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Abstract: In this study, we devised a method for the design of continuous phase-only holographic
masks that map laser light to arbitrary target illumination patterns, which have a wide range of
applications. In this method, the discrete gradient of a holographic mask is obtained by combining
geometric optics and the linear assignment problem (LAP) methods, and then the entire problem is
transformed into an integral problem with a discrete gradient. Finally, the least squares method is
used to solve the gradient integral to complete the construction of a phase holographic mask. Due
to its good continuity, this mask design method can also be applied to the production of diffractive
optical elements. We discussed the effectiveness of this method by constructing two holographic
masks with uniform illumination. At the same time, we successfully constructed an Einstein face
holographic mask with non-uniform illumination using the LAP method for the first time. It is
believed that this method can be widely used in illumination mode, ion capture and other directions.

Keywords: linear assignment problem (LAP); phase-only freeform; computer-generated holography

1. Introduction

Computer-generated holography (CGH) is a powerful three-dimensional display
technology that is useful in various applications, such as in laser-beam shaping and fo-
cusing, the formation of complex images in augmented reality systems and holographic
displays, structural lighting, optical traps and microscopes. [1–5]. Compared with ampli-
tude holograms, reconstructed computer-generated holograms are brighter and they can be
displayed with a single-phase spatial light modulator (SLM), which simplifies holographic
display systems [6]. At present, iterative Fourier transform algorithm (IFTA) methods
are widely used in the generation of phase-only holography and have achieved great
success [7,8]. However, the diffractive optical element (DOE) microreliefs obtained by it are
usually complex and irregular in shape, often similar to white noise. Such relief is difficult
to manufacture, and the manufacturing error leads to the uncontrolled scattering of light on
the microrelief and the formation of speckle structure, which greatly damages the quality
of the generated light irradiation distribution. Therefore, in this study, we used a mapping
illumination method to realize the design of phase-only freeform surface holograms.

Illumination patterns were originally designed based on non-imaging optics, which is
a key branch of geometric optics that is developing rapidly due to extensive research in solar
energy and light-emitting diode technology. An inverse problem of non-imaging optics
is the design of freeform surface optical elements with a certain irradiance distribution
and wavefront. In most cases, this inverse problem can be reduced to an elliptic non-linear
partial differential equation (PDE). Design methods that can be used for obtaining direct
numerical solutions for elliptic non-linear PDEs have only appeared in recent years. For
example, in 2013, Wu et al. [9] transformed the PDE representing a beam-shaping problem
into a non-linear boundary problem of the elliptical Monge–Ampère equation, based on
the concept of an optimal mass transport problem. In this method, after establishing the
boundary conditions of the mapping, a nine-point difference scheme is used to discretize the
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PDE, and then Newton’s method is used to solve the Monge–Ampère equation. However,
this kind of iterative method for solving PDEs is a highly computationally complex way to
solve non-linear equations, as the selection of an initial iterative value affects the probability
that an equation will be solved, such that improper selection of an initial iterative value
often leads to no convergent solution.

The supporting quadric method (SQM) was devised by Oliker and co-workers [10]
and is widely used for designing illumination patterns; that is, for designing the optical
elements of refracting mirrors to produce discrete intensity or illumination patterns at a
given position [10–12]. In the SQM, a given irradiance distribution is defined as a discrete
distribution approximation over a finite set of N points, and an optical surface is then
represented as a set of quadric segments with N segments, with each focusing the incident
beam onto one of these N points. Paraboloids, ellipsoids or hyperboloids can be used as
quadric segments, depending on the problem to be solved. The parameters of quadric
segments are calculated by the iterative method. The SQM has been used for the design
of freeform surface lenses capable of focused illumination and imaging of light fields in a
specific area.

The key challenge in the Monge–Ampère method and the SQM is to solve the mapping
relationship of beams. Doskolovich et al. have conducted extensive research in this area,
including on the SQM, variational methods, linear assignment problem (LAP) methods
and hybrid algorithms [12–15]. In their research on the design of variational methods, they
highlighted the effectiveness of an LAP approach and used iterative methods to verify a
uniform lighting problem [13,14].

