D points using the ground truth of surface frame values. Secondly, in order to solve
the problem of the luminosity inconsistency of some pixels in other views, a photometric similar‑
point loss function is proposed to improve the performance of 3D reconstruction, which causes the
neighborhood information to project the depth value of the predicted depth tomeet the same 3D coor‑
dinates. Finally, in order to solve the problem of the edge blurring of the depth map obtained using
the network model, we propose a robust‑point consistency loss function to improve the integrity
and robustness of the occlusion and edge areas. The experimental results show that the proposed
method not only has good visual effects and performance indicators but can also effectively reduce
the amount of computation and improve the calculation time.

Keywords: deep learning; sparse semi‑supervised; loss design

1. Introduction
In recent years, 3D reconstruction technology has developed rapidly. Multi‑view

stereo (MVS) is one of the important methods of 3D reconstruction, based on which dense
3D geometry is reconstructed from the perspective of building depth maps. For decades,
3D reconstruction techniques have been rapidly developed in industrial applications, such
as unmanned vehicles, robotics, and video entertainment. Recent studies on MVS [1] and
PatchMatch [2] have successfully combined traditional methods with learning‑based ap‑
proaches and have improved themodeling quality of 3D reconstructionwith datasets such
asDTU. However, contrary to the increasing dependence on datasets, there are fundamen‑
tal problems in collecting the dense ground truth of 3D structures with surface frame val‑
ues, which hinder the generalization of these methods to unknown data, so the effective
use of data and obtaining high‑quality reconstructions are also important issues in the field
of 3D vision.

Previous semi‑supervised domains are all trained on the basis of MVS and not im‑
plemented using the PatchMatch method [3–5]. This is because with MVS, the depth
map is obtained by constructing the cost volume, and we only need to refine the depth
map, while in the PatchMatch method, the depth map is obtained through neighborhood
point matching, and therefore each point needs to be refined; thus, the implementation
of semi‑supervised frameworks becomes more difficult using the PatchMatch method. In
addition, the MVS method mainly relies on the assumption of the same color constancy,
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i.e., it assumes that the corresponding points between different views have the same color,
while the PatchMatch method mainly relies on the adaptive propagation of the neighbor‑
hood point space. In real scenes, various factors may interfere with the accuracy of color
distribution and neighborhood points, such as lighting conditions, reflections, noise, and
texture‑free regions. Therefore, the ideal unsupervised loss can easily be confused by these
common color interference and neighborhood point errors, leading to poor training results
in challenging scenarios [6].

In this paper, we explore a new, sparse, semi‑supervised PatchMatch (SGT‑PatchMatch)
problem, which involves the following three points:
1. Active sensors should be used for the acquisition of accurate and complete surface in‑

formation, but the process usually takes several hours, for instance, when acquiring
data on moving dynamic objects in a field of view [7]. The existing mature technique
COLMAP [8] can accurately estimate the camera’s pose and thus obtain complete
surface information but requires precise and non‑overlapping camera coordinate po‑
sitions; therefore, the application of this operational technique is limited.

2. Assuming that only the depth information of sparse 3Dpoint construction is involved
in the test, the SGT‑PatchMatch problem is solved by studying its basic features. How‑
ever, the relatively sparse depth information will inevitably reduce the quality of the
overall 3D reconstruction, so it is necessary to ensure the effectiveness of the test in
addition to improving the training speed.

3. The learning‑based PatchMatch method is able to solve these difficulties by using the
contextual information of the non‑occluded part of the neighborhood (for occluded
pixels) and the high‑resolution features of the edge pixels (for edge pixels), and the
actual depth value on the occluded region or edge can be obtained through thematch‑
ing points. However, with a small amount of information for supervision, the model
using the learning‑based PatchMatch method will be insensitive to occluded pixels
and edge pixels.
To address the above problems, we proposed corresponding solutions: Firstly, a

sparse, semi‑supervised learning approach was proposed to simplify the model, enhance
the generalization ability in the invisible environment, and complete the training and test‑
ing of thewhole network byfillingmultiple triangular regions constructed by sparse points
to obtain depth information for the supervision of the network. Secondly, we proposed
photometric similar‑point loss [9] and robust‑point consistency loss [10] to solidify the
color values and self‑nuisance points. The photometric similar‑point loss function involves
the 3D points back‑projected from the corresponding pixels that are returned to the actual
intersecting locations under the world coordinate system, and the redundant information
is continuously optimized through the comparison of similar points to achieve dynamic
balance and to enhance the 3D reconstruction performance of the accurately predicted re‑
gion, where back‑projection refers to the conversion from pixels in the image coordinate
system to the 3D points in the world coordinate system. Due to the inaccuracy of the depth
values, the corresponding pixel points may be back‑projected to different 3D points, so it
is reasonable to convert to a world coordinate system for matching. The robust‑point con‑
sistency loss function reduces the interference of mismatched neighborhood points and
enhances the robustness of the network by checking the edge information integrity as well
as accuracy.

