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Abstract: The Fourier transform is a popular method for analyzing and processing interference data
in which spectrum leakage occurs. Generally, window function (also called apodization function)
weighting is employed to limit spectrum leakage. A rectangular window with optimal main‑lobe
performance and the Rife‑Vincent (R‑V) window were introduced to improve the window func‑
tion performance, resulting in the establishment of a quasi‑trapezoidal window function. Based on
the experimental interference data, the quasi‑trapezoidal window function was used in the spectral
restoration process. The experimental results show that when the apodization degree of the quasi‑
trapezoidal window was 1.06, the spectral resolution was improved by 17.46% compared with that
of the Hanning window; when the apodization degree was 2.71, the spectral signal‑to‑noise ratio
(SNR) was improved by 130.09% compared with that of the Blackman‑Harris window function. In
the propane (C3H8) and ethylene (C2H4) gas concentration inversion experiment, when the apodiza‑
tion degree was increased from 1.06 to 2.58, the inversion precision was increased by 6.94% for C3H8
gas and 23.93% for C2H4 gas. Through the parameter adjustment, the quasi‑trapezoidal window
may achieve a high SNR or high‑resolution spectral restoration, which can improve the accuracy of
gas concentration inversion to some extent.

Keywords: quasi‑trapezoidal window; resolution; signal‑to‑noise ratio; spectral restoration

1. Introduction
Fourier transform infrared spectroscopy has been widely employed in the petroleum

industry, biomedicine, aerospace, environmental science, and many other research fields
in recent years [1,2]. The processing of interference data is the core of spectral restoration
technology in Fourier infrared multicomponent gas analyzers, which affect the accuracy
of gas concentration inversion [3,4]. Since the actual interferometer can only provide a lim‑
ited optical path difference, the direct application of the Fourier transform will result in
spectrum leakage during the process of spectrum restoration. Consequently, the interfer‑
ence signal must be processed using a suitable apodization function [5,6].

Several researchers have undertaken in‑depth and extended studies on processing in‑
terference signals with the window function in recent years. Norton et al. [7] came up
with a suitable window function for the Fourier spectrum and went into detail about three
specific functions. Based on this work, Naylor et al. [8] proposed a way to figure out the
optimal coefficient of a cosine‑combined window function for getting the best spectral res‑
olutionwhen the sidelobe performance is known. Thewindow function determined by the
Naylor method is easy to implement and calculate, and it can be used to study the tradeoff
between spectral SNR and resolution. Justo J.F. et al. [9] proposed the Generalized Adap‑
tive Polynomial (GAP) window function, which allows fitting the expansion coefficients
to optimize a certain desirable property in time or frequency domains, such as the main
lobe’s width, and sidelobe attenuation. Chen Jiejing et al. [10] analyzed the optimal inver‑
sion outcomes of interferograms with varying SNRs processed by apodization functions
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with varied linewidths using the Monte Carlo method. He Qian et al. [11] obtained an
optimized spectral resolution by adopting a high‑order self‑convolution window based
on the fact that spectral power is concentrated in the main lobe. Currently, there are two
main ways to construct newwindow functions: one is to construct window functions with
different frequency‑domain performances by adjusting the coefficients or parameters of
classical window functions, such as a cosine‑combined windowwith different terms or co‑
efficients [12], a Kaiser window [13], etc.; the other is to construct the convolution window
by convoluting the classical window function in the time domain [14], which improves the
performance of the frequency‑domain sidelobe. However, the adjustment of classical win‑
dow coefficients or parameters can only improve the main‑lobe or sidelobe performance
of the window function to a certain extent [15]. Although the time‑domain convolution
operation can greatly improve the sidelobe performance, it will widen the main lobe of the
window function and reduce its flexibility.

Therefore, a quasi‑trapezoidal window function with convenient parameter adjust‑
ments was proposed [16,17] by comprehensively considering the classical window func‑
tion coefficients’ adjustment and the time‑domain convolution window function. Based
on the analysis of various classical window functions [18,19], the R‑V window was cho‑
sen as the parent window, and the self‑convolution R‑V window function with dramati‑
cally improved sidelobe performancewas constructedusing time‑domain self‑convolution.
Then, a rectangular window with the best main‑lobe performance was introduced to im‑
prove the main‑lobe characteristics of the self‑convolution R‑V window, resulting in the
establishment of a quasi‑trapezoidal window function with adjustable parameters, and
its time‑frequency characteristics were investigated. On this basis, the quasi‑trapezoidal
window function was applied to the process of spectral restoration and gas concentration
inversion. The spectral restoration effect [20,21] and gas concentration inversion accuracy
under different apodization degreeswere studied by adjusting the parameters of the quasi‑
trapezoidal window function.

