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Abstract: In photon-counting underwater optical wireless communication (UOWC), the recovery of
the time slot synchronous clock is extremely important, and it is the basis of symbol synchronization
and frame synchronization. We have previously proposed a time slot synchronous clock extraction
method based on single photon pulse counting, but the accuracy needs to be further improved. Deep
learning is very effective for feature extraction; synchronous information is already implicit in the
discrete single photon pulse signal output by single photon avalanche diode (SPAD), which is used
as a communication receiver. Aiming at this characteristic, a method of time slot synchronous clock
recovery for photon-counting UOWC based on deep learning is proposed in this paper. Based on the
establishment of the underwater channel model and SPAD receiver model, the Monte Carlo method
is used to generate discrete single photon pulse sequences carrying synchronous information, which
are used as training data. Two neural network models based on regression problem and classification
problem are designed to predict the phase value of the time slot synchronous clock. Experimental
results show that when the average number of photons per time slot is eight, photon-counting UOWC
with a data rate of 1Mbps and a bit error rate (BER) of 5.35 × 10−4 can be achieved.

Keywords: underwater optical wireless communication (UOWC); photon-counting; deep learning;
time slot synchronous clock

1. Introduction

Nearly two-thirds of the earth’s surface is covered by the ocean, but these ocean
resources remain largely unexploited. With the growing demand for resources, people’s
activities in the ocean are increasing rapidly, so the demand for related underwater in-
formation transmission technology is also more urgent [1–4]. There are currently three
main underwater wireless communication technologies; namely, underwater ultrasonic
communication, underwater radio frequency (RF) communication and underwater optical
communication. Although underwater ultrasonic communication can achieve a transmis-
sion distance of several kilometers or more, the communication rate is very low (Kbps)
and cannot meet the needs of large-capacity data interaction [5,6]. As another option,
underwater RF communication can provide a data transmission rate up to tens of Mbps. Its
transmission distance is very limited due to severe attenuation underwater; usually, only a
few meters can be transmitted [7,8]. Underwater optical wireless communication (UOWC)
can provide an ultra-high data rate (Gbps), and has the characteristics of low time delay
and high energy efficiency. Therefore, UOWC has become a hot research topic [9–12].

Due to the complexity of the underwater channel, the optical signal will be affected
by scattering and absorption when transmitted in an underwater channel, so the optical
signal is very weak while arriving at the receiving end. At present, many researchers have
already realized high-speed UOWC. A 21 m UOWC with a data rate of 5.5 Gbps has been
achieved in [13]. In [14], the authors realized a UOWC distance of 34.5 m with a data rate
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of 2.70 Gbps. Shen et al. realized a UOWC distance of over 20 m at a high data rate of up to
1.5 Gbps by using a 450 nm LD [15]. In [16], the authors proposed a UOWC system based
on a convolutional neural network (CNN) demodulator and analyzed the BER performance
of the system. Cui et al. experimentally demonstrated the performance of CNN-based
signal decoders in UOWC systems [17]. In [18,19], the authors used a CNN combiner for
feature analysis and combination, and a CNN demodulator to recover the transmitted
information. Although a high sensitivity avalanche photon diode (APD) has been used as
the receiver detector in the above articles and the communication rate is up to Gbps, the
transmission distance is limited to tens of meters. Improving the transmission distance
of UOWC from tens to hundreds of meters is a challenging task. In recent years, in order
to realize long-distance UOWC, some researchers have used a single photon avalanche
diode (SPAD) to detect an optical signal at the receiving end. Compared with APD, SPAD
is more sensitive and can detect a single photon as the photon-counting receiver. In 2016,
through simulation analysis, Wang et al. found that SPAD-based UOWC is feasible when
it transmits more than 100 m in clean ocean and 300 m in pure sea water [20]. In [21], a
synchronization method based on photon-counting UOWC was proposed, which achieved
a communication distance of more than 100 m with a symbol error rate (SER) of 10−4. In [22],
UOWC with a communication distance of 46 m based on a multi-pixel photon counter
(MPPC) detector was realized. UOWC with a communication distance of 21 m and a data
rate of 312.03Mbps based on MPPC was achieved in [23]. In [24], Huang et al. realized
UOWC with a communication distance of 1000 m and a data rate of 10 bps based on photon-
counting detectors. In [25], the author proposed a multiple light emitting diode (LED)
chips parallel transmission scheme for UOWC based on SPAD, and proved that the system
can significantly improve the BER performance. In [26], a real-time, high-speed UPCC
system was designed and experimentally validated based on SPAD. A novel deep learning-
aided signal detection scheme for an SPAD-based UOWC system was proposed in [27].
In [28], Hema et al. proposed a deep learning based signal detection system for channel
estimation and increases in transmission distance. In [29], a novel fully connected deep
neural network (FC-DNN)-based receiver was proposed and experimentally demonstrated
in a UOWC system. All the above literatures use SPAD as the receiver detector, and all have
realized relatively long-distance UOWC, but none of them have specified how to realize
synchronization and recover data from the received discrete single photon pulse. Clock
recovery is the basis of data recovery, including three-level synchronous clock recovery
for time slots, symbols and frames. How to recover the time slot synchronous clock from
the discrete random single photon pulse is the key to the demodulation of the photon-
counting communication signal. In 2019, Dr. Yan et al. proposed a time slot synchronous
clock recovery method based on pulse counting [30]. The time slot synchronous clock
extracted by this method has low precision, especially in long-distance UOWC. When the
average number of photons per bit is very small, the phase error of the extracted time slot
synchronous clock is very large, resulting in a lot of errors in the recovered baseband signal.

