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Abstract: In this paper, we present a method for measuring arbitrary-order correlation functions
of the light field using a two-level atomic system. Theoretically, light field information should be
mapped onto the atomic system after the light interacts with the atom. Therefore, we can measure the
atomic system and thus obtain information about the light field. We study two typical models, the
p-photon Jaynes–Cummings model, and the p-photon Tavis–Cummings model. In both models, we
find that the pth-order correlation function of an unknown light field can be obtained by measuring
the instantaneous change of energy of the two-level atoms with the aid of a known reference light
field. Moreover, we find that the interactions other than the dipole interactions between light and
atoms have no effect on the measurement results.

Keywords: correlation functions; indirect measurement; two-level atoms; Jaynes–Cummings model;
Tavis–Cummings model

1. Introduction

In quantum optics, light with quantum correlations is widely used in quantum com-
munication [1–8], quantum computing [9–17], quantum metrology [18–21], quantum imag-
ing [22–26], and quantum sensing [27–30]. In addition, correlation functions of light field
proposed by Glauber are also commonly used to distinguish the quantum and classical
nature of the light field [31–33]. Unnormalized equal-time pth-order correlation functions
of light fields proposed by Glauber are defined as g(p)(0) = 〈â†p âp〉, where â† and â
are the photon creation and annihilation operators of the light field, respectively. These
correlation functions can characterize some properties of the light field. For example,
the equal-time first-order correlation function g(1)(0) of the light field characterizes the
average photon number of the light field. Additionally, these functions can be used to
characterize some quantum phenomena in the quantum light field that are not observed
in the classical system. The most well known is the equal-time second-order correlation
function g(2)(0), which is commonly used to distinguish between classical and quantum
light fields. For example, when g(2)(0) < [g(1)(0)]2, the light field shows a well-known
antibunching phenomenon [34–40], which quantifies how the detection of one photon
from a source affects the probability of detecting another photon; this is a typical quantum
phenomenon. In general, g(2)(0)/[g(1)(0)]2 < 0.5 means that the light field is a good
single-photon source [41–46]. Of course, a strictly single-photon source needs to satisfy
g(2)(0)/[g(1)(0)]2 = 0. Single-photon sources play a very critical role in quantum net-
works [47], universal linear quantum computing [48], and boson sampling [49]. Moreover,
the resolution of the microscope can be improved by the second-order correlation function
of the optical field [50].

The correlation function of the optical field is a significant feature of the optical
field, so the measurement of the correlation function of the optical field is a problem
that needs to be solved. In 1956, Hanbury Brown and Twiss pioneered a new class of
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optical interferometry experiments in which the second-order correlation function of the
optical field was observed for the first time [51]. From this experiment, theoretical and
experimental studies of the nonclassical nature of light became a very hot area of research,
which is also known as quantum optics [52]. In addition, methods or devices for measuring
the second-order correlation function of the optical field include random phase modulation
methods [53], analog detectors [54], linear detectors [55,56], and reversed-wavefront Young
interferometers [57].

However, when we study the statistical properties of the optical field in detail, it is
not enough to measure the first- and second-order correlation functions of the optical field.
For example, when we study two-photon blockades, we need to measure the second-order
correlation function and the third-order correlation function. When we study more photon
blockades, higher-order correlation function measurements are required. Based on this
practical problem, we propose a method to indirectly obtain the pth-order correlation
function of the light field by measuring the energy change of atoms. In the following,
we investigate this indirect measurement method with an extended p-photon Jaynes–
Cummings (JC) model and an extended p-photon Tavis–Cummings (TC) model.

2. Measuring the pth-Order Correlation Function of the Light Field in p-Photon
JC Model

We consider an extended p-photon Jaynes–Cummings model (as shown in Figure 1a)
with the following Hamiltonian (h̄ = 1):

ĤJC = ωa â† â +
ω0

2
σ̂z + g(â†pσ̂− + σ̂+ âp) +

U
2

â†2 â2 + γâ† âσ̂z, (1)

where p is an integer greater than or equal to 1. ωa and ω0 are the eigenfrequency of the op-
tical cavity and the transition frequency of the two-level atom, respectively. g is the dipole
interaction strength between the cavity field and the single atom, U is the Kerr-type nonlin-
ear interaction strength of the optical field, and γ is the dispersion interaction between the
cavity field and the single atom. â and â† are, respectively, the annihilation and creation
operators of the single-mode cavity field that satisfy the usual bosonic commutation rela-
tion [â, â†] = 1. σ̂x,y,z are the usual Pauli operators, and σ̂± = 1

2 (σ̂x ± iσ̂y). Experimentally,
the multiphoton JC model can be implemented in systems such as superconducting circuits
and trapped ions [58–62].