To validate our approach in the SGT‑PatchMatch problem, we designed the
SGT‑PatchMatchNet network, which selects the sparse points from the original dense 3D
structure to serve as points for the supervision of the network. First, we randomly selected
our sparse points according to the length and width of the imageNext; then, we used the
photometric similar‑point loss and robust‑point consistency loss functions to refine the
depth map for occlusion and edge problems. Finally, we compared SGT‑PatchMatchNet
with PatchMatchNet [11] and confirmed that the problems of SGT‑PatchMatchNet can
be solved.
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2. Related Work
2.1. Learning‑Based Multi‑View Stereo (MVS) and PatchMatch

In recent years, learning‑based methods have been successfully applied in the field
of MVS reconstruction. From the traditional voxel‑based and grid‑based methods to the
current depth‑map‑basedmethods, the speed and quality of reconstruction have been con‑
tinuously improved. Due to the limitations of voxel‑based and grid‑based image process‑
ing, researchers have gradually shifted their goals toward learning‑based depthmapmeth‑
ods to handle large‑scale reconstruction. Yao et al. first proposed an end‑to‑end network
MVSNet [12], for which they constructed a 3D cost volume by twisting adjacent depth im‑
ages. In addition, they applied a 3DCNN to normalize the cost volume and regress the
depth map. In another study [13], R‑MVSNet was used for the convolutional GRU sequen‑
tial construction of cost volume to reduce GPU memory consumption. To improve the
accuracy of the reconstruction, using Cascade‑MVSNet, the authors of [14] refined the con‑
volutional network bymeans of chunked convolution. To improve the speed of reconstruc‑
tion, in [15], Fast‑MVSNet was used to define a sparse‑to‑dense strategy through which
differentiable Gaussian Newton layers were introduced to obtain the sparse depth map.
To improve the completeness of the reconstruction, a new training network, PatchMatch‑
Net, predicted the depth information obtained from matching through the adaptive prop‑
agation of neighborhood points and refined the depth map with three iterations. To meet
the needs of large‑scale reconstruction, using P‑MVSNet, the authors of [16] proposed a
new depth normal consistency loss and a global refinement algorithm to iteratively com‑
pute pixel line depths and normal values in a multi‑scale framework through a SLAM
vision system to balance the inherent local properties of PatchMatch. These networks are
all highly dependent on dense ground truth to participate in supervision despite their diffi‑
culty in data collection, sowe focused onworking to reduce the dependence of the network
on dense ground truth.

2.2. Learning‑Based Unsupervised and Semi‑Supervised Models
In the existing unsupervised learning and semi‑supervised learning models, most of

them are implemented in a network such as multi‑view stereo (MVS). However, the pre‑
vious supervised learning MVS methods heavily rely on depth maps with ground truth
information and are thus more time‑consuming in generating dense depth maps in large‑
scale datasets. To overcome this limitation, Tejas used luminosity consistency loss to de‑
sign a new stereo‑matching network [17], using only the image from the new view as a
supervised signal. Using MVS2, the authors of another study proposed an unsupervised
MVS consistency loss [18]. M3VSNet was also used to propose a normal depth consistency
loss [19] incorporated into the 3D point cloud format. In [20], the authors used JDACS to
propose luminosity loss and semantic segmentation loss based on MVSNet and Cascade‑
MVSNet to solve the problem of edge occlusion through a data enhancement consistency
module. The abovemethods are trained to be unsupervised. To further improve the speed
of training, Kim proposed the semi‑supervised learning network SGT‑MVSNet [21], based
on which the coordinate values of the mapping are compared using a designed 3D point
consistency loss, and finally, an optimized depth map is obtained after using a coarse‑to‑
fine network. All these networks are based on the MVS approach, so we considered the
PatchMatch approach to implement sparse, semi‑supervised training to further improve
the speed of the network.

