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Abstract: In this work, a dielectric photonic crystal-based thermal sensor is numerically investigated
for the near-infrared spectral range. An easy-to-fabricate design is chosen with a waveguide layer
deposited on a silicon dioxide substrate with air holes drilled across it. To sense the ambient
temperature, a functional layer of polydimethylsiloxane biguanide polymer is deposited on the
top, the optical properties of which vary with changes in the temperature. An open-source finite-
difference time-domain-based software, MEEP, is used for design and numerical simulation. The
design of the sensor, spectral properties, and proposed fabrication method are part of the discussion.
The performance of the sensor is investigated for an ambient temperature range of 10 to 90 ◦C, for
which the device offers a sensitivity value in the range of 0.109 nm/◦C and a figure-of-merit of
0.045 ◦C−1. Keeping in mind the high-temperature tolerance, inert chemical properties, low material
cost, and easy integration with optical fiber, the device can be proposed for a wide range of thermal
sensing applications.

Keywords: optical thermal sensor; PDMS-based sensing; inert materials for sensing; dielectric
photonic crystals

1. Introduction

Recently, with the advent of the lab-on-chip concept and rapid and low-cost sensing
techniques, significant interest has been seen in the investigation of all-optical sensing
methods. Researchers are focusing on the investigation of material properties suitable for
various sensing applications and easy integration with preexisting optical and electronic
devices. Keeping these qualities in mind, dielectric materials can be considered one of the
best candidates that can offer low absorption over a wide spectral range, inert chemical
properties, high thermal tolerance, and easy integration with fiber optic setups. Moreover,
low-index-contrast dielectric materials have always been a center of research due to their
cost-effectiveness, easy fabrication, and use in fiber-optic-based sensing. Considering the
nanostructures being used for optical sensing and filtering applications, two-dimensional
(2D) photonic crystals (PhCs) are one of the favorite candidates due to their quality to
confine and manipulate light at a very small scale. A category of PhCs works on the
principle of guided-mode resonance (GMR) or Fano-resonances [1,2], where the incident
light is coupled into the structure from free space using a phase-matching mechanism. Due
to the sensitive nature of these Fano-resonances, they have been widely used in sensing
applications [3]. Optical sensing has recently been an attractive topic of research with its
application areas, including fluid sensing [4], gas sensing [5,6] biomedical sensing [7,8], and
thermal sensing [7–9]. Moreover, the resonance conditions can also be altered by changing
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the refractive index of the adjacent medium to the PhC structure in the sensor device.
This phenomenon can be utilized to sense the ambient temperature by using thermally
sensitive materials, such as polydimethylsiloxane polymer (PDMS). PDMS is an organo-
silicon chemical substance, also commonly referred to as silicone [10–12]. PDMS possesses
physical properties, such as high optical transparency and low absorption over a wide
spectral range, good elasto-optic and thermo-optic properties, and biocompatibility [13].
Moreover, it has a low Young’s modulus, making it a soft material that can be modified into
the desired shape and has no shrinkage. Considering its cost-effectiveness, easy fabrication,
and high thermo-optic coefficient, PDMS can be used for a variety of temperature-sensing
applications where a high level of sensitivity is required.

Two-dimensional PhCs have widely been reported for sensing applications, including
temperature sensing [7–9,14–17], biomedical sensing [7,18,19], bacteria sensing [20–22],
fluid sensing [4], gas sensing [5,6] and refractive index sensing in general [23–26]. Refrac-
tive index sensing using perfect absorbers for electromagnetic waves in the ultraviolet
spectral range has been presented in [26–29]. Recently, optical-fiber-based refractive index
sensing has also been suggested in many research works [9,15,16,25,30]. Optical temper-
ature sensing has been reported using various techniques, such as index sensing [3,6,14],
perfect absorbers [7], plasmonic sensors [5,8,9,14,17], Fano-resonance-based sensors [4,31],
fiber-optic-based sensing [9,15,16,30], and nanocavity-based sensing [8]. Thermal sensing
has also been demonstrated using plasmonic waveguides in combination with thermally
sensitive media, such as ethanol and PDMS [31–33]. A few researchers propose temperature
sensing using ethanol/PDMS filled into a resonant cavity with a good value of sensitiv-
ity [8,31,34–36]. Research in [37] presents a numerical investigation of temperature sensors
based on a compact design, working on the principle of tuning Fano-resonances with
temperature-sensitive PDMS in a semi-square ring resonator. Thermal sensing using opti-
cal micro-resonators has been proposed in [38–40]. Moreover, optical temperature-sensor
design using a silica-etched planner waveguide based on Bragg gratings has also been
demonstrated [41]. Moreover, in our previous works, temperature sensors based on a metal-
insulator-metal (MIM) plasmonic waveguide have been investigated, and they provide
high sensing performance; however, the light-coupling mechanism is quite complex for
the subwavelength waveguides [8]. Detailed studies regarding the spectral properties of
Fano-resonances appearing in dielectric PhCs and their use in optical filtering and optical
sensing are reported in [2] and [4], respectively. However, a cost-effective thermal sensor
based on low-index dielectric material with an easy-to-fabricate design (involving the
three basic steps of waveguide deposition, etching of PhC holes, and deposition of PDMS
material) that achieves a good sensitivity value has not yet been reported in the literature.