Figure 1. (a) Schematic diagram of the JC model with a single two-level atom interacting with a
single-mode optical field. (b) Schematic diagram of the TC model with multiple two-level atoms
interacting with a single-mode optical field.
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Here, we assume that the light field is in an unknown state |ϕa(0)〉 and the atom is
in the ground state |g〉, that is, the initial state of the total system is |ψ(0)〉 = |ϕa(0)〉 ⊗
|g〉 = ∑∞

n=0 cn|g, n〉, where cn = 〈n|ϕa(0)〉 and |n〉 is the number state of the optical
field. Since the total excitation number is conserved (the total excitation number operator
N̂e = â† â + p|e〉〈e| satisfies the condition [N̂e, ĤJC] = 0), we can assume that the state of
the system at time t has the following form:

|ψ(t)〉 =
∞

∑
n=0

cn[Ce
n−p(t)|e, n− p〉+ Cg

n(t)|g, n〉], (2)

where Ce
n−p(0) = 0 and Cg

n(0) = 1. Substituting Equations (1) and (2) into the Schrödinger
equation, we can obtain two differential equations:

i
d
dt

Ce
n−p(t) = A(n)Ce

n−p(t) + B(n)Cg
n(t), (3)

i
d
dt

Cg
n(t) = B(n)Ce

n−p(t) + D(n)Cg
n(t), (4)

where

A(n) =
ω0

2
+ ωa(n− p) +

U
2
(n− p)(n− p− 1) + γ(n− p), (5)

B(n) = g
√

n!/(n− p)!, (6)

D(n) = −ω0

2
+ ωan− U

2
n(n− 1)− γn. (7)

The above two differential equations are easy to solve using the Laplace transform,
and we give the specific solution procedure in Appendix A. Then, we can obtain the
solutions of these two differential equations as follows:

Ce
n−p(t) = z1[cos(x2t)− cos(x1t)]− i(z1[sin(x2t)− sin(x1t)]), (8)

Cg
n(t) = y1 cos(x1t)− y2 cos(x2t)− i[y1 sin(x1t)− y2 sin(x2t)], (9)

where

x1 =
[A(n) + D(n)]−

√
[A(n)− D(n)]2 + 4B2(n)

2
, (10)

x2 =
[A(n) + D(n)] +

√
[A(n)− D(n)]2 + 4B2(n)

2
, (11)

y1 =
A(n)− x1

x2 − x1
, (12)

y2 =
A(n)− x2

x2 − x1
, (13)

z1 =
B(n)

x2 − x1
. (14)

When p = 1 and U = γ = 0, Equations (8) and (9) can be reduced to the results of the
single-photon JC model [63].

When the total system starts evolving with an initial state |ψ(0)〉 = |ϕa(0)〉 ⊗ |φ〉,
where |ϕa(0)〉 is an unknown initial state of the light field to be measured, and |φ〉 is a
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known initial state of the prepared probe atom (|φ〉 = |g〉 in here). Then, we can obtain the
energy acquired by the atom from the light field at time t as follows:

∆E(|ψ(0)〉, t) = 〈ψ(t)|ω0

2
σ̂z|ψ(t)〉 − 〈ψ(0)|

ω0

2
σ̂z|ψ(0)〉

=
∞

∑
n=0
|cn|2

(∣∣∣Ce
n−p(t)

∣∣∣2 − ∣∣∣Cg
n(t)

∣∣∣2)+ 1. (15)

Theoretically, since different light fields make different energy changes in the atom,
we can distinguish light fields according to the difference in energy changes of the atom.
In order to extract information about the light field from the energy change of the atom,
we need a scale. Finally, by the ratio of the energy change of the atom to this scale, we can
obtain information about the light field. Here, we choose the change of the atomic energy
as a scale when the initial state of the total system is a known initial state. Therefore, when
the initial state of the total system is |ψr(0)〉 = |ϕr〉 ⊗ |g〉, where |ϕr〉 is a known initial state
of the light field. Thus, |ψr(0)〉 is a known initial state, and we call it a known reference
state. Then we can similarly obtain the energy obtained by the atom from the light field at
time t

∆E(|ψr(0)〉, t) = 〈ψr(t)|
ω0

2
σ̂z|ψr(t)〉 − 〈ψr(0)|

ω0

2
σ̂z|ψr(0)〉

=
∞

∑
m=0
|dm|2

(∣∣∣Ce
m−p(t)

∣∣∣2 − ∣∣∣Cg
m(t)

∣∣∣2)+ 1, (16)

where dm = 〈m|ϕr〉 and |m〉 is the number state of the optical field. Here, we refer to
∆E(|ψr(0)〉, t) as the scale of the atomic energy change.