2.3. Datasets
In selecting a dataset, there are many datasets used to evaluate the MVS algorithm

that can be used for the PatchMatch algorithm. TheMiddlebury dataset is the first publicly
available dataset for MVS evaluation. It consists of hundreds of low‑resolution images
with calibrated cameras in a controlled laboratory environment. The ETH3D dataset [22]
includes high‑resolution images of building stereo models and 3D surface frame values
captured with laser scanners. The DTU dataset [23] contains a large number of point
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cloud images with a world coordinate system, and they are collected using a robotic arm.
TheDTU dataset provides reversed and well‑textured scenes under different lighting con‑
ditions. The Tank&Temples dataset [24] includes high‑resolution video data and the 3D
ground truth of surface frame values captured with laser scanners. However, access to
these datasets is conditional, so it is necessary to study how to better utilize the surface
information of these datasets. In order to make the effect more obvious and conducive to
comparison, we used the DTU dataset for training and testing and used the Tank&Temples
dataset to test the generalization ability of the network.

3. Method
To address the problems of SGT‑PatchMatchNet, a semi‑supervised learning method

was used by sampling sparse points on the ground truth, and the loss function in the net‑
work was designed; both of these processes are explained in this section.

3.1. Refinement of Network Issues
According to previous supervised learningmodels, for a given reference frame I0 and

source frame {Ii}N
i=1, a dense depth map D of the 3D structure is mainly estimated from

the reference view. Additionally, the difference between our problemwith the supervised
MVS problem is that we calculated the depth value of each 3D point in the ground truth
of the surface depth map and filled the depth map based on a triangle constructed from
the 3D points, and determined the loss of the formulated depth map with the depth map
obtained from the network to achieve a semi‑supervised learning model that can be tested
with a small number of 3D points.

For some intensive depth estimation tasks, such as semantic segmentation, a deep
contextual understanding of each class is required to estimate the occluded regions, which
requires a large number of pixel‑level annotations. In contrast, PatchMatchNet is based on
the feature information of neighborhood points to match pixel points, so it is still possible
to predict the depth values of non‑occluded pixels in reference frames reasonably well
without a large number of surface frame values. However, during the matching process,
only some or even no feature information of the neighborhood points is available, which
causes some pixels to be inconsistent with the luminosity in other views, and therefore
the obtained depth map is not optimal. Furthermore, the depth map obtained with point
matching using the network alone cannot meet the reconstruction criteria. Therefore, we
proposed photometric similar point loss to solve this problem.

In addition, besides the occlusion problem, the misestimation of edge pixels is also
an important issue and an important reflection of the integrity after reconstruction. Since
the depth values at the object boundaries often considerably vary, the information of the
points at the edge pixels also drastically changes. Therefore, the robustness of the edge
information in these regions is particularly important. Using PatchMatchNet, the output
is determinedwith a coarse‑to‑fine convolutional network, and the network is a supervised
network, which can effectively circumvent this problem. In contrast, our proposed SGT‑
PatchMatchNet is a sparse semi‑supervised network, which cannot effectively solve the
edge blurring problem, so the robust‑point consistency loss functionwas proposed to solve
this problem.

3.2. Network Structure Design
General Network Design: Based on the above problem statement, we sought to max‑

imize the feature distinguishability using a sparse, semi‑supervised approach. Unlike the
PatchMatchNet network, we only performed two iterations and one optimization to com‑
plete the training of the whole network, where the pixel‑level features were extracted with
a feature extraction module, similar to (FPN); the features were extracted in six layers,
and the last two layers were taken as the input to the network. The optimization model
prescaled the depth map to the range [0, 1] and converted it back after refinement, and
the optimized depth map was obtained using a residual network constructed by two‑
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dimensional convolution. The general framework of the specific SGT‑PatchMatchNet is
shown in Figure 1.
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SubnetworkDesign: Our subnetwork SparsePatchMatch inside SGT‑PatchMatchNet
has a similar structure to the subnetwork PatchMatch inside PatchMatchNet. Firstly, our
subnetwork SparsePatchMatch removes the initialization and adaptive propagation mod‑
ules. Secondly, to complete the semi‑supervised training of the network, we performed the
sampling of sparse points on the ground truth of surface frame values and determined the
loss and optimization of the model with the depth map obtained from the network with
a small number of labels involved in the supervision. Additionally, the obtained depth
map was tested to evaluate the quality of the network. The general network of the specific
SparsePatchMatch is shown in Figure 2.