2. Principle
The basic formula of the Fourier transform spectrometer principle is:

I(x) =
∫ ∞

−∞
RTB0(ν) cos(2πνx)dν (1)

B(ν) =
∫ ∞

−∞
RTI(x) cos(2πνx)dx (2)

where I(x) is the spectrometer’s actual interference signal; R and T are the reflection coef‑
ficients and transmission of the beam splitter, respectively; B0(ν) is the infrared radiation
spectrum; B(ν) is the restored spectrum; ν is the spectral wavenumber; and x is the optical
path difference.

Equations (1) and (2) show that after detecting the interference data, the Fourier trans‑
form must be performed to obtain the final spectral data. The integral interval of the
Fourier transform must be infinite in theory to obtain the complete spectrum. However,
the integral interval is restricted in the actual instrument due to the interferometer’s scan‑
ning distance constraint. The actual interference signal is obtained bymultiplying the ideal
interference signal by a rectangular truncation function D(x), and it is expressed in the fre‑
quency domain as the convolution of the actual spectrum and sinc function:

B(ν) =
∫ ∞

−∞
RTI(x)D(x) cos 2πνxdx = B0(ν) ∗ D(ν) (3)

IfM is the maximum scanning optical path difference of the interferometer, there are:

D(x) =
{

1, −M ≤ x ≤ +M
0, x >|M| (4)
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Its Fourier transform spectrum is in the form of a sinc function:

D(ν) =
2M sin(2πνM)

2πνM
≡ 2M sin c(2πνM) (5)

The sinc function is an oscillatory convergence function, with the first sidelobe reach‑
ing 22% of the main peak’s intensity. The strong positive and negative sidelobes not only
mask the true weak spectral information nearby but also introduce spurious spectral sig‑
nals, as shown in Figure 1. Therefore, these sidelobesmust be suppressed, a process known
as apodization. Apodization processing is the process of multiplying the actual measured
interference signal by a window function to reduce the sidelobe and alleviate the disconti‑
nuities in the interference signal.
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Figure 1. (a) Time‑domain diagram of a rectangular window function; (b) spectrum diagram of a
rectangular window function.

The spectral performance will be affected by the window function. One reason is that
the main‑lobe width of the window function will affect the spectral resolution; the full
width at half maximum (FWHM) criterion of the spectral resolution states that the broader
the main lobe is, the lower that the recovered spectral resolution is. The other reason is
that the spectral SNRwill be affected by the sidelobe performance of the window function,
where the positive sidelobe may produce a false peak signal, while the negative sidelobe
will weaken or submerge the adjacent weak signal, resulting in the decline of the spectral
SNR. In addition, the faster that the sidelobe attenuation speed is, the smaller the sidelobe
value is, and the higher the SNR of the restored spectrum is. Therefore, the selection of an
appropriate window function is of great significance to spectral restoration.

In this study, a new window function is proposed and established that allows a very
flexible trade‑off between the width of the main lobe and the height of the sidelobe and is
suitable for different spectral restoration occasions. First, the R‑V window function was
chosen as the parent function by analyzing the classical window function, and the parent
function was convoluted in the time domain to construct a self‑convolution window func‑
tion with significantly improved sidelobe performance. Second, the adjustable parameter
and rectangular window function were introduced to improve the self‑convolution R‑V
window function and establish the quasi‑trapezoidal window function.

3. Methods
3.1. Parent Window Function

To reduce the effect of spectral leakage on spectral SNR, a window function with a
small peak level and a large attenuation rate of the sidelobe should be chosen to process
the interference signal. The R‑V window function is a cosine combination window with a
small peak sidelobe level and excellent sidelobe attenuation performance. It is written in
the time domain as:

w(n) =
M−1

∑
m=0

(−1)mbm cos(2πn·m/N) (6)
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whereM is the number of terms in the window function; n = 1, 2, . . . ,N− 1; and bm should

satisfy the constraints:
M−1
∑

m=0
(−1)mbm = 0. Table 1 gives the five‑term R‑Vwindow function

coefficients, and Table 2 gives the sidelobe properties of the five‑termR‑Vwindow function
and other commonly used window functions.