In the following, we start to investigate the ratio of the energy acquired by the atom in
the unknown light field and in the known light field, respectively, when t→ 0. Thus, we
are able to obtain the following expression:

lim
t→0

∆E(|ψ(0)〉, t)
∆E(|ψr(0)〉, t)

= lim
t→0

∑∞
n=0|cn|2

(∣∣∣Ce
n−p(t)

∣∣∣2 − ∣∣∣Cg
n(t)

∣∣∣2)+ 1

∑∞
m=0|dm|2

(∣∣∣Ce
m−p(t)

∣∣∣2 − ∣∣∣Cg
m(t)

∣∣∣2)+ 1
. (17)

When t → 0, since |Ce
n−p(t)|2 = |Ce

m−p(t)|2 = 0 and |Cg
n(t)|2 = |Cg

m(t)|2 = 1, accord-
ing to L’Hôpital’s law, we need to consider the first-order derivatives of the numerator
and denominator in Equation (20) with respect to time t. These two derivatives are easily
derived as follows:

d
dt

∣∣∣Ce
n−p(t)

∣∣∣2 = 2(z1[cos(x2t)− cos(x1t)])(z1[−x2 sin(x2t) + x1 sin(x1t)])

+2(z1[sin(x2t)− sin(x1t)])(z1[x2 cos(x2t)− x1 cos(x1t)]), (18)
d
dt

∣∣∣Cg
n(t)

∣∣∣2 = 2[y1 cos(x1t)− y2 cos(x2t)][−y1x1 sin(x1t) + y2x2 sin(x2t)]

+2[y1 sin(x1t)− y2 sin(x2t)][y1x1 cos(x1t)− y2x2 cos(x2t)]. (19)

Since |Ce
m−p(t)|2 and |Cg

m(t)|2 have the same derivatives with respect to time t as
|Ce

n−p(t)|2 and |Cg
n(t)|2, we do not have a redundant representation here. Obviously, since

lim
t→0

d
dt
|Ce

n−p(t)|2 = 0, (20)

lim
t→0

d
dt
|Cg

n(t)|2 = 0, (21)
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according to L’Hôpital’s law, we need to consider the second-order derivatives of the
numerator and denominator in Equation (17) with respect to time t, and they are

d2

dt2

∣∣∣Ce
n−p(t)

∣∣∣2 = 2
d(z1[cos(x2t)− cos(x1t)])

dt
(z1[−x2 sin(x2t) + x1 sin(x1t)])

+2(z1[cos(x2t)− cos(x1t)])
d(z1[−x2 sin(x2t) + x1 sin(x1t)])

dt

+2(z1[sin(x2t)− sin(x1t)])
d(z1[x2 cos(x2t)− x1 cos(x1t)])

dt
+2(z1[x2 cos(x2t)−x1 cos(x1t)])(z1[x2 cos(x2t)− x1 cos(x1t)]), (22)

d2

dt2

∣∣∣Cg
n(t)

∣∣∣2 = 2[y1 cos(x1t)− y2 cos(x2t)]
[
−y1x2

1 cos(x1t) + y2x2
2 cos(x2t)

]
+2[y1x1 cos(x1t)−y2x2 cos(x2t)][y1x1 cos(x1t)−y2x2 cos(x2t)]. (23)

Then, we can obtain

lim
t→0

d2

dt2

∣∣∣Ce
n−p(t)

∣∣∣2 = 2[z1(x2 − x1)]
2

= 2B(n)2, (24)

lim
t→0

d2

dt2

∣∣∣Cg
n(t)

∣∣∣2 = 2(y1 − y2)
(
−y1x2

1 + y2x2
2

)
+ 2(y1x1 − y2x2)

2

= −2B(n)2. (25)

By L’Hôpital’s law, substituting Equations (24) and (25) into Equation (17), we obtain

lim
t→0

∆E(|ψ(0)〉, t)
∆E(|ψr(0)〉, t)

=
∑∞

n=0|cn|2B2(n)

∑∞
m=0|dm|2B2(m)

=
∑∞

n=0|cn|2
√

n!/(n− p)!