This work reports a numerical investigation of a temperature sensor designed using 2D
PhC structures based on low-index dielectric materials, i.e., niobium pentoxide (Nb2O5) and
silicon dioxide (SiO2). The sensor works on the principle of Fano-resonance-based refractive
index sensing in the near-infrared wavelength range. A PDMS functional layer is used on
the top of the waveguide layer, the physical properties of which vary with temperature
change. The ambient temperature is sensed by a shift in the resonant wavelength λres,
as the refractive index of the PDMS layer varies due to the temperature change. The
performance of the sensor device is evaluated in terms of a shift in λres, change in the
linewidth of the resonant modes, sensitivity (S), and figure-of-merit (FOM). The device
performance is quite good, and the light-coupling method is simple, making it a strong
contender for several other existing complex sensing systems, such as MIM-waveguide-
based temperature sensors.

2. Materials and Methods

The numerical modeling and simulation were performed using the finite-difference
time-domain (FDTD) method in an open-source, Python-based software platform devel-
oped at MIT University, the so-called MEEP (MIT Electromagnetic Equation Propaga-
tion) [42]. MEEP–FDTD is based on Maxwell’s equations to calculate the flow of the
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electromagnetic (EM) field in the medium. A Gaussian pulse source is used to calculate
the response of the system over a wide range of frequencies in a single run. The initial
condition for simulation is set as a central wavelength of the source λc = 1.45 nm and a
pulse width of df = 0.10 in terms of the frequency, with several frequency points to calculate
the flux as nf = 2000. The resolution of the simulation domain was defined as 30, large
enough to define the smallest structural feature and calculate the smallest wavelength
component. A 3D structure of the proposed sensor is shown in Figure 1a, where the
waveguide layer is deposited on the top of the SiO2 substrate and air-hole-based PhC
elements are structured across the waveguide layer. The SiO2 substrate has a refractive
index of ns = 1.5, whereas the Nb2O5 waveguide has a refractive index of nw = 2.2 around
the 1500 nm spectral range. The refractive index values are taken as a reference from [2,4].
The lattice constant of the structure (Figure 1a) is designed as a = 1000 nm to enable the
device to work in the near-infrared spectral range. A basic unit cell simulation model used
in this work is shown in Figure 1b. The simulation cell is terminated with perfectly matched
layer (PML) boundary conditions in the upper and lower Z-directions. The thickness of the
PML layer is defined as 2000 nm to be able to absorb the whole EM spectra generated by
the source at the boundaries. Moreover, the unit cell model is repeated in lateral (X and Y)
directions using periodic boundary conditions (PBC) provided by the simulation software.
A plane wave excitation source is kept right above the structure (Figure 1b), whereas the
transmission and reflection flux of the resonant modes are calculated below and above the
waveguide, respectively. The software provides an opportunity for the user to define a
custom-configured field decay monitoring point to terminate the simulation at the desired
field decay condition. A field decay monitor point is kept below the transmission mon-
itor layer, as shown in Figure 1b. The time-domain simulation results are automatically
converted to the frequency domain using a Fourier transform by the software to ease their
visualization.
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Figure 1. Numerical simulation model of the proposed thermal sensing device: (a) A 3D model of
the sensor device with an indication of the substrate, waveguide layer, air holes, and lattice constant;
(b) Unit cell simulation model with an indication of boundary conditions, excitation source, field
monitor layer, and PhC structure.

3. Sensing Mechanism

The design parameters of the PhC structure were first optimized to give a good wave-
length filtering mechanism, with a narrowband Fano-resonance appearing at
λres = 1470 nm. As per optimized design parameters, the thickness of the waveguide
was kept as tw = 330 nm, with a radius of PhC-holes as r = 200 nm. A PDMS layer was
deposited on the top of the waveguide layer in the way that the PDMS material penetrates
and fills the air holes. The PDMS layer was used as a functional layer, the physical proper-
ties of which vary with changes in the ambient temperature. The optimized thickness of the
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PDMS layer was tp = 300 nm, where the sensor gives sharp resonant peaks. A 3D model of
the device is shown in Figure 2a, where the presence of the PDMS layer on the waveguide
and the filling of the PDMS layer into the air holes is indicated. An incident light source
placed vertically above the device, as shown, was used to excite the resonant modes. A
cross-sectional view of the unit cell model can be seen in Figure 2b, with an indication of
the PDMS functional layer, PDMS-filled PhC hole, and the ambient atmosphere where the
temperature change was to be measured.
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Figure 2. Thermal sensing mechanism of the device: (a) A PDMS functional layer was deposited on
the top and filled in the PhC holes. Light source incident on the device to excite the Fano-resonances;
(b) Unit cell model with PDMS functional layer and ambient atmosphere where the temperature
change was to be measured.