Different from the literature [13,14], in the current study, a non-iterative method was
used to design phase-only holographic diffraction masks for several uniformly focused
images and some non-uniformly focused images via an LAP method, and the influence of
lens sag on final imaging quality was examined. In this non-iterative method, an optimal
mass-transportation problem is transformed into an LAP that is processed by the Hungarian
algorithm. Subsequently, the phase function is calculated by the gradient integration
method [16–19]. This method efficiently generates a smooth phase-only diffraction mask,
thereby affording a phase diffraction element that is easy to process. We demonstrated the
effectiveness of this method by using it to generate holographic masks whose diffraction
intensity distributions were a geometric pattern composed of four rectangles with rotational
symmetry and the characters “CIST” without symmetry, and an image with an illumination
distribution. To the best of our knowledge, the LAP method for focusing imaging processes
with intensity distributions has rarely been reported. In view of this, in this paper, we
use the LAP method to realize the design of a phase-only hologram of a non-uniformly
illuminated portrait.

2. Design Method
2.1. Phase Gradient Calculation

The design problem of the phase-only holographic mask is actually a calculation of
the phase function of a light field on an input plane under the condition of producing a
given irradiance distribution on a given plane. In geometric optical approximations, it
is common to deal with such a problem by using an eikonal function instead of a phase
function. Therefore, we define a light field distribution E(x, y) =

√
I0 exp(ikz0) at z = 0,

where the wavenumber k = 2π/λ, λ is the wavelength of the beam, (x, y) are the Cartesian
coordinates at z = 0, I0 is the beam intensity distribution at the illumination region S1 at
z = 0 and z0(x, y) is the eikonal function at z = 0. The position vector on the wavefront is
z0 = (x, y, z0). When the beam propagates to z = f, its light field distribution is denoted
as E(u, v) =

√
I f exp

(
ikz f

)
, where (u, v) is the Cartesian coordinate at z = f, and zf (u, v)

is the optical path function at z = f. Let the position vector on the observation plane be
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zf = (u, v, zf). If is the beam intensity distribution in the illumination region S2 at z = f. By
using r to represent the unit direction vector of (zf − z0), it can be found that

r =
(

u− x, v− y, z f − z0

)
/L, (1)

where L2 = (x − u)2 + (y − v)2 + (z0 − zf)2. As the light field propagates in a uniform
medium, r is also the normal vector of z0, so

∂z0
∂x = (u− x)/

(
z f − z0

)
∂z0
∂y = (v− y)/

(
z f − z0

) (2)

can be obtained, in which zf − z0 can be approximated by f. Therefore,{
∂z0
∂x = u−x

f
∂z0
∂y = v−y′

f
(3)

{
u = x + ∂z0

∂x f
v = y + ∂z0

∂y f
. (4)

Equation (4) represents the coordinate correspondence of each discrete point on the
z = 0 plane and z = f plane. According to the coordinate transformation relation and the
energy conservation law,

J(S2)E(x, y) = E(u, v) (5)
s

S1
E(x, y)dxdy =

s
S2

E(u, v)dudv (6)

can be obtained, where J(S2) = ∂u/∂x · ∂v/∂y − ∂u/∂y · ∂v/∂x, the Jacobian matrix of
the coordinate transformation relation defined in Equation (4). Equation (6) is the integral
expression of energy conservation; its discrete form is

∑N
n=1|E(xn, yn)| = ∑M

m=1|E(um, vm)|, (7)

where N is the number of discrete points in region S1, and M is the number of discrete
points in region S2. When the light intensity distribution on the initial plane is uniform
(that is, I0 is constant), the following correspondence exists

I f (um, vm) = ∑Nm
n=1 I0(xn, yn), Nm =

I f (um, vm)