Table 1. The five‑term R‑V window function coefficients.

Coefficient b0 b1 b2 b2 b4
Five‑term

Rife‑Vincent(I) 1 1.6 0.8 0.22857 0.02857

Table 2. The sidelobe properties of window functions.

Window Function Normalized
Main‑Lobe Width

Peak Sidelobe
Level [dB]

Sidelobe
Attenuation Rate

[dB/oct]

Rectangular 4 π/N −13 6
Triangle 8 π/N −25 12
Hanning 8 π/N −31 18
Hamming 8 π/N −41 6
Blackman 12 π/N −57 18
Blackman‑Harris 16 π/N −92 6
Five‑term Rife‑Vincent(I) 20 π/N −78 24

In practical calculations, the time‑domain truncation is equivalent to adding a rectan‑
gular window function, which belongs to the zero‑order power window function of the
time variable. A rectangular window function has concentrated main‑lobe energy, small
main‑lobe width, and high peak sidelobe level, which cannot well suppress the effects
caused by spectral leakage. The triangle window function, which is a simple modification
of rectangular window functions, is the first‑order power window function. Its main lobe
was twice as wide as the rectangular window function, but the peak sidelobe level was
much lower. The Hanning window function, an ascending cosine window, is equivalent
to the spectral algebraic sum of three rectangular window functions. Its main‑lobe width
was equivalent to that of the triangular window function, while the peak sidelobe level
was more significantly reduced and could better suppress the effects of spectral leakage.
The peak sidelobe level of theHammingwindow functionwas lowerwhen comparedwith
that of the Hanning window function, but the sidelobe attenuation rate was slower. The
Blackmanwindow function had a low peak sidelobe level of−57 dB and a sidelobe attenu‑
ation rate that was similar to that of the Hanning window function. The Blackman‑Harris
window function was a cosine combination window with a wider main lobe and a peak
sidelobe level of −92 dB, and its sidelobe attenuation rate was similar to that of the Ham‑
ming window. The peak sidelobe level of the five‑item R‑V window function was a little
higher than that of the Blackman‑Harris window function, and the rate of sidelobe atten‑
uation was fast. Since spectral reconstruction requires a high SNR, using a five‑item R‑V
window function to process interference signals can give better results.

3.2. Self‑Convolution Window Function
The p‑order self‑convolution R‑V window function has the following time‑domain

expression:
wp

R−V
= w (t) ∗ w (t) ∗ . . . ∗ w (t)︸ ︷︷ ︸

p

(7)

where p is the number of basic windows involved in the convolution, called the order of
the function.
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The sidelobe performance of the self‑convolution R‑V window function improved as
the order of convolution (p) increased. The peak sidelobe level and sidelobe attenuation
rate were proportional to the order of convolution (p).

3.3. Quasi‑Trapezoidal Window Function
Based on the time‑domain expression of the p‑order self‑convolution R‑V window

function, the adjustable parameter rT and a rectangular window function were introduced
to improve the self‑convolution R‑V window function to establish the quasi‑trapezoidal
window function. The expression of the quasi‑trapezoidal window function in the time
domain is:

W(N, L) =


wp

R−V(n)× wRW(n)÷ wp
R−V

(
L
2

)
, 0 < n < N−L

2

wRW(n), N−L
2 ≤ n ≤ N+L

2

wp
R−V(n)× wRW(n)÷ wp

R−V

(
N+L

2

)
, N+L

2 < n < N + 1

(8)

where L = rT ∗ N, N is the window function length, and rT is the scaling factor. To guar‑
antee the basic quasi‑trapezoidal shape, 0 < rT ≤ 0.9.

When N = 256, p = 1, and rT = 0.08, the quasi‑trapezoidal window function and its
amplitude‑frequency response are shown in Figure 2.
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Figure 2. (a) The quasi‑trapezoidal window function time‑domain waveform; (b) the quasi‑
trapezoidal window function amplitude‑frequency response.