Deep neural networks have recently achieved exciting successes in computer vision,
speech recognition and natural language processing because of their powerful data learning
capabilities. Deep learning models can be used not only for classification and regression,
but also for feature extraction. Fast online recovery and powerful nonlinear mapping
capabilities are the main advantages of deep learning methods.

In photon-counting UOWC, the synchronous clock information is implied in the
discrete single photon pulse sequence output by the SPAD receiver. In view of this char-
acteristic, we proposed a novel time slot synchronous clock recovery method based on
deep learning for photon-counting UOWC. The time slot synchronous clock can be directly
extracted from the received discrete single photon pulse by a trained deep neural network,
so the baseband communication data can be quickly recovered. In order to verify our
proposed method, a photon-counting UOWC experimental system was built.
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2. System Design and Principle
2.1. System Design

The photon-counting UOWC system based on deep learning is shown in Figure 1.
The sending end performs On-Off Keying (OOK) modulation on the data to be sent and
then loads it on the drive circuit, which will drive the LED to turn on and off. The light
signal emitted by the LED passes through a collimating lens, which converts the originally
divergent light signal into a parallel light signal, and then passes through the underwater
channel. Due to the influence of absorption and scattering, the light signal is very weak
while arriving at the receiving end. The receiving end uses a focusing lens to focus the
optical signal into the SPAD. The discrete single photon pulse signal output by SPAD passes
through a starting position determination module, and then a suitable starting sampling
point is found. At the same time, the sampling module starts sampling the discrete single
photon pulse output by SPAD, and the sequence after sampling is converted into binary
sequence; then, the binary sequence is input into the previously trained neural network.
The trained neural network extracts the feature of the binary sequence and recovers the
time slot synchronous clock. Finally, the baseband signal is recovered according to the time
slot synchronous clock.

Figure 1. Photon-counting UOWC system based on deep learning.

2.2. Principle
2.2.1. Principle of Recovering Time Slot Synchronous Clock Based on Deep Learning

After detecting the optical signal carrying information, SPAD outputs a discrete single
photon pulse signal. The phase of time slot synchronous clock is hidden in the discrete
single photon pulse signal; we designed a neural network and let it learn to extract the
hidden phase. As shown in Figure 2, the initial phases of the time slot synchronous
clocks are set between 0 and 2π, and the initial phases of these time slot synchronous
clocks are evenly divided into M types. The underwater photon-counting wireless optical
communication is simulated by the Monte Carlo method, and single photon pulse signals
with different initial phases carrying the synchronization head information are obtained.
These single photon pulse signals are sampled and converted into binary sequences as
the data part of the training set. When single photon pulse signals with different initial
phases are obtained, the phases of the corresponding time slot synchronous clocks are
also different. In this paper, the phase with the smallest phase error from the ideal time
slot synchronous clock phase among the M kinds of time slot synchronous clock phases
uniformly classified is used as the class label of the current single photon pulse signal,
and the class label is processed by one-hot encoding. After the training data are obtained
through the above method, the training data are fed into the built neural network, and
the weights and biases in the network are continuously trained and optimized. After the
network converges, the trained network can be used to extract features from discrete single
photon pulses, and then to identify and reconstruct the phase of the time slot synchronous
clock from the extracted features, as shown in Figure 3.
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Figure 2. Principle of neural network trained to extract the hidden phase.