I0
, (8)

where N1 + N2 + . . . + NM = N. That is, point If (um, vm) corresponds to Nm mappings,
and the distance of the mapping corresponding to a single point on the S2 plane can be
expressed as

Dm = ∑Nm
n=1L(xn, yn, u(xn), v(yn)). (9)

The total distance of the whole mapping is as follows:

T = ∑M
m=1Dm. (10)

It can be seen that the mass-transportation problem is transformed into an LAP when T
is minimized. In this study, we used the Hungarian algorithm to solve the above optimiza-
tion problem and found that it can easily obtain the corresponding relationship between
the initial coordinate system and the target coordinate system. Thus, by substituting the
obtained correspondence into Equation (3), the gradient (f x, f y) = (∂z0/∂x, ∂z0/∂y) on the
phase surface z0 can be determined. Next, we used a non-iterative gradient integration
method to reconstruct the phase surface.
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2.2. Gradient Integration Methods

The region method is a gradient integration method that uses the linear combination
of gradient values in a region near the target point to represent height difference and
determines the relative position of each height point by solving linear equations. For
example, a least squares algorithm based on Taylor’s theorem that reconstructs a wavefront
under any combination of tilt, defocus and astigmatism. The relationship between the
height value and the gradient can be expressed as

[
Px
Py

]Z0 = [
Fx
Fy

], (11)

where Z0 is the vector representation of the phase distribution z0, Px and Py are the
coefficient matrices of the combination of height points corresponding to the difference
operator and Fx and Fy are the difference vectors of row direction and column direction,
respectively, estimated according to gradient points. Based on a Taylor expansion, the
integral formula of z0 in the x-direction and y-direction can be approximately expressed by
the following formula:z0(x,y+1) − z0(x,y) = 0.5× ∆×

(
fx(x,y+1) + fx(x,y)

)
z0(x+1,y) − z0(x,y) = 0.5× ∆×

(
fy(x+1,y) + fx(x,y)

) . (12)

The relationship between Fx, Fy and gradient fx, fy can be expressed as follows: Fx
(x, y) = (fx (x, y + 1) + fx (x, y)) × 0.5∆, Fy (x, y) = (fy (x + 1, y) + f y (x, y)) × 0.5∆, where
∆ = 12.5 µm is the size of the mask pixel. Equation (12) shows that the coefficient matrices
Px and Py are sparse matrices containing only the elements 1 and −1. The solution of the
phase distribution can be obtained from the following least squares algorithm:

Z0 = ([
Px
Py

]
T

[
Px
Py

])
−1

[
Px
Py

]
T

[
Fx
Fy

]. (13)

3. Design Examples
3.1. Uniform Illumination

The phase holographic masks of two special images with uniform illumination were
calculated at different propagation distances f, and their diffraction spectra were simulated
and observed experimentally. As described in Ref. [13], the process of ray mapping can be
seen as a process of focusing a beam to a specified area. The focal plane is the plane z = f.
Therefore, the propagation distance f is also described as the focal length of the mask in the
later description of this paper. Their diffraction intensity profiles were a rectangle and the
characters “CIST”, respectively. The details of the parameters of the intensity distribution
graphs are as follows. The first image (Figure 1a) was composed of four rectangles with
rotational symmetry. The total number of discrete points contained in this image was
N = 64 × 64, and the number of discrete points in the effective illumination area (i.e., the
non-zero area of the whole image) was M = 256. The second image (Figure 1b) contained
the characters “CIST”. The total number of discrete points contained in this image was
N = 90 × 90, and the number of discrete points in the effective lighting area was M = 900.
To verify the mask diffraction effect on an SLM, we set the pixel size of the image to be
consistent with the pixel size of the SLM that we used, and its length and width were
∆ = 12.5 µm. The total times required to compute the phase functions for these images on a
desktop computer (equipped with an I9-9900 core CPU @ 3.10 GHz) were approximately
80 s (Figure 1a) and 550 s (Figure 1b), respectively.