∑∞
m=0|dm|2

√
m!/(m− p)!

. (26)

And since 〈ψ(0)|â†p âp|ψ(0)〉 = ∑∞
n=0|cn|2

√
n!/(n− p)!, the above equation actually

represents the following equation

lim
t→0

∆E(|ψ(0)〉, t)
∆E(|ψr(0)〉, t)

=
〈ψ(0)|â†p âp|ψ(0)〉
〈ψr(0)|â†p âp|ψr(0)〉

. (27)

We rewrite the above equation as

〈ψ(0)|â†p âp|ψ(0)〉 = 〈ψr(0)|â†p âp|ψr(0)〉 lim
t→0

∆E(|ψ(0)〉, t)
∆E(|ψr(0)〉, t)

. (28)

Since |ψr(0)〉 is a light field initial state known to us, in effect, both 〈ψr(0)|â†p âp|ψr(0)〉
and ∆E(|ψr(0)〉, t) are known. Therefore, we only need to measure the change in energy
of the atom over a short period of time to obtain the pth-order correlation function of the
unknown light field |ψ(0)〉.

In order to verify the above conclusions from the actual dynamical evolution of the
atom, we plot the variation of the energy obtained by the atom from the light field with time
for the single-photon JC model and the two-photon JC model in Figure 2a,b, respectively,
when the system takes different parameter values and different initial states. It is worth
noting, in particular, that the red dashed line indicates the variation of the energy acquired
by the atom from the light field with time for a known reference state. To extract information
about the unknown light field from the variation of the atomic energy, we compare the
energy acquired by the atom from the unknown light field with the energy acquired by
the atom from the known light field to obtain information about the unknown light field.
For example, we plot in Figure 2c,d the relative ratios of the energy obtained by the atom
from the unknown light field in the single-photon JC model and the two-photon JC model
with the aid of the reference state as a function of time, respectively. Obviously, when the
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interaction time between the atom and the light field is short enough, we can obtain the
first-order correlation function and the second-order correlation function of the unknown
light field by measuring the energy change of the atom with the assistance of a known
reference state. Of course, we can also obtain higher-order correlation functions for the
unknown light field, which we will not redundantly discuss here.

Furthermore, we can see from Figure 2c,d that when t→ 0, different values of γ and U
do not affect the value of this correlation function of the light field obtained by measuring
the energy change of the atoms. That is, the elastic collision interactions between the atom
and the light field and between photon and photon do not affect the results obtained by
this measurement method.
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Figure 2. (a) Variation with time of the energy acquired by atoms from the light field in the single-
photon JC model for different parameters and different initial states. (b) Variation with time of the
energy acquired by atoms from the light field in the two-photon JC model for different parameters
and different initial states., respectively. (c) The ratio of the energy acquired by an atom from an
unknown light field and a known reference light field in the single-photon JC model as a function
of time. (d) The ratio of the energy acquired by an atom from an unknown light field and a known
reference light field in the two-photon JC model as a function of time. The initial state of the total
system is |ψ(0)〉 = |ϕa(0)〉 ⊗ |g〉 and the known reference state is |ψr(0)〉 = |ϕr〉 ⊗ |g〉. The values of
other parameters are ωa = 1, ω0 = ωa, and the values of U and γ in the figure are all ratios to ωa.
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3. Measuring the pth-Order Correlation Function of the Optical Field in p-Photon
TC Model

Above, we have investigated how to obtain the correlation function of the unknown
light field in the JC model using the measurement of the energy change of a single atom.
Here, we study how to obtain the correlation function of the unknown light field in the
TC model using the energy change of multiple atoms. The Hamiltonian of an extended
p-photon TC model (as shown in Figure 1b) is as follows:

ĤTC = ωa â† â + ω0 Ĵz + g(â†p Ĵ− + Ĵ+ âp) +
U
2

â†2 â2 + γâ† â Ĵz + χ Ĵ2
z , (29)

where Ĵα (α = x, y, z) is the collective angular momentum operator for the spin ensemble
consisting of N identical two-level atoms; these operators Ĵx, Ĵy, Ĵz satisfy the commutation
relation of SU(2) algebra and Ĵ± = Ĵx ± i Ĵy. χ is the strength of the interaction between the
atoms, and the other parameters are the same as in the JC model.