 
 

 
 

Figure 2. Asubnetwork SparsePatchMatch. Ourmain contribution is to process subsequent depthmaps
for semi‑supervised testing with photometric similar‑point loss and robust‑point consistency loss.

Loss function Design: In order to solve the problem of inconsistency in the luminos‑
ity of some pixels in other views due to having only partial or no feature information for
neighborhood points, we designed a photometric similar‑point loss function to make the
3D points of pixel mapping accurate and return to points under the world coordinate sys‑
tem. Since this training method is susceptible to error pixels, we designed thresholds α in
the loss function to circumvent them. Finally, in order to solve the problem of edge pixel
error, we constructed a robust‑point consistency loss function, which can effectively avoid
the wrong depth value to improve the robustness of edge information. We will elaborate
on the innovation and implementation of the network in Section 3.3 of this document.
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3.3. Refinement of Network Structure
3.3.1. Sparse Point Acquisition

The way of collecting sparse points is different for different datasets. For datasets
without the ground truth of surface frame values, we can estimate the bit pose based on the
points in theworld coordinate system of the image, with the parameters of the camera, and
then calculate the depth value of the image, fromwhichwe collect the correspondingpoints
that are sparse points, and this approach can be directly obtained using the COLMAP
network [8]. The DTU dataset used in our network includes surface frame values, so it
can be directly selected. The proposed number of the selected points is 0.05H·W, H is the
image height, andW is the imagewidth. The coordinates of the four corner points were set
according to the maximum depth (depth‑max) andminimum depth (depth‑min) values in
the camera parameters, and a little random noise was added in the selection process to
enhance the image stability. After selecting each pixel point, we divided each point into
regions to obtain an image constructed by multiple triangle regions, and finally, we filled
each triangle region to obtain the depth map for supervision. It should be noted that when
the two sides of each triangle are determined, the filled area of the triangle can be obtained
according to the fork multiplication operation, and the specific triangle filling calculation
formula is as follows:

edge0 = 1
irs1

·depth1(p1 − irs1)− 1
irs0

·depth0(p0 − irs0)

edge1 = 1
irs2

·depth2(p2 − irs2)− 1
irs1

·depth1(p1 − irs1)

nl = edge0 × edge1

(1)

where edge0 and edge1 are the two edges of the triangular region, respectively; irs0
irs1, and irs2 are the three points selected by the parameters inside the camera; p0, p1, and
p2 are the three points in the triangular region; depth0, depth1, and depth2 are the normal
vectors perpendicular to the three points, respectively; and nl is the fork product of two
edges of edge0 and edge1.

3.3.2. Photometric Similar‑Point Loss
The process of matching and reconstructing objects using the PatchMatch method is

rapid, but in the process of propagating from neighborhood points to matching points,
there will be a large amount of similar information and pixel redundancy. If the difference
from the matching point is large, it will affect the accuracy of the final depth map, so we
proposed a photometric similar‑point loss function to solve this problem, as shown in Fig‑
ure 3. The key idea of photometric similar points is to minimize the difference between
the composite image and the original image of the same view. We used the depth map
built from sparse points as a reference, the rest of the views N were the source views of
the index i(0 ≤ i ≤ N), and we set a threshold α to judge the similarity to dynamically ad‑
just the similarity performance of the loss function. The specific formula for photometric
similar‑point loss [9] is as follows:

L(x,y) =

{
0.5(x − y)2, |x − y| < β

|x − y| − 0.5·β, otherwise

L1 = L(d1,d2)

L2 = L(d′1x ,d′2x) + L(d′1y ,d′2y)

LS = (1 − α)L1 + αL2

(2)

where d1 represents the sample depth map obtained through the network; d2 repre‑
sents the sample depth map built with the sparse points; d′1x is the gradient of d1 in the
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x‑axis direction; d′2x is the gradient of d2 in the x‑axis direction; d′1y is the gradient of d1 in
the y‑axis direction; d′2y is the gradient of d2 in the y‑axis direction; L(x,y) is the similarity
of loss; L1 is obtained by defining d1 and d2; L2 is obtained by calculating d′1x, d′2x, d′1y, and
d′2y; and LS is the photometric similar‑point loss designed by us. The parameter β ≥ 0,
and the default is 1. α is the similarity threshold.