E(u, v) = F−1
{

F[E0(x, y)] exp
(

i
2π

λ
zT

√
1− (λ fx)

2 −
(
λ fy
)2
)}

(14)
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Figure 1. (a) Rectangular target irradiance distributions, (b) the characters “CIST” target irradiance
distributions.

The angular spectrum method was used to simulate the diffraction of a hologram [20],
and the diffraction spectrum calculation formula is shown in Equation (14), where E0 is
the angular spectrum, (fx, fy) is the Fourier spatial frequency domain, z is the propagation
distance and zT is the propagation distance and is equal to the focal length f of a mask.
Equation (14) is an exact expression similar to Kirchhoff’s formula. The Fresnel diffraction
integral is obtained by the Fresnel approximation simplification and is not different from
the exact solution. This conclusion can be proved by the stationary phase method.

Figures 2a and 3a show the calculation results of holographic masks and the simulated
diffraction spectra when f = 5 cm. It is well known that the diffraction of a beam after
passing through this kind of mask can be regarded as a focusing process with focal length
f. As the focal length f = 5 cm was long, the curvatures of the masks were very small.
The overall details of the masks were thus compressed, which made the diffraction results
very fuzzy. We therefore reduced f to 2 cm and re-performed simulations. As shown in
Figures 2b and 3b, the diffraction result with f = 2 cm was significantly better than that with
f = 5 cm. The two masks were of 64 × 64 pixels and 90 × 90 pixels, respectively, and thus
as the f value was further decreased, the curvature of the masks rapidly increased beyond
the range that could be expressed by the number of pixels, resulting in large distortions. In
particular, when f = 1 cm, the whole pattern was completely distorted, indicating that the
masks could not be optimized by continually reducing the f value.
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Figure 2. Rectangular holographic masks (top) and their simulation diffraction pattern (bottom) with
different f values, where, (a,b) with f = 5 cm and f = 2cm, and (c,d) for an expansion mask with
f = 5 cm and f = 2cm, respectively.
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Figure 3. Holographic masks of the characters “CIST” (top) and their simulation diffraction pattern
(bottom) with different f values, where, (a,b) with f = 5 cm and f = 2 cm, and (c,d) for an expansion
mask with f = 5 cm and f = 2 cm, respectively.

The most straightforward solution to this problem would have been to increase the
value of N, so that the masks contained more pixels, which would enrich the phase details.
However, as we used the Hungarian algorithm, a 100 × 100-pixel phase map was the limit
for calculations on a desktop computer. Instead, as the phase masks were locally smooth
freeform surfaces, we directly interpolated and enlarged them. After expanding the mask
heights, lengths and widths 10 times, we obtained the results shown in Figure 2c,d and
Figure 3c,d, where the actual f = 5× 10 cm in Figures 2c and 3c and the actual f = 2 × 10 cm
in Figures 2d and 3d. This demonstrated good consistency between the simulation results
and the design objectives.

Figure 4 compares the simulated diffraction of the rectangular expanded mask and
the target irradiance (in row 320 in the horizontal direction) for various f values. Similarly,
Figure 5 compares the simulated diffraction of the “CIST” expanded mask and the target
irradiance (in row 450 in the horizontal direction).
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Figure 4. Comparison of the simulated (black line) and target irradiance (red line) of the diffraction
in-tensity distribution of the rectangular expansion mask (line 320th in the horizontal direction of
diffraction pattern) where (a) f = 2 cm and (b) f = 5 cm.
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Figure 5. Comparison of the simulated (black line) and target irradiance (red line) of the diffrac-
tion intensity distribution of the “CIST” expansion mask (line 450th in the horizontal direction of
diffraction pattern) with different f value, where (a) f = 2 cm and (b) f = 5 cm.