When we were studying single-photon TC quantum batteries before [64], we found
an interesting phenomenon, which is expressed by the following equation:

lim
t→0

∆E(|m〉, t)
∆E(|M〉, t)

=
m
M

, (30)

where |m〉 and |M〉 denote the two number states, respectively, and ∆E(|m〉, t) (or ∆E(|M〉, t))
denotes the variation of the energy obtained by all the atoms from the number state light
field |m〉 (or |M〉) with time t. Furthermore, when the initial state of the total system is
|ψ(0)〉 = |ϕa(0)〉 ⊗ |J,−J〉 (J = N/2), where |ϕa(0)〉 denotes that the light field is in an
arbitrary state as well as |J,−J〉 denoting that the atoms are in the ground state, the energy
that the atoms acquire from the light field at time t is [64]

∆E(|ϕa(0)〉, t) =
∞

∑
m=0
|c(|m〉, |ϕa(0)〉)|2∆E(|m〉, t), (31)

where |c(|m〉, |ϕa(0)〉)|2 is the probability distribution of the initial state |ϕa(0)〉 in the
number states.

Similar to the idea of the study in the JC model, we choose a number state |M〉 as a
known reference light field, then we can obtain the following expression:

lim
t→0

∆E(|ϕa(0)〉, t)
∆E(|M〉, t)

〈M|â† â|M〉. (32)

Substituting Equation (31) into Equation (32), we can obtain

lim
t→0

∆E(|ϕa(0)〉, t)
∆E(|M〉, t)

〈M|â† â|M〉

= lim
t→0

∑∞
m=0 |c(|m〉, |ϕa(0)〉)|2∆E(|m〉, t)

∆E(|M〉, t)
〈M|â† â|M〉

=
∑∞

m=0 |c(|m〉, |ϕa(0)〉)|2m
M

M

= 〈ϕa(0)|â† â|ϕa(0)〉. (33)

For the above equation, it is also possible to obtain information on the average photon
number of the unknown light field by measuring the change in the energy acquired by the
atoms from the unknown light field with the assistance of a known reference state.

When the light field takes different initial states and the Hamiltonian of the total
system takes different parameter values, in Figure 3a,b, we plot the variation of the energy
acquired by the atoms from the light field with time in the single-photon TC model and
the two-photon TC model, respectively. Furthermore, in Figure 3c,d, we plot the variation
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of the relative ratio of the energy acquired by the atoms in the single-photon TC model
and the two-photon TC model with respect to time, respectively. We find that when the
time is sufficiently short, i.e., t→ 0, with the assistance of a known reference state, we can
completely obtain the pth-order correlation function of the optical field by measuring the
change of atomic energy in the p-photon TC model.
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Figure 3. (a) Variation with time of the energy acquired by the all atoms from the light field in
the single-photon TC model for different parameters and different initial states. (b) Variation with
time of the energy acquired by the all atoms from the light field in the two-photon TC model for
different parameters and different initial states, respectively. (c) The ratio of the energy acquired by
the all atoms from an unknown light field and a known reference light field in the single-photon TC
model as a function of time. (d) The ratio of the energy acquired by the all atoms from an unknown
light field and a known reference light field in the two-photon TC model as a function of time.
The initial state of the total system is |ψ(0)〉 = |ϕa(0)〉 ⊗ |J,−J〉 and the known reference state is
|ψr(0)〉 = |M = 3〉 ⊗ |J,−J〉. The values of other parameters are ωa = 1, ω0 = ωa, and the values of
U , γ and χ in the figure are all ratios to ωa.

Here, we can compare the p-photon TC model with the p-photon JC model. When
t→ 0, we find that using the change of atomic energy in the p-photon TC model to obtain
the pth-order correlation function of the light field is the same as that using the p-photon JC
model. That is, this indirect measurement is independent of the specific atomic number and
is only related to the form of the dipole interaction between the atom and the light field.
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All the data obtained from the numerical calculations in Figure 3 were performed by
QuTIP [65], a quantum toolbox.