3.4. Parameter Analysis
When the time‑domain lengthNwas held constant, the frequency‑domain properties

of the quasi‑trapezoidal window function were influenced not only by the scaling factor
rT but also by the convolution order p. Assuming N = 256, the relationship between the
frequency characteristics of the quasi‑trapezoidal window function and parameters (rT, p)
was studied.

3.4.1. The Effect of the Scaling Factor (rT)
Table 3 shows the peak sidelobe level and themain‑lobewidth of the quasi‑trapezoidal

window function when p = 1 was held constant and the scaling factor rT changed.
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Table 3. The effect of rT on the frequency characteristics.

Scaling Factor rT Peak Sidelobe Level (dB) Normalized Main‑Lobe
Width (×10−3)

0.9 −13.28 3.79
0.8 −13.33 4.21
0.7 −13.41 4.67
0.6 −13.69 5.28
0.5 −14.12 6.03
0.4 −15.15 6.94
0.3 −17.38 7.97
0.2 −22.53 8.96
0.1 −34.57 9.53
0.09 −36.29 9.56
0.08 −40.30 9.60
0.07 −42.68 9.62
0.06 −45.34 9.63
0.05 −51.75 9.6464
0.04 −55.54 9.6521
0.03 −59.62 9.6583
0.02 −63.81 9.6598
0.01 −74.10 9.66

Asdemonstrated in Figure 3a, the normalizedmain‑lobewidth of the quasi‑trapezoidal
window function is positively correlated with rT. The main‑lobe performance improved
dramatically as rT increased. While main‑lobe performance improved, there was a certain
decrease in the sidelobe performance. The peak sidelobe level of the quasi‑trapezoidal
window function is negatively correlated with rT, as shown in Figure 3b. As rT increased,
there was a decreasing trend in the sidelobe performance.
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As shown in Table 3 and Figure 3, whenN = 256, p = 1, and rT ∈ (0, 0.03), it was found
that the quasi‑trapezoidal window function achieved a lower peak sidelobe level. When
rT approached zero, the peak sidelobe level approached that of the R‑V window function,
and the sidelobe attenuation rate was the same as that of the R‑V window function. When
rT = 0.07, the trapezoidal window’s peak sidelobe level was similar to that of the Hamming
window function; the main‑lobe width was smaller than that of the Hamming window
function; and the sidelobe attenuation rate was slightly lower than that of the Hanning
window function.
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3.4.2. The Effect of the Convolution Order (p)
Table 4 shows the peak sidelobe level and the normalized main‑lobe width of the

quasi‑trapezoidal window function when rT = 0.008 was held constant and the order of
convolution (p) changed.

Table 4. The effect of p on the frequency characteristics.

Convolution Order p = 1 p = 2 p = 3 p = 4

Normalized main‑lobe
width (×10−3) 9.66 13.65 16.74 19.02

Peak sidelobe level (dB) −74 −149 −224 −298

The peak sidelobe level of the quasi‑trapezoidal window function was strongly corre‑
latedwith the number of convolution orders, as shown in Table 4. Therefore, as the number
of convolution orders increased, the performance of the sidelobes improved significantly.

The above analysis is summarized as follows: the quasi‑trapezoidal window func‑
tion was greatly improved in terms of main‑lobe width and peak sidelobe level, where
the required main‑lobe width could be achieved by adjusting rT and the required main‑
lobe width could be achieved by adjusting p. Since the quasi‑trapezoidal window function
makes window function engineering applications more flexible, it can be used in different
situations.

3.5. Evaluation Method
The apodization degree (AD), which means the ratio of the FWHM of the symmet‑

ric water vapor spectrum after apodization to that without apodization, can be varied by
adjusting rT and p in the quasi‑trapezoidal window function. The AD can be changed to
obtain different spectral restoration effects (spectral resolution and SNR).

The accuracy includes precision and correctness, which are used to evaluate the inver‑
sion result of the gas concentration. Relative accuracy (RE) and standard deviation (SD)
were selected to calculate the correctness (meaning the degree of coincidence between the
average value of multiple determinations and the true value under the same condition)
and precision (meaning the degree of consistency of repeated analysis under the same con‑
dition), shown in Equations (9) and (10), respectively:

RE = (|yi − y|/y)× 100% (9)

SD =

√
1
n

i=1

∑
n
(yi − yi)

2 (10)

where yi represents inversion concentration, y represents true gas concentration, and yi
represents the average value (AVG) of inversion concentration.