The quantities in Table 1 were calculated using the value of the black line (Ib) and the
value of the red line (Ir) as shown in Figures 4 and 5, as these values reflect the fitting accu-
racy, i.e., the overall signal-to-noise ratio of the phase distribution
SNR = ∑n Ir(n)/ ∑n|Ib(n)− Ir(n)|. The larger the SNR, the higher the matching accuracy of the-

oretical values and experimental or simulated values. R1 = 1−
√

∑n(Ib(n)− Ir(n))
2/ ∑

n
I2
b (n)

and R2 = 1−
√

∑n(Ib(n)− Ir(n))
2/ ∑n I2

r (n) represent the deviation. The mean absolute
value error MAE = ∑n|Ib(n)− Ir(n)|/Nl and the root mean square error

RMSE =
√

∑n(Ib(n)− Ir(n))
2/N reflect the difference between a theoretical value and

an experimental or simulated value. We found that a smaller f value did not increase the
diffraction exhibited by an expanded mask. In some places with large slopes in the “CIST”
mask expansion map for f = 2 cm, a phase change of 2π was only controlled by one or two
pixels. This obviously caused errors and clearly indicated a correspondence between phase
curvature and diffraction effects, as discussed below.

Table 1. Analysis of fitting errors.

SNR MAE RNew1 RNew2 RMSE

R_0.02 1.6444 0.0380 −0.1276 0.3793 0.1552

R_0.05 1.4472 0.0432 0.4933 0.5595 0.1101

CIST_0.02 1.6748 0.1526 −0.2070 0.4083 0.2991

CIST_0.05 1.8275 0.1398 0.1212 0.4805 0.2626

The global mean absolute error (GMAE) was calculated to evaluate the quality of
diffraction, where GMAE = ∑N

n=1|Ib(n)− Ir(n)|/N. The lower the value of GMAE, the
closer a simulation result is to the theoretical value. To simplify the transformation relation-
ship between the value of f and the hologram phase curvature, we used l = ∆h/π as the
variable and examined the correspondence between f and the hologram phase curvature,
where ∆h is the height of a mask in the unwrapped state, which is equivalent to the lens sag
of the mask. The distribution curves of GMAE under different l conditions are shown in
Figure 6. It can be seen that an optimal value of l made the simulation result closest to the
target irradiance value. For example, Figure 6a shows that there was an optimal solution
when l was approximately 50. Thus, given that the rectangular pattern mask consisted of
640 × 640 pixels, approximately 13 pixels expressed the phase change of 2π in this case. In
contrast, Figure 6b shows that there was an optimal solution when l was approximately
130. Thus, given that the “CIST” mask consisted of 900 × 900 pixels, approximately seven
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pixels expressed the phase change of 2π in this case. These two sets of results show that the
value of l in the optimal case varied depending on the complexity of the image.
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Figure 6. Analysis of global mean absolute value error (GMAE) of different sag heights for a
rectangular mask (a) and characters “CIST” mask (b).

3.2. Non-Uniform Illumination Focusing

As an example of non-uniform illumination, we computed a phase holographic mask
for an image of Einstein’s face. The illumination distribution for this image is shown in
Figure 7a. The image consisted of 90 × 90 pixels and its number of effective pixels was
4223, which contained four levels of gray. Among them, there are 2122 pixels with the
first level of gray, 914 pixels with the second level of gray, 648 pixels with the third level
of gray and 539 pixels with the fourth level of gray. These gray values correspond to the
light intensity distribution. The mask for this image consisted of 90 × 90 pixels, and the
calculated phase mask is shown in Figure 7b. Figure 7c,d show the intensity distribution
and the phase distribution of the simulated diffraction pattern for the mask, respectively.
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Figure 7. Example of a non-uniform irradiance mask design and its diffraction spectrum. (a,b) The
original image and its phase-only hologram, respectively, and (c,d) the amplitude of the simulated
diffraction pattern and its phase distribution, respectively.