Figure 3. Principle of recovering time slot synchronous clock based on deep learning.

2.2.2. Frame Structure Design

In the actual photon-counting UOWC system, how to determine the starting position
of a segment of data is a difficult problem. Here we design a data frame format, which can
quickly find the appropriate starting position and provide the premise for data recovery.
The format of the data frame is shown in Figure 4. A complete data frame consists of a
series of starting position estimation sequence (SPES), silent time 1, synchronization header,
frame header, valid data and silent time 2. The SPES and silent time are used to find a
suitable starting position. The synchronization header sequence is a square wave signal
carrying synchronization information. The function of the frame header is to mark the
starting position of the valid data; the valid data are placed behind the frame header. At
the end of the data frame, there is a silent time to distinguish the two different data frames.

Figure 4. Frame structure.

2.2.3. Principle of Starting Position Determination

According to the data frame structure designed above, the timing diagram of how to
find the starting position is shown in Figure 5. The SPAD outputs discrete random electrical
pulses after detecting the light signal. We designed a counter to count the single photon
pulse output by SPAD, and a timer counts the silent time of the signal output by SPAD.
When the counter count value reaches a certain value and the silent time count value also
reaches a certain value, we consider this moment as the starting position. At this time,
pulling up the sampling enable signal starts the sampling module. The sampling module
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starts sampling the single photon pulse signal output by SPAD and converts the sampled
sequence into binary sequence. Then, the Nfs/br sampling points in front of the binary
sequence are fed into the trained neural network, so that the time slot synchronous clock
phase value can be restored, and the time slot synchronous clock can be restored according
to the phase value, where fs represents the sampling clock frequency, and br represents the
baud rate of the modulated signal.
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3. Design of Neural Network and Production of Training Data
3.1. Design of Classification and Regression Neural Network

For the deep learning method to recover the time slot synchronous clock phase value,
we propose two neural network models to predict the phase value of a time slot syn-
chronous clock. The clock phase determination network (CPD-Net) belongs to the classi-
fication network, and the clock phase reconstruction network (CPR-Net) belongs to the
regression network. In both types of networks, we use a certain number of hidden layers.
The benefit is to improve the accuracy of phase identification and extraction, and ultimately
reduce the BER of the system. When the number of photons in a unit time slot is rela-
tively large, a four-layer network can achieve good results. However, when the number
of photons is low, there are fewer features that can be identified. In order to accurately
identify features and recover the synchronous clock when the number of photons is small,
we add more fully connected layers. Experiments show that when the number of photons
in a unit time slot is small, the use of several layers of fully connected layers has a good
effect on feature recognition, and can even reduce the overhead caused by the length of the
synchronization head.

3.1.1. Structure of CPD-Net

The structure of CPD-Net is shown in Figure 6. In order to extract the phase value
of the time slot synchronous clock more quickly and accurately, we designed a shallow
time slot synchronous clock recognition network. This network has a small amount of
calculation and high recognition accuracy. The network consists of two convolutional
layers and eight fully connected layers, and each layer is followed by a ReLU activation
function. The first two convolutional layers are used for phase feature extraction, the last
eight fully connected layers are used for phase classification, and finally, the phase value
with the highest probability is output in the output layer. To sum up, the model of CPD-Net
can be expressed as:

Q̂l = ft( ft−1(. . . f1(In))) (1)

where In represents the input data, and ft(t = 1,2, . . . ,10) represents the mathematical
operation of each layer of the network.
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Figure 6. The structure of CPD-Net.

In general, the purpose of training a neural network is to reduce the loss function
by optimizing the parameters of the network. Since CPD-Net is a typed network, the
cross-entropy error is used here as the loss function, which can be expressed as:

lcpd = −
M

∑
i=1

Qi ∗ log(Pi) (2)

where Qi is the expected output value, and Pi is the predicted probability of network output.