4. Spectral Restoration Experiment
4.1. Spectral Restoration Experiment

The main‑lobe width and the peak sidelobe level of the window function can directly
affect the resolution and SNR of the recovered spectrum. Since the quasi‑trapezoidal win‑
dow function was used to alter the main‑lobe width and peak sidelobe level by adjusting
parameters, we will look at how the spectral resolution and SNR were affected by the ad‑
justment parameters of the quasi‑trapezoidal window function.

The experimental interference data were collected by a self‑developed Fourier trans‑
form infrared spectrometer, the working schematic of which is shown in Figure 4, and
whose core device (the interferometer system) is made up of a beam splitter, moving mir‑
rors, and stationary mirrors. The main parameters of the experimental instrument are as
follows: the spectral range was 500–5000 cm−1; the scanning velocity was 0.2875 cm/s;
the detector was mercury cadmium telluride (MCT). Stirling refrigeration was adopted for
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MCT, and themaximumoptical path differencewas 0.01m. Since the spectral resolution of
the experimental instrumentwas less than 0.5 cm−1, the full width at halfmaxima (FWHM)
of the symmetric water vapor spectrum (spectral range: 1900~1700 cm−1) was calculated,
which is called the resolution of the recovered spectrum.
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Figure 4. Working principle of portable Fourier transform infrared spectrometer.

4.2. Spectral Resolution and SNR
Several classical window functions were used to process the collected interference

data, and the SNR and resolution of the restored spectrum are shown in Table 5.

Table 5. Spectral resolution and SNR based on classical window functions.

Window Function Spectral Resolution (cm−1) Spectral SNR

Rectangular 0.91581 9418.54
Triangle 1.13951 16,317.4
Hamming 1.22603 15,463.8
Hanning 1.17876 15,004.9
Blackman 1.37451 18,465.9
Blackman‑Harris 1.56521 20,494.8

The interference datawas processed by adjusting the parameters of the quasi‑trapezoi
dal window function, and the SNR and resolution of the restored spectrum are shown in
Table 6.

When rT = 0.8 and p = 1, the AD of the quasi‑trapezoidal window function was 1.06,
which resulted in a 17.46% improvement in spectral resolution compared with that of the
Hanning window function; when rT = 0 and p = 4, the AD of the quasi‑trapezoidal window
function was 2.71, which resulted in a 130.09% improvement in spectral SNR compared
with that of the Blackman‑Harris window function.

The trend of spectral resolution with rT and the trend of spectral SNR with p are de‑
picted in Figure 5, and it can be observed that the spectral resolution was positively cor‑
related with rT, and the larger rT was, the higher the spectral resolution was; the spectral
SNR was positively correlated with p, and the larger p was, the higher the spectral SNR
was. By changing rT and p of the quasi‑trapezoidal window function, it was possible to get
the spectral SNR and resolution that were needed.
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Table 6. Spectral resolution and SNR based on the quasi‑trapezoidal window function.

Quasi‑Trapezoidal Window Spectral Resolution
(cm−1)

Spectral SNR
rT P

0.8 1 0.97291 10,106.3
0.7 1 1.05255 10,754.5
0.6 1 1.13855 11,346.7
0.5 1 1.28243 11,709.9
0.4 1 1.44906 13,336.3
0.3 1 1.67407 15,732.7
0.2 1 1.87034 21,337.2
0.1 1 1.90925 24,533.6
0.09 1 1.91687 24,749.3
0.08 1 1.91851 24,963.1
0.07 1 1.92518 25,201.6
0.06 1 1.92527 25,442.9
0.05 1 1.92227 25,718.1
0.04 1 1.91819 25,931.8
0.03 1 1.91749 26,127.5
0.02 1 1.91723 26,260.8
0.01 1 1.91738 26,343.4
0 1 1.91745 26,371.5
0 2 2.35303 37,494.4
0 3 2.43318 43,375.2
0 4 2.48109 47,175.3
0.1 2 2.30684 33,433.4
0.2 2 2.28032 28,044.6
0.3 2 2.02931 24,839.5
0.4 2 1.55041 14,237.7
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5. Gas Concentration Inversion
5.1. Gas Experiments