3.3. Illumination Experiment Results

An experimental system containing an SLM was used to observe and verify the
diffraction of masks (Figure 8). The light source was a helium–neon laser with a wavelength
of 633 nm. The phase-only mask data were loaded onto the SLM from a computer, and the
diffraction of the mask was recorded by a CCD camera through a beam splitter (BS). The
SLM used was a reflective liquid-crystal-on-silicon SLM (Hamamatsu) with a pixel size of
12.5 µm and a resolution of 1280 × 1024. The laser beam was adjusted to an appropriate
size by a beam extender (BE) and then oriented such that it was incident perpendicular to
the SLM by the BS, and finally recorded by the CCD camera. So far, due to the limitation of
the computing power of the machine, the size we have adopted is relatively small. Two
sizes of 90 × 90 pixels and 64 × 64 pixels are adopted. The resolution of SLM used in the
experiment is 1280 × 1024 pixels. Since the obtained phase hologram is piecewise smooth,
it can be appropriately enlarged to facilitate the diffraction of pixels that can utilize SLM
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more, but the enlarged mask will have errors on the boundary of piecewise continuous.
Nonetheless, we have found that, in a trade-off between the two, proper magnification
improves diffraction. In addition, we verify the diffraction effect of the designed phase-only
hologram on SLM. At this time, if the phase hologram is directly loaded on the SLM, similar
to the Fresnel lens, other diffraction orders will be mixed into it. In order to remove these
influences, we add blazed grating to phase holography, and put lenses L1 and L2 in front
of the CCD. Using a diaphragm between L1 and L2 can effectively eliminate the influence
of other diffraction orders on the experiment. The results are shown in Figure 9. The
expanded mask of f = 5 cm was used, and the results are shown in Figure 9. Figure 9a–c
are the experimental diffraction patterns of the rectangle mask, “CIST” mask and Einstein
mask, respectively, while Figure 9d is the negative film of Figure 9c. It can be seen that the
experimental results are in good agreement with the simulation results. As a result, the
existing errors in the experiment are caused by the quantization gray level of SLM itself
and the resolution of SLM. If a three-dimensional DOE is made, these influences will be
improved. As shown in Figures 2, 3 and 7, the effect of numerical simulation diffraction is
very close to the target irradiance (or the original image). However, from the experimental
results on SLM, the noise is still relatively large. As we know, the resolution of SLM
depends on the size of pixels, which is generally around 10 microns. Of course, due to
the continuous progress of technology, the pixel size of the more precise SLM has reached
about 5 microns. Even so, as a digital signal, the diffraction effect on the SLM is difficult
to compare with the analog signal. We believe that with the advancement of processing
technology, the control of light waves using SLM will certainly achieve the modulation
effect we expect in the near future.

Photonics 2022, 9, x FOR PEER REVIEW 9 of 11 
 

 

used in the experiment is 1280 × 1024 pixels. Since the obtained phase hologram is piece-

wise smooth, it can be appropriately enlarged to facilitate the diffraction of pixels that can 

utilize SLM more, but the enlarged mask will have errors on the boundary of piecewise 

continuous. Nonetheless, we have found that, in a trade-off between the two, proper mag-

nification improves diffraction. In addition, we verify the diffraction effect of the designed 

phase-only hologram on SLM. At this time, if the phase hologram is directly loaded on 

the SLM, similar to the Fresnel lens, other diffraction orders will be mixed into it. In order 

to remove these influences, we add blazed grating to phase holography, and put lenses 

L1 and L2 in front of the CCD. Using a diaphragm between L1 and L2 can effectively 

eliminate the influence of other diffraction orders on the experiment. The results are 

shown in Figure 9. The expanded mask of f = 5 cm was used, and the results are shown in 

Figure 9. Figure 9a–c are the experimental diffraction patterns of the rectangle mask, 

“CIST” mask and Einstein mask, respectively, while Figure 9d is the negative film of Fig-

ure 9c. It can be seen that the experimental results are in good agreement with the simu-

lation results. As a result, the existing errors in the experiment are caused by the quanti-

zation gray level of SLM itself and the resolution of SLM. If a three-dimensional DOE is 

made, these influences will be improved. As shown in Figures 2, 3 and 7, the effect of 

numerical simulation diffraction is very close to the target irradiance (or the original im-

age). However, from the experimental results on SLM, the noise is still relatively large. As 

we know, the resolution of SLM depends on the size of pixels, which is generally around 

10 microns. Of course, due to the continuous progress of technology, the pixel size of the 

more precise SLM has reached about 5 microns. Even so, as a digital signal, the diffraction 

effect on the SLM is difficult to compare with the analog signal. We believe that with the 

advancement of processing technology, the control of light waves using SLM will cer-

tainly achieve the modulation effect we expect in the near future. 