4. Conclusions

In conclusion, we propose a method to indirectly measure the pth-order correlation
function of the optical field using a two-level atomic system. We find that with the aid of a
known reference state, the information of the pth-order correlation function of the optical
field can be extracted by measuring the energy change of the atoms. We investigate the
advantage of this measurement method using the p-photon JC model and the p-photon
TC model, respectively, that is, the ability to measure arbitrary order correlation functions
compared to other methods. We find that any interaction in the system other than the
dipole interaction between light and atoms does not affect the measurement results, i.e., this
measurement method is robust to other possible interactions. Finally, we compare this
indirect measurement method in both models, and we find that this measurement method
depends only on the dipole interaction between light and atoms, independent of the specific
number of atoms involved in the measurement.
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Appendix A. The Specific Solution Procedure for the System of Differential
Equations (3) and (4)

Here, we give the specific solution procedure for Equations (3) and (4). Substitut-
ing Equations (1) and (2) into the Schrödinger equation, we can obtain two differential
equations:

i
d
dt

Ce
n−p(t) = A(n)Ce

n−p(t) + B(n)Cg
n(t), (A1)

i
d
dt

Cg
n(t) = B(n)Ce

n−p(t) + D(n)Cg
n(t), (A2)

where

A(n) =
ω0

2
+ ωa(n− p) +

U
2
(n− p)(n− p− 1) + γ(n− p), (A3)

B(n) = g
√

n!/(n− p)!, (A4)

D(n) = −ω0

2
+ ωan− U

2
n(n− 1)− γn. (A5)
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We make a Laplace transform of Ce
n−p(t) and Cg

n(t), i.e., X(s) = L
[
Ce

n−p(t)
]
, Y(s) =

L
[
Cg

n(t)
]
. Then, Equations (A1) and (A2) become the following expressions:

sX(s)− Ce
n−p(0) = −iA(n)X(s)− iB(n)Y(s) (A6)

sY(s)− Cg
n(0) = −iB(n)X(s)− iD(n)Y(s) (A7)

From the initial condition, we have Ce
n−p(0) = 0, Cg

n(0) = 1, then we can obtain

X(s) =
−iB(n)

s + iA(n)
Y(s) (A8)

Y(s) =
s + iA(n)

(s + iD(n))(s + iA(n)) + B(n)2 (A9)

Since (s + iC(n))(s + iA(n)) + B2(n) = (s + ix1)(s + ix2), where

x1 =
(A(n) + D(n))−

√
(A(n)− D(n))2 + 4B2(n)

2
, (A10)

x2 =
(A(n) + D(n)) +

√
(A(n)− D(n))2 + 4B2(n)

2
, (A11)

Then

Y(s) =
s + iA(n)

(s + ix1)(s + ix2)

=
y1

s + ix1
− y2

s + ix2

= y1

[
s

s2 + x2
1
− i

x1

s2 + x2
1

]
− y2

[
s

s2 + x2
2
− i

x2

s2 + x2
2

]
(A12)

where y1 = A(n)−x1
x2−x1

, y2 = A(n)−x2
x2−x1

. Finally, we perform an inverse Laplace transform on
Y(s) to obtain

Cg
n(t) = L−1[Y(s)] = y1 cos(x1t)− y2 cos(x2t)− i[y1 sin(x1t)− y2 sin(x2t)] (A13)

Similarly, we can obtain

X(s) =
−iB(n)

s + iA(n)
Y(s)

=
−iB(n)y1

(s + iA(n))(s + ix1)
+

iB(n)y2

(s + iA(n))(s + ix2)

= z1

(
s

s2 + A2(n)
− i

A(n)
s2 + A2(n)

)
− z1

(
s

s2 + x2
1
− i

x1

s2 + x2
1

)

+z2

(
s

s2 + A2(n)
− i

A(n)
s2 + A2(n)

)
− z2

(
s

s2 + x2
2
− i

x2

s2 + x2
2

)
(A14)

where z1 = −B(n)y1
x1−A(n) = −B(n)

x1−A(n)
A(n)−x1

x2−x1
= B(n)

x2−x1
, z2 = B(n)

x2−A(n)
A(n)−x2

x2−x1
= −B(n)

x2−x1
= −z1.

Similarly, we perform an inverse Laplace transform on X(s) to obtain

Ce
n−p(t) = L−1[X(s)] = z1[cos(A(n)t)− cos(x1t)] + z2[cos(A(n)t)− cos(x2t)]

−i(z1[sin(A(n)t)− sin(x1t)] + z2[sin(A(n)t)− sin(x2t)])
= z1[cos(x2t)− cos(x1t)]− i(z1[sin(x2t)− sin(x1t)]) (A15)
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Substituting Equations (A13) and (A15) into Equation (2), we obtain the quantum state
of the total system at time t.
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