The variation in the refractive index of the PDMS material with a change in temper-
ature T (in ◦C) was taken as a reference from [7–9], and it is given by Equation (1). The
graphical representation of the above-mentioned relation is depicted in Figure 3. It can
be seen that, as the temperature changes from 10 to 90 ◦C, the refractive index of PDMS
varies linearly from 1.4131 to 1.3771. Using this relation, the designed sensor device was
numerically investigated for its design and performance as an optical thermal sensor.

np(T) = 1.4176 − 4.5 × 10−4.T (1)
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4. Design Parameter Optimization

To optimize the spectral response of the proposed device to its maximum sensitivity
level, the structural design parameters were varied over a range of values. The design
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parameters were varied, keeping in mind the minimum feature size that could be realized
during the device fabrication. The two important spectral features of a GMR-based sensing
device are the linewidth of the resonant modes and their quality factor (QF). Both of these
spectral features were calculated for three important design parameters, i.e., thickness of
the PDMS layer, depth of PhC holes, and their radius, as shown in Figure 4a,b. It is clear
from the figure that the linewidth achieved its minimum values and the QF was highest
around tp = 250 to 300 nm, h = 900 to 1100 nm, and r = 150 to 200 nm. However, thinking
from a device-fabrication point of view, a hole-radius of 150 nm with a depth exceeding
1000 nm is challenging to fabricate and replicate with good quality. Additionally, filling
PDMS material in such high aspect-ratio PhC-holes is also quite challenging. Keeping this
in view, the quality of the resonant modes and the fabrication process, the optimized values
of the design parameters to test the device as a thermal sensor were chosen as tp = 300 nm,
h = 930 nm, and r =200 nm.
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5. Testing the Device as a Thermal Sensor

Using the relation given in Figure 3, the refractive index of the PDMS functional
layer (Figure 2) was varied to investigate the performance of the designed thermal sensor.
The performance of the sensor, in terms of S and FOM, was investigated for a range of
design-parameter values, including tp, h, and r. However, for sake of simplicity, the S and
FOM values for two different thicknesses of PDMS, i.e., tp = 150 and 300 nm, were included.
The spectral response of the sensor for tp = 300 nm is depicted in Figure 5, where it can be
observed that the Fano-resonances [2] underwent a blueshift with a wavelength shift of
around 0.98 nm for every 10 ◦C change in temperature. The response of the device was
measured for an ambient temperature range of 10 to 90 ◦C. The first resonance for 10 ◦C
and the last one for 90 ◦C were curve-fitted using the Fano lineshape function [2] to make
it evident that the device purely operates on the principle of Fano-resonances. The S and
FOM of the device are given by Equations (2) and (3), as follow:

S =
∆λres

∆T
(2)

FOM =
S

Linewidth
(3)

where ∆λres is the change in resonant wavelength for a change in the ambient temperature ∆T.
The S and FOM of the device are expressed as nm per degree Celsius (nm/◦C) and ◦C−1,
respectively. It can be seen in Figure 6a that the resonant wavelength underwent a blueshift
from 1461.18 to 1454.69 nm for tp = 150 nm and from 1476.07 to 1467.62 nm for tp = 300 nm
as the ambient temperature varied from 10 to 90 ◦C. Moreover, the linewidth of the resonant
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modes in Figure 6b follows an opposite trend, where it increases from 3.38 to 3.94 nm for
tp = 150 nm and from 2.39 to 2.88 for tp = 300 nm. The blueshift in the λres and an increase
in the linewidth are due to the decrease in the np of PDMS, due to which the effective
refractive index ne f f of the whole periodic structure drops, resulting in the accumulation
of the lower order modes. Observing the plot in Figure 6c, it can be seen that the S of
the device decreases from 0.085 to 0.084 nm/◦C for tp= 150 nm and from 0.109 to 0.108
for tp = 300 nm with the variation in temperature from 10 to 90 ◦C. Similarly, the FOM of
the device in Figure 6d varies from 0.025 to 0.026 ◦C−1 for tp = 150 nm and from 0.045 to
0.037 ◦C−1 for 300 nm with a rise in the temperature and a decrease in np.
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6. Proposed Fabrication Method