 

Figure 8. Schematic of the experimental system used for holographic recording. SLM: reflective liq-

uid crystal spatial light modulator with pixel size of 12.5μm and resolution of 1280 × 1024; Laser: 

He-NE laser with a wavelength of 633 nm; BS: beam splitter; BE: beam expander; L1 and L2: lens 

with a focal length of 50 mm; CCD = charge-coupled device camera. 

 

Figure 9. Experimentally obtained diffraction patterns of phase-only holographic masks. From (a–

c), they are the diffraction patterns of the rectangular mask, the “CIST” mask and the Einstein im-

age mask, respectively, and (d) is the negative of (c). 

a                                    b                                c                                   d

Figure 8. Schematic of the experimental system used for holographic recording. SLM: reflective
liquid crystal spatial light modulator with pixel size of 12.5 µm and resolution of 1280 × 1024; Laser:
He-NE laser with a wavelength of 633 nm; BS: beam splitter; BE: beam expander; L1 and L2: lens
with a focal length of 50 mm; CCD = charge-coupled device camera.
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Figure 9. Experimentally obtained diffraction patterns of phase-only holographic masks. From (a–c),
they are the diffraction patterns of the rectangular mask, the “CIST” mask and the Einstein image
mask, respectively, and (d) is the negative of (c).

4. Conclusions

In this study, we developed a method for calculating phase-only holographic masks.
In this method, the mass transmission problem of illumination mapping is transformed into
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an LAP, which is solved to obtain the discrete gradient of a phase mask. As the iterative
gradient integration method is time-consuming and tends to introduce errors, we used
the least squares method devised by Southwell to solve the gradient integral of the phase
distribution. To verify the performance of the method, we constructed two holographic
masks whose diffraction intensity distributions were a geometric pattern consisting of four
rectangles with rotational symmetry and a set of characters with no symmetry (“CIST”).

The results showed that the obtained masks exhibited good diffraction effects even
after being expanded, which confirmed their piecewise smooth properties. In fact, their
diffractive free surfaces were continuous in three dimensions, which is a highly convenient
feature for applications in processing, forming and manufacturing. In various scenarios,
such as in making DOEs, the phase functions obtained using this method were more
convenient than those obtained using phase-only design methods such as the GS algorithm
or the BERD algorithm. Moreover, the calculation time of this method was approximately
10 min, whereas that of the SQM is typically 1–2 h. Furthermore, our method has no specific
requirements for the symmetry and continuity of a target light-intensity distribution. We
also compared the mask simulations with the target light-intensity distributions. For a
given mask size, there was an optimal value of lens sag that minimized the GMAE value.
We found that when selecting the optimal lens sag value for mask design, the rectangular
mask used approximately 13 pixels to express a phase change of 2π, whereas the “CIST”
mask used approximately 7 pixels to express a phase change of 2π. As mentioned above,
the method proposed in this paper is an effective method for freeform surface design. The
resulting mask mold has piecewise smoothing property, that is, the phase transition is
continuous. In addition to amplitude control, this kind of method may also have great
application prospects in phase control.

In this paper, we successfully use the LAP method to realize the design of phase-
only holography in the focusing imaging process of non-uniform illumination intensity
distribution. For the non-uniform illumination image, we used an SLM to verify its
diffraction. The results showed that using the phase-only mask formed in the experiment
effectively reproduced the diffraction pattern of the target image.
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