To study the effect of the quasi‑trapezoidal window function on gas concentration
inversion accuracy, C3H8 with a broad FWHM absorption feature and C2H4 with a nar‑
row FWHM absorption feature, which are the main components of petrochemical cat‑
alytic cracking, were selected as experiment sample gases. The different concentrations
of multicomponent gas samples used in the experiments were obtained from a standard
gas through a dynamic multi‑component partition gas device. Each sample was a mixed
gas of C3H8 and C2H4, where the C3H8 concentration was 209 mmol × mol−1 (ppm) and
the C2H4 concentration was 199 mmol ×mol−1 (ppm).
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Aself‑developed portable Fourier transform infrared spectrometerwas used to collect
interference data. The experiment started by passing the sample gas into the gas cell to
expel the air, followed by carrying out an infrared interference experiment and saving the
interference data. There were 240 sets of interference data collected in the middle, and the
average was taken for every eight sets. This made 30 sets of interference data.

The 30 sets of interference datawere processed by the quasi‑trapezoidal window func‑
tion with different parameters in ten groups (as shown in Table 7, where AD means the
apodization degree), and the processed interference datawere imported into the FTIR spec‑
trum automatic quantitative analysis software, which adopted a nonlinear least‑squares
quantitative analysis method based on the synthesized background spectrum. The gas in‑
version concentration was acquired by FTIR spectroscopy automatic quantitative analysis
software.

Table 7. The parameters of the quasi‑trapezoidal window function.

rT 0.8 0.7 0.6 0.5 0.4 0.4 0.3 0 0.3 0

p 1 1 1 1 1 2 1 1 2 2

AD 1.06 1.15 1.24 1.41 1.59 1.71 1.83 2.09 2.23 2.58

5.2. Spectral Features
The concentration inversion band of C3H8 gaswas set at 2900–3040 cm−1. The FWHM

of its standard absorbance spectrum (from the QASOFT infrared standard database) was
about 32 cm−1. The comparison between the spectra of C3H8 with different apodization
degrees and the C3H8 standard absorbance spectrum is shown in Figure 6. Figure 6 shows
that the C3H8 spectrum had a broad FWHM with no sharp absorption peaks, and the
higher the apodization degree was, the smoother the spectral curve was. The detailed
changes in the spectrum with small apodization degrees were consistent, and spectral ab‑
sorption was a little weaker when the apodization degree was high. When the apodization
degree was 2.58, the details of the C3H8 absorption spectra were distinctly different, but
the change trends were consistent.
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The concentration inversion band of C2H4 gas was set at 905–960 cm−1. The FWHM
of its standard absorbance spectrum was about 1.24 cm−1. The comparison between the
spectra of C2H4 with different apodization degrees and the C2H4 standard absorbance
spectrum is shown in Figure 7. Figure 7 shows that the C2H4 spectrum had a narrow
FWHM, but the absorption peaks were single and concentrated; the spectral resolution de‑
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creased as the apodization degree increased and the spectral curve with lower resolution
was smoother. When the apodization degree reached 2.58, a portion of the C2H4 absorp‑
tion spectrum’s features were lost, and the intensity of the primary peak was dramatically
reduced.
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5.3. Analytical Method
The concentration inversionmethod of FTIR automatic quantitative analysis software

is the nonlinear least squares (NLLS) analysis method based on the synthetic background
spectrum. The inversionmethod involves getting the background spectrum and doing the
NLLS analysis.

5.3.1. Synthetic Background Spectrum
The first step is to obtain the background spectrum. The background spectrum acqui‑

sitionmethod is as follows: choose some data points in the spectrumwithweak absorption,
and use the polynomial filteringmethod to fit a smooth curve as the background spectrum.

The specific calculation process is as follows: first, filter the measured spectrum Im;
second, compare the relative spectral intensity IF obtained after filtering with the corre‑
sponding spectral intensity Im before filtering one by one; third, replace the value of Im
smaller than IF with IF to construct a new relative intensity vector I0; and fourth, repeat
the above process for I0 until the cycle stops to obtain the background spectrum I0. The
process is shown in Figure 8.