The sensor can be fabricated using conventional fabrication technologies, such as
thin-film deposition, lithography, and etching techniques. A step-by-step overview of the
fabrication process is shown in Figure 7. In the first step (Figure 7, step 1), a 200 nm thick
waveguide layer can be deposited on top of a SiO2 glass substrate using a plasma-enhanced
chemical vapor deposition (PECVD) or an ion-beam sputter deposition (IBSD) technique.
A waveguide layer of Nb2O5 (nw = 2.2) is deposited using IBSD in [2,4]. In the second step
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(Figure 7, step 3), the PhC grid pattern can be transferred to the substrate using electron-
beam (E-beam) lithography, which offers a good resolution and fabrication quality. The
holes can be etched using the conventional reactive ion etching (RIE) technique. Alternately,
the PhC elements can be directly milled into the substrate using focused ion beam (FIB)
milling lithography. The radius and depth of the holes can be controlled by choosing the
optimum values of the software design, ion beam current, area dose, and process loops. The
fabrication process of PhCs using FIB milling lithography on a borosilicate glass substrate
and Nb2O5 waveguide layer is demonstrated in [2,4] for a Fano-filter and a fluid sensor,
respectively. The PDMS layer can be deposited by simply pouring it onto the surface at a
high temperature and spin coating it to get a uniform layer of desired thickness over the
substrate (Figure 7, step 4). To remove the bubbles from liquid-state PDMS, the substrate
must be put in the vacuum chamber for some time. To ensure fine-filling of the PDMS
into the PhC holes and good glass-bonding, the substrate is plasma-treated [10–13]. In
the literature, [43] experimentally demonstrated soft lithography to fabricate an array of
PDMS nanopillars with a sub-200 nm diameter and a height of around 1000 nm using a Si
master template with a nanohole array, whereas [44] reports the patterning of PDMS with
nanoholes to form a protective antireflection layer using a Si mold with conical nanopillars
achieving a nanohole depth in the range of 320 nm and a height of 380 nm. The sensor
device can be optically characterized by using a transmission measurement setup and
varying the ambient temperature.
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7. Comparative Analysis

There are different categories of thermal sensors reported in the literature, such as
plasmonic structures, fiber-optic-based sensors, interferometer-based designs, and periodic
structures, including photonic crystals or nanogratings. Plasmonic sensors, in general, offer
a higher value of sensitivity, but they are complex and expensive to fabricate. Considering
the other materials for thermal sensors, dielectrics and polymers have been widely reported.
Fiber-optic sensors come with an advantage of a pre-existing waveguide, and additional
structures can be integrated into them for sensing. The usage of PDMS has been reported
for a variety of sensing applications, including refractive index sensing, gas sensing, and
thermal sensing. A comparative analysis of this work is presented in Table 1, where the
already-reported thermal sensors are shortlisted, based on the usage of dielectric materials
and PDMS in their design.
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Table 1. Comparison of the proposed work with the existing literature.

Structure of the Sensor Sensitivity (nm/◦C) Measurement Range (◦C) Reference

Fabry–Perot interferometer on fiber tip 0.0136 0 to 1000 [45]

Photonic crystal fiber Mach–Zehnder interferometer
with a PDMS detection cell 0.0009 20 to 50 [46]

Refractometer based on single-mode tapered fiber
structure <0.001 21 to 144 [47]

PDMS-coated optic fiber 0.075 20 to 85 [48]

Optical-fiber-,based PDMS film on Mach-Zehnder
interferometer 0.101 20 to 100 [49]

PDMS-coated, tapered optic-fiber structure 0.22 20 to 100 [50]

PDMS-assisted, bow-shaped optic-fiber structure −1.63 20 to 30 [51]

PDMS-coated photonic crystal structure 0.109 10 to 90 This work

8. Conclusions

In conclusion, a low-cost, easy-to-implement dielectric PhCs-based thermal sensing
device working in the telecommunication spectral range of 1470 nm has been numerically
investigated. The device was designed on an all-solid-layered waveguide deposited on
a SiO2 substrate with air-hole-based PhC holes milled across it. The proposed device
operates around λres = 1470 nm, with an average linewidth of 2.5 nm; the optimum design
parameters were found to be the thickness of the PDMS layer as tp = 300 nm, with the
depth of the PhC holes ranging from h = 900 to 1000 nm, and the radius of the holes as
r = 200 nm. To sense the ambient temperature, a functional layer of PDMS with a thickness
of tp = 300 nm was deposited on the top of the waveguide layer in a way that the PDMS
also filled in the PhC holes. The refractive index of the PDMS decreased with a rise in
the temperature. The spectral response of the sensor was numerically investigated for an
ambient temperature range of 10 to 90 ◦C, for which the refractive index varied from 1.4131
to 1.3771. The highest S value of 0.109 nm/◦C and FOM of 0.045 ◦C−1 were determined.
Considering the inert chemical properties, temperature tolerance, and cost-effectiveness
of the used dielectric materials, the sensor device can be proposed for a wide range of
temperature sensing applications with easy integration with optical fiber setups.
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