3.1.2. Structure of CPR-Net

Although the aforementioned CPD-Net can provide high-accuracy clock phase recog-
nition, its phase is always a fixed category, and the precision of phase extraction is not
high enough. In response to this problem, we have proposed a regression-based CPR-Net;
the network structure is shown in Figure 7. The network is mainly composed of four
convolutional layers and eight fully connected layers, and the ReLU activation function is
used behind each layer. Four convolutional layers constitute an encoder and decoder. The
first two convolutional layers are used as encoder to extract features from the discrete single
photon pulse, the latter two convolutional layers are used as decoder to reconstruct the
time slot synchronous clock phase value from the extracted features. Eight fully connected
layers gradually reduce the dimension of the data output by the decoder. Finally, the phase
prediction value is output in the output layer. In summary, the model of CPR-Net can be
expressed as:

Ŝl = fn( fn−1(. . . f1(Un))) (3)

where Un represents the input data and fn(n = 1,2 . . . ,12) represents the mathematical
operation of each layer of the network. Since CPR-Net is a regression network, the cross
entropy is no longer used as the loss function. The mean square error is used as the loss
function, so its loss function can be expressed as:

lcpr =
1
n

n

∑
i=1

(si − gi)
2 (4)

where gi is the expected output value and si is the actual output value of the network.
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Figure 7. The structure of CPR-Net.

3.2. Underwater Channel Model and SPAD Receiver

The relationship between the LED emission power and the average number of emitted
photons can be expressed as:

Pt =
Nthv

T
, (5)

where Pt is the LED emission power, Nt is the average number of photons emitted by LED,
h is the Planck constant, ν is the frequency of light and T is the time slot interval.

Optical signal transmission in an underwater channel will be affected by absorp-
tion and scattering. Since the absorption factor a(λ) and the scattering factor b(λ) are
the main causes of channel attenuation, the accumulated total attenuation coefficient
c(λ) = a(λ) + b(λ) in the underwater channel. According to the accumulated total attenua-
tion coefficient, we use the Beer model to model the attenuation of underwater optical signal
transmission; then, the number of photons Nr at the receiving end can be expressed as:

Nr = Nte−c(λ)L, (6)

where L represents the underwater communication distance.
The number of photons after SPAD optical detection can be expressed as:

λs = µp(Nr + NaT) + NbT, (7)

where µp is the photoelectric conversion efficiency of SPAD, Na is the number of background
light noise photons per unit time and Nb is the dark count of SPAD per unit time.

Generally speaking, the number of photons output by SPAD can be modeled as a
Poisson statistical distribution under ideal circumstances, and the probability of detecting
y photons can be expressed as:

Pideal(y) =
λs

ye−λs

y!
, (8)

When considering the dead time of SPAD, the number of photons detected by SPAD
no longer obey the standard Poisson statistical distribution. At this time, the probability of
detecting y photons can be given by [19]:

P(y) =



y
∑

i=0

λs
i(1−(i+1)δ)i

i! e−λs(1−(i+1)δ)

−
y−1
∑

i=0

λs
i(1−iδ)i

i! e−λs(1−iδ), if y < ymax

0, if y ≥ ymax

, (9)

where δ = τ
T , τ is the dead time, and the maximum number of photons detected by SPAD

ymax = bT/τc+ 1, bkc represents the largest integer less than k.
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3.3. The Production Process of Training Data

As shown in Figure 8, according to the above underwater channel model and SPAD
receiver model, we can use the Monte Carlo method to simulate the process of photon-
counting UOWC to create the training data set. To prevent overfitting, we use Dropout in
the network. Our training set is large enough to contain rich 01 sequences. During the test
phase, we generate a large number of test single photon pulses, which also work well. This
means that our network does not have the problem of overfitting.

Figure 8. Production process of training data.