5.3.2. NLLS Analysis
The Beer–Lambert law expresses the relationship between the absorbance and con‑

centration of an absorbing sample as follows:

Im(ν) = I0(ν)e
−L ∑

i
σi(ν)Ci

(11)

where Im is the measured spectrum, I0 is the background spectrum, L is the optical path
length, σi is the cross‑section of component i, Ci is the concentration of component i, and
ν is the wavenumber.
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The spectral database, such as NIST, HITRAN, and QASOFT, contains spectroscopic
parameters for absorption line positions and strengths for multiple molecules, including
the pressure parameters’ broadening effect f L(ν) and the temperature parameter broaden‑
ing effect fG(ν).

The integrated line strengths are tabulated in HITRAN database at 296 K and must
be corrected to the temperature of the measurement as follows:

S(T) = S(296) · exp
(
−c1 · E0 ·

(
1
T
− 1

296

))
·
(

296
T

)m
·

1 − exp
(
− c1ν0

T
)

1 − exp
(
− c1ν0

296
) (12)

The cross section σ0(ν) is the convolution of the integrated line strength and the line
shape contributions of two kinds of broadening. It is expressed as

σ0(ν) = S(T)⊗ fL(ν)⊗ fG(ν) (13)

In practice, it should be considered not only the environmental effects (pressure and
temperature) but also the line shape ILS(ν) effects (resolution, window function, etc.). The
cross section σ(ν) is expressed as

σ(ν) = σ0(ν)⊗ ILS(ν) (14)

Define the merit function χ2, and calculate its minimum value to determine the best
fitting parameters. The form of χ2 is:

χ2 =
n

∑
i=1

[
Im(ν)− I0(ν)e

−L∑
i

σiCi
)

]2
(15)

For simplicity,
→
a wasused to represent the coefficient vector, which comprises the con‑

centration, environmental parameters, and instrument parameters. Equation (16) could
then be rewritten as follows:

χ2(
→
a ) =

n

∑
i=1

[
Ii − I

(
vi;

→
a
)]2

(16)
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where Ii is the value of each corresponding frequency, and the standard spectrum of gas
absorbance can be obtained from databases, such as NIST, HITRAN, and QASOFT.

Equation (16) shows that this is a NLLS‑fitting process for multiple parameters in the
broad band. Because the undetermined parameter vector here is dependent on the non‑
linear model, the minimum value of χ2 must be solved by iteration. The undetermined
parameter vector was initially assigned an experimental value, and then a calculation pro‑
cess was designed to optimize the initial experimental value. This procedure was repeated
until there was no significant growth. The fitting of the standard spectrum and the mea‑
sured spectrumwas finishedwhen the difference between the calculated spectrum and the
measured spectrumwas close to the acceptable minimum value. That is to say, the concen‑
tration information of the target gas could be obtained from the best‑fitting spectrum.

For a set of fitting parameters
→
a with given initial values, the iterative process based

on the Marquardt nonlinear least squares method is shown in Figure 9, where λ is the step
length and χ2

pre is the convergence value.
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5.4. Inversion Results and Analysis
Since the gas cell length where the hybrid gas entered the infrared spectrometer was

0.02 m, the concentrations of C3H8 and C2H4 were 4.18 ppm*m and 3.98 ppm*m, respec‑
tively.

The concentration inversion data for the gas acquired by the FTIR spectroscopy au‑
tomatic quantitative analysis software was used to calculate the average value (AVG), SD,
and RE of the gas concentration to characterize the accuracy of the gas inversion, shown in
Table 8. Table 8 shows that when the apodization degree changed, the correctness and pre‑
cision change trend of the inversion concentration were inconsistent for C3H8 and C2H4.
That should result from the different absorption characteristics of C3H8 and C2H4. There‑
fore, the inversion concentration result needs to be discussed separately.
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Table 8. Concentration inversion results of C3H8 and C2H4.