In addition, in order to better explain the specific conversion method of pixels in the
loss, we defined the conversion relationship from the image coordinate system to theworld
coordinate system, and the specific formula is as follows:

ZC

µ
v
1

 =


1

dx 0 µ0

0 1
dy v0

0 0 1


 f 0 0

0 f 0
0 0 1

0
0
0

[R t
0 1

]
X
Y
Z
1

 (3)

where ZC is the normal perpendicular to the image plane; µ is the number of columns
in the image array and µ = x

dx + µ0; v is the number of rows in the image array and
v = x

dx + v0; f is the focal length; X, Y, Z is the coordinate axis in the world coordinate
system; R is a rotation matrix, which is the product of three axial rotation matrices X, Y, Z
and R = RXRYRZ; t is a translation vector, which is the translation distance in the axes
and t = [tX , tY, tZ]

T . 
 

 
 Figure 3. Photometric similar‑point loss: (a) a pirate point was selected on the source image; (b) the
depth map obtained with the network was compared with the depth map constructed using sparse
points; (c) optimized density depth map. The green line represents the success of the similarity
match, and the red line represents failure of the similarity match.

3.3.3. Robust‑Point Consistency Loss
When considering edge information errors and occlusion issues, we focused on the

pixels on the edges and occlusion in order to obtain amore complete picturewhen optimiz‑
ing the depth map, thereby improving the integrity of the match. However, the pixels on
edges and occlusions are easilymapped to other wrong pixels when similarity calculations
are made. In addition, if the resulting depth value is inaccurate, it is possible to match the
wrong pixels in other views, even if there are no occlusion pixels. To solve this problem,
we need a strict standard to remove redundant false correspondence and obtain reliable
matching pixels. Therefore, we proposed a robust‑point consistency loss function [10] on
the basis of the photometric similar‑point loss function, and the specific calculation for‑
mula is as follows:

LH =
1
2

n

∑
i=u=1

∥ di − du ∥2
2 +

γ

2

n

∑
(p,q)∈ε

ωp,qρ
(
∥ dp − dq ∥2

)
(4)
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where D1 is a collection of depthmaps for the network output, D1 = [d1, d2, . . . , dn] di ∈ RD1 ,
and D2 is a collection of depth maps built by sparse points, D2 = [d1, d2, . . . , dn] du ∈ RD2 .
The first section of the formula is the loss of the depth map and the sparse depth map of
the network, while the second section of the formula is the loss of the internal depth map
of the network. ε is a collection of pixels for each depth map, and ωp,q is determined to
balance the weights between each pair of points. The function of ρ(·) is the penalties for
regularized terms, and using an appropriate robust penalty function is the heart of our
losses. The depth values from the same set should converge at the same point di at which
the function of ρ(·) convergence on 0 obviously normalizes. The function of ρ(·) is defined
as ρ(y) = [y ̸= 0], where [·] is Iverson brackets.

When the similarity of sample depth information is high, i.e., |x − y| < β = 1, both the
photometric similar‑point loss and the robust‑point consistency loss tend to be quadratic
functions. We set the loss of our network according to the weight settings in the existing
network JDACS [20] and SGT‑MVSNet [21], but the loss value should not be too large or
too small; too large a value will cause the loss value to remain high and unable to fall,
whereas too small a value will cause the decline to become too fast and therefore unable to
be trained, so we need to control the loss value in our process of experimentation, in order
to make it fall gradually during training after many experiments; the overall loss function
formula is as follows:

Loss = λ1·LS + λ2·LH (5)

where the weights are set as λ1 = 0.456, λ2 = 0.512.

4. Experiments and Analyses
In this paper, the matching and reconstruction results of the algorithm and other ad‑

vanced algorithms were compared and analyzed, and the experimental results include
qualitative and quantitative analyses to prove the advanced nature of the algorithm. Then,
in order to verify the effectiveness of the method, adequate ablation experiments
were performed.

4.1. Experiment Setup
Dataset: The training process was trained using the DTU dataset, which is a large

MVS dataset consisting of 124 different objects or scenes; each object shoots a total of
49 viewing angles, and each angle has a total of 7 different brightness, so there are a to‑
tal of 343 pictures inside each object or scene folder, and the dataset also has a training
image set with the ground truth of surface frame values.