3.3.1. Training Data Production of CPD-Net

In the training data production process of CPD-Net, we stipulated that the initial
phase value of the time slot synchronous clock was in the range of 0-2π, and the initial
phase of the time slot synchronous clock was divided into M types evenly. The initial
phase difference of two adjacent time slot synchronous clocks is 2π/M, and the M time slot
synchronous clocks with different initial phases are numbered. We send synchronization
header data of length N bits on the sender side, and orderly increase the initial phase of
sending synchronization header data. The value of each increase is πbs/fs; the number of
the corresponding time slot synchronous clock can be expressed as:

ld = f ([|0− Ph|, |
2π

M
− Ph|, . . . , |2π(M− 1)

M
− Ph|]), (10)

The function of f(x) is to find the subscript with the smallest value in the array, and
Ph represents the initial phase value of the transmitted signal. For example, we divide the
initial phase of the time slot synchronous clock into 20 kinds; then, every two adjacent
time slot synchronous clocks are separated by π/10. At this time, the initial phase of the
transmitted signal is π/40, and according to Equation (8), the time slot synchronous clock
phase number corresponding to the transmitted signal is one.

When the optical signal passes through the underwater channel model and the SPAD
receiver model, the single photon pulse signal output by the SPAD is sampled and binarized;
the Nfs/br numbers in front of the binary sequence are taken as the data part of the training
data set. At the same time, the number of the corresponding time slot synchronous clock
is used as the label part of the training data set. It is very important that the label data is
one-hot encoded.

3.3.2. Training Data Production of CPR-Net

The training data production process of CPR-Net and CPD-Net are basically the same.
Because CPR-Net is a network that deals with regression problems, the label in the training
data of CPR-Net is no longer the phase category of the time slot synchronous clock, and
the label of CPR-Net training data can be expressed as:

lc = Ph, (11)

4. Simulation and Water Tank Experiment Results
4.1. Simulation Results

In order to verify the feasibility of the method we proposed, we conducted simulation
experiments on the photon-counting UOWC system based on deep learning and gave some
simulation results. In the simulation experiment, we selected two typical water qualities,
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Jerlov IB and Jerlov II; their attenuation coefficients are given in Table 1. In order to simulate
real deep-sea communication, we did not consider the background light in the simulation
process, but only considered the non-standard Poisson noise and dark counting noise in the
process of SPAD detecting photons. The detailed parameters of the simulation are given in
Table 2.

Table 1. Jerlov IB, II water quality attenuation parameters.

Jerlov IB Jerlov II

a(λ)(m−1) 0.064 0.087
b(λ)(m−1) 0.08 0.216
c(λ)(m−1) 0.144 0.303

Table 2. Simulation parameters of photon-counting UOWC system based on deep learning.

Parameters Values

Modulation On-Off Keying (OOK)
Baud rate (br) 10 Mbps

Length of synchronization header (N) 10
Phase type of synchronization clock (M) 20

Sampling frequency (fs) 200 MHz
Wavelength 450 nm

Power of LED 1 W
Max efficiency 35%

Dark count rate 25 Hz
Pulse width 5 ns
Dead-time 8 ns

The results of the performance evaluation of two network models are shown in
Figure 9. The training data sets used for training and testing are different. It can be seen
from the figure that, whether it is in Jerlov IB or Jerlov II water quality, as the transmission
distance increases, the probability of CPD-Net recognizing the correct time slot synchronous
clock phase value decreases. For CPR-Net, with the increase of the transmission distance,
the error between the predicted phase value output by the network and the ideal phase
will increase.

Figure 9. Performance evaluation of CPD-Net and CPR-Net under different water quality.

As shown in Figure 10, we compared the pulse counting method and the deep learning
method. It can be seen from the figure that under the same conditions, the system commu-
nication BER using the deep learning method will be lower. We can also see from the figure
that the BER is lower when using regression-based CPR-Net to reconstruct the time slot
synchronous clock phase value. The reason for this result is that the time slot synchronous
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clock phase predicted by CPR-Net is more accurate, so the system communication BER
using CPR-Net recovery time slot synchronous clock is lower.

Figure 10. The influence of different time slot synchronous clock recovery methods on system
communication BER.