Parameter C3H8 C2H4

AD SNR AVG SD RE AVG SD RE

1.06 10,106.3 4.298 0.864 2.84% 4.056 0.564 1.90%
1.15 10,754.5 4.301 0.863 2.90% 4.062 0.561 2.05%
1.24 11,346.7 4.283 0.861 2.47% 4.091 0.557 2.79%
1.41 11,709.9 4.261 0.857 1.95% 4.093 0.548 2.83%
1.59 13,336.3 4.236 0.855 1.34% 4.102 0.543 3.06%
1.71 14,237.7 4.203 0.854 0.56% 4.098 0.540 2.96%
1.83 15,732.7 4.176 0.852 0.11% 4.064 0.537 2.12%
2.09 26,371.5 4.161 0.844 0.47% 3.873 0.535 2.68%
2.23 24,839.5 4.121 0.821 1.39% 3.778 0.480 5.06%
2.58 37,494.4 4.061 0.804 2.86% 3.611 0.429 9.28%

5.4.1. C3H8 with a Broad FWHM
Figure 10a depicts the relationship between different apodization degrees and the

precision of the C3H8 concentration inversion. It shows that with the improvement of the
apodization degree, the spectral SNR and the precision of propane concentration inversion
were improved. When the AD was 2.58, the SD was the smallest, and it was only 0.804,
meaning the precision was the highest. Figure 10b depicts the relationship between the
different apodization degrees and the AVG of the C3H8 concentration inversion. It shows
that when the apodization degree increased, the RE of the C3H8 concentration inversion
was within 3%, which was stable, but the value had an obvious downward trend. For the
C3H8 gas concentration inversion, when the apodization degreewas increased from 1.06 to
2.58, the precision was improved by 6.94%, and the correctness was unchanged.
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5.4.2. C2H4 with a Narrow FWHM
Figure 11a depicts the relationship between different apodization degrees and the

precision of the C2H4 concentration inversion. It shows that as the apodization degree
increased, the spectral SNR and the precision of C2H4 concentration inversion was im‑
proved. When the AD was 2.58, the SD was the smallest, and it was just 0.429, which indi‑
cated the greatest precision. Figure 11b depicts the relationship between different apodiza‑
tion degrees and the AVG of the C2H4 concentration inversion. It shows that when the
apodization degree was 1.06~2.09, the RE of the C2H4 concentration inversion was within
3%, which was essentially steady; when the apodization degree reached 2.58, the AVG of
the C2H4 concentration inversion had an obvious decline, and the REwas 9.28%. For C2H4
gas concentration inversion, when the apodization degree was increased from 1.06 to 2.58,
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the precision was improved by 23.93%, while the correctness decreased dramatically. In
this situation, we could correct the actual inversion concentration to ensure correctness.
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inversion.

To sum up, for gases whose spectrum has a broad FWHM or a narrow FWHM with
a single and concentrated absorption peak, it is unnecessary to pursue excessive spectral
resolution in concentration inversion. Using a quasi‑trapezoidal window function to lower
resolution and increase SNR can improve the inversion accuracy to a certain extent.

6. Discussion
In this study, the apodization principle of the infraredmulticomponent gas analyzer’s

interference signal was examined, and the quasi‑trapezoidal window function was pro‑
posed. Based on analyzing the basic window function, the adjustable parameters rT and p
were introduced to construct the quasi‑trapezoidal apodization function, and the param‑
eter characteristics of the quasi‑trapezoidal apodization function were studied and had
a wide adjustment range of main‑lobe width and peak sidelobe level. When the quasi‑
trapezoidalwindow functionwas used to restore spectra, the parameters could be changed
to get restored spectrum with different SNRs and resolutions. When the apodization de‑
gree was 1.06, the spectral resolution was improved by 17.46% compared with that of the
Hanning window function; when the apodization degree was 2.71, the spectral SNR was
improved by 130.09% compared with that of the Blackman‑Harris window function. The
C3H8 and C2H4 gas concentration inversion experiments showed that when the apodiza‑
tion degree was increased from 1.06 to 2.58, the inversion precision was increased by 6.94%
for C3H8 gas and 23.93% for C2H4 gas, while the correctness decreased dramatically for
C2H4 gas.

7. Conclusions
The engineering application of the quasi‑trapezoidal window is flexible. When it is

not necessary to pursue excessive spectral resolution, using a quasi‑trapezoidal window
function to lower the resolution and improve the SNR can improve the gas concentration
inversion accuracy to a certain extent.
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