Sparse Point Selection: The triangular region constructed with sparse points for semi‑
supervised learning was defined to evaluate the reconstruction ability of the matching net‑
work so that the network can reconstruct the original 3D structure fromamulti‑view image.
Therefore, in order to verify the effectiveness of our sparse, semi‑supervised algorithm,
we used sparse points with different density sizes in our evaluation tests. We randomly
selected a certain proportion of 3D sparse points from each ground truth data point of sur‑
face frame value, namely 0.05H·W and 0.15H·W, which were the number of sparse points
for supervision. The specific triangular region constructed by the sparse point is shown in
Figure 4.
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Figure 4. Triangular region constructed by sparse points: (a) visualization of a sparse triangular area
constructed from 0.05H·W sparse points; (b) visualization of a dense triangular area constructed
from 0.15H·W sparse points.

Training and Setting the Model: Before performing these processes, we learned the
training methods [25,26] of other authors, and we used the size of 640 × 512 as input for
training and testing to match the size of ground truth, which was selected by sparse points.
Our proposed SGT‑PatchMatchNetwas implemented in PyTorch and trained on 1NVIDIA
GTX Titan Xp GPU. We used the Adam optimizer to achieve fast and stable gradient de‑
scent, setting the betas of theAdamoptimizer to (0.9, 0.999) with aweight decay of 0.0. Our
network was trained for 16 epochs with 2 images per batch size, and the initial learning
rate was 0.001. In addition, the indicators for evaluating the quality of the network were
basically trade‑offs in accuracy and completeness, which could also be controlled by the
parameters of the reconstruction.

4.2. Comparative Experiment on DTU
We analyzed the 3D reconstruction of the structure of the object on four typical net‑

works to verify the effectiveness of the SGT‑PatchMatchNet network. As shown in Table 1,
the JDACS network is an unsupervised learning network based on MVSNet, the SGT‑
MVSNet network is a semi‑supervised network based on MVSNet, and PatchMatchNet
is the network based on which our model was proposed, which is a supervised network.
Our network is a semi‑supervised learningmodel, so we compared it with PatchMatchNet
to evaluate its performance. It should be noted that the figures in this section were gener‑
ated using the MeshLab software, and because they illustrate a 3D display process, there
may be angle problems when viewing the image again for comparison, so the position of
the comparative pictures may be different. The comparison of various networks under the
DTU dataset is shown in Figure 5.
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Figure 5. Comparative experiment of the effects of four networks: (a) semi‑supervised rendering;
(b) unsupervised rendering; (c) supervised rendering; (d) our rendering.

As can be seen in Figure 5c, the supervised network is effective in terms of accuracy
and completeness. Figure 5a shows that the rough outline can be reproduced using the
semi‑supervised model, but there are also deficiencies in accuracy. Figure 5b shows that
the effectiveness of the unsupervisedmodel is poor. Figure 5d shows that the effectiveness
in accuracy and completeness is greatly improved using our model.



Photonics 2022, 9, 983 10 of 14

In order to further reflect the characteristics and the advanced nature of this algorithm,
we evaluated the performance of the network, and the selected evaluation indicators were
accuracy (Acc) and completeness (Comp). Accuracy is an important indicator for evaluat‑
ing the matching network, and according to the comparison of multiple network experi‑
ments, the accuracy of the information can be derived from the accuracy of the network,
and whether the edges of the reconstructed objects are blurred. Completeness is the dis‑
tance from each point of the model for the structured light scan to the closest point of the
reconstructed model. In the effective measurement region, comparing its completeness is
an important indicator to evaluate the generalization ability of the matching network. The
quantitative performance of each network on the DTU is shown in Table 1.

Table 1. Qualitative comparison table of each comparison algorithm inDTU.×is unsupervised. ✓is
supervised.
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Table 2. The effect of each ablation process on the matching results. 

Method Acc (mm) Comp (mm) Overall (mm)  

418.35 0.445 0.267 0.356

Aswe can see from the table, the supervisedmodel has the best performance, followed
by the semi‑supervisedmodel, and the unsupervisedmodel has theworst performance for
the traditional algorithm COLMAP; thus, we can see that the supervisedmodel is superior
in terms of accuracy, which is also a major feature of the traditional method. However, the
overall performance level is not high, and our average indicators combined may be worse
than some supervised networks or even lower than unsupervised networks. Therefore,
as shown in the table, in which the prominent indicators are shown in bold, our network
performs at about the same level as PatchMatchNet and outperforms advanced networks
in integrity. In addition, under the same test conditions, we explored the test speed of each
network, and it can be seen that our network is faster than PatchMatchNet in testing. As a
result, we achieved effective solutions to existing problems, and when implemented, our
model is superior to existing methods.