4.2. Results of Water Tank Experiment

The water tank experiment system is shown in Figure 11. At the sending end, we use a
Field Programmable Gate Array (FPGA) (ALINX, AX516) to perform OOK modulation on
the received data, and then drive the LED to turn on and off. A diaphragm is placed behind
the LED, which is mainly used to adjust the optical power of the LED. We use a tank full of
water to simulate the underwater channel; the length of the tank is about 1.5 m. Because the
length of the water tank is not sufficient, in order to simulate deep-sea communication, an
attenuator is placed behind the diaphragm to attenuate the light signal emitted by the LED
and the tank is opaque. At the receiving end, we use another FPGA (ALTERA, DE2-115) to
sample the single photon pulse signal output by the SPAD (THORLABS, SPCM 20A), and
send the sampled data to the computer via Ethernet for time slot synchronous clock and
data recovery.

Figure 11. Diagram of the water tank experimental system.

4.2.1. Parameter Settings for Training Data Production

In order to use the trained network in our water tank experiment system, we produced
a large amount of training data through the method in Chapter 3, and then used these
training data to continuously train CPD-Net and CPR-Net. It is especially important that
the parameters in the process of making training data are completely consistent with the
parameters of the actual water tank experimental system. In order to count the background
light and dark count noise in the experimental system, this section makes a statistical
analysis of the noise photon pulse output by the SPAD when the LED at the sending end
is off. Figure 12 gives the statistical distribution of the number of noise photons within
1000 time slots, where the time slot frequency is 1 Hz. It can be seen from the figure that
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the average number of noise photons in the experimental system in 1 s is only four. When
the communication baud rate is 1Mbps, the number of noise photons within each bit is
basically negligible, so the background light noise and dark count noise are not considered
when making the training data set in this section. The detailed parameters of the water
tank experimental system are given in Table 3.

Figure 12. Statistical distribution of the number of noise photons in 1000 time slots.

Table 3. Detailed parameters of the water tank experimental system.

Parameters Values

SPAD number SPCM 20A
Modulation On-Off Keying (OOK)

Baud rate (br) 1 Mbps
Length of synchronization header (N) 40

Phase type of synchronization clock (M) 50
Sampling frequency (fs) 50 MHz

Wavelength 450 nm
Max efficiency 35%

Dark count rate 25 Hz
Pulse width 20 ns
Dead-time 40 ns

4.2.2. Analysis of Network Performance

As shown in Figure 13, we presented the training results of CPD-Net and CPR-Net
when the average number of photons per time slot was different. It can be seen from the
figure that as the average number of photons in each time slot increases, the probability
of CPD-Net identifying the wrong time slot synchronous clock phase value gradually
decreases; the error between the phase value predicted by CPR-Net and the phase value of
the ideal time slot synchronous clock becomes smaller.

Figure 13. The impact of the average number of photons per time slot on the performance evaluation
of CPR-Net and CPD-Net.
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4.2.3. Analysis of Experimental Results

In order to compare the traditional pulse counting method with the deep learning
method proposed by us, we adopted the deep learning method and the traditional pulse
counting method to realize time slot synchronous clock and data recovery, respectively,
in the water tank experimental system; the corresponding system communication BER is
shown in Figure 14. It can be seen from the figure that the system communication BER
using the deep learning method is lower. This phenomenon also proves that the time slot
synchronous clock recovered by the deep learning method is more accurate. It is worth
noting that the BER of the system using CPR-Net is lower than the BER of the system using
CPD-Net, which directly shows that the method of using CPR-Net to predict the time slot
synchronous clock phase value is better.

Figure 14. The influence of different time slot synchronous clock recovery methods on the communi-
cation BER of the water tank experimental system.

5. Conclusions

Aiming at the shortcomings of existing photon-counting UOWC time slot synchronous
clock recovery methods, a time slot synchronous clock recovery scheme for photon-counting
UOWC based on deep learning is proposed in this paper. By establishing an underwater
channel model and SPAD receiver model, a large amount of training data is produced by
using the Monte Carlo method based on these two models, and two neural network models
based on the classification problem and regression problem are designed to predict the
phase value of the time slot synchronous clock. When the network training is complete, we
use the trained network to recover the time slot synchronous clock in the photon-counting
UOWC system, and then recover the data. Both simulation and water tank experiment
results show that the deep learning method we proposed is better than the existing pulse
counting method and can effectively reduce the BER of the photon-counting UOWC system.
Another point is that the method of using regression-based CPR-Net to reconstruct the time
slot synchronous clock phase is better.
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