4.3. Ablation Studies
Effect of the loss function: In order to analyze the effectiveness and characteristics of

the proposedmethod in this paper, ablation experiments were performed on the proposed
loss function, the results of which are presented in this section. First, 0.05H·W sparse
points (SP) were selected, which was the same as in previous experiments, and the robust‑
point consistency loss (LH) and photometric similar‑point loss (LS) were removed, and
the loss was defined with corresponding weights λ1 and λ2; when we removed the λ2·LH,
our loss was λ1·LS, and the loss value at this time was less, so in order to prevent the loss
from becoming too small and thus affecting the experimental results, we removed weight
λ1 when performing the ablation experiment. In the same way, we removed λ1·LS and
weight λ2. Finally, the experimental results were compared with those obtained using our
complete network, and the specific comparison data are shown in Table 2.
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Table 2. The effect of each ablation process on the matching results.

Method Acc (mm) Comp (mm) Overall (mm)

BaseNet+SP+LH 0.482 0.324 0.403
BaseNet+SP+LS 0.478 0.311 0.395
BaseNet+SP+LH+LS (ours) 0.445 0.267 0.356

As can be inferred from the table, our proposed loss function effectively contributes
to improving network performance. In order to better display the effect, we compared the
renderings, as shown in Figure 6. As can be seen from the comparison, the effect of our
proposed loss function at the edge is also more prominent, which plays an important role
in deriving a high‑integrity image.
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Figure 6. Comparison of effects after ablation.

Effect of the Sparse Points: To verify whether different dense sparse points have an
impact on the network, we tested with 0.05H·W and 0.15H·W sparse points. The specific
performance results are shown in Table 3.

Table 3. Comparison table of the impact of different dense sparse points on network performance.

Method Ground Truth Testing Speed (n/s) Acc (mm) Comp (mm) Overall (mm)

SGT‑
PatchMatchNet

Sparse1
0.05H·W 418.35 0.445 0.267 0.356

Sparse2
0.15H·W 438.87 0.433 0.259 0.346

We can infer from the table that the density of sparse points does not have a great
effect on the performance of the network, but the selection of sparse points does affect the
operation time, so selecting a suitable sparse point for supervision can not only improve
network performance but also reduce the operation time.

The effect of the training is shown in Figure 7. From the picture, it can be seen that
the effect of the two is about the same, and in terms of performance indicators, a small
number of sparse points may be slightly inferior to a large number of sparse points, but in
terms of training speed, a small number of sparse points have a perfect advantage, so in
this network, we selected a small number of sparse points to complete the supervision.
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Performance loss curve in training: In order to confirm the validity of the loss func‑
tion, we recorded the performance curve of the loss function during the ablation process,
and the specific effect is shown in Figure 8.
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4.4. Generalization
Comparedwith some photometric stereomethods of photometry [29–33], ourmethod

shows progress, and to further validate the generalization capabilities of our network, we
directly tested the model trained on the DTU dataset without any additional fine‑tuning.
We used 6 scenes with an input size of 1920 × 1056 and 151 planes for testing. As shown
in Figure 9, using our method, the 3D structures of the new domain were reasonably re‑
constructed, indicating the feasibility of its generalization.
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5. Conclusions
In this paper, we proposed a sparse, semi‑supervised network called SGT‑

PatchMatchNet based on the PatchMatchNet method. The network has a good perfor‑
mance in computing speed andmemory consumption. At the same time, in order to reduce
the error in the matching process of neighborhood points and solve the occlusion problem,
we proposed a photometric similar‑point loss function to force the neighborhood informa‑
tion to project the depth value of the predicted depth to meet the same 3D coordinates. In
addition, in order to solve the problem of the blurred edges of the depth map obtained us‑
ing the network model, we proposed a robust‑point consistency loss function to improve
the integrity and robustness of the occlusion area and the edge area. The experimental re‑
sults show that compared with the existing unsupervised and semi‑supervised matching
networks, the proposed method improves by 22.87% at the performance index and 14.19%
at the calculation speed. The effectiveness of the network was also demonstrated in the
field of semi‑supervision that we proposed. In the future, we plan to further optimize the
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model of the network to achieve better reconstruction results on weakly textured objects
and transparent objects.
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