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Abstract: Vector beams (VBs) have spatially inhomogeneous polarization states distribution and
have been widely used in many fields. In this paper, we proposed a method to modulate polarization
states of higher-order Poincaré (HOP) beams and designed a system based on Mach-Zehnder inter-
ferometers, in which polarization state (include azimuth and ellipticity) of generated HOP beams
were modulated by linear electro-optic (EO) effect of nonlinear optical crystals. Using this method,
the polarization state of generated HOP beams could be controlled by voltage signal applied on EO
crystals, which makes the process of the polarization state change with no optical element moving
and mechanical vibrations. Besides, due to the flexibility of the voltage signal, the polarization state
could be switched directly and immediately.

Keywords: vector beam; electro-optic effect; DKDP

1. Introduction

Polarization is an important characteristic of light. Compared with scalar beams,
vector beams (VBs) with spatially inhomogeneous polarization states distribution have
many novel properties [1,2]. This makes VBs were researched and applied in many fields,
such as super-resolution imaging [3,4], focus engineering [5,6], particle trapping and
manipulations [7,8], laser materials processing [9], data storage [10], optical communication [11].
Driven by the application prospects in these fields, many methods have been proposed
to generate VBs, especially higher-order Poincaré (HOP) beams. These methods could be
divided into two categories: direct and indirect means. The former is based on special
elements, such as spiral varying retarder [12,13], conical Brewster prism [14], q-plate [15,16],
metasurfaces [17] and so on. While in the indirect means, liquid crystal spatial light
modulator (LCSLM) and spiral phase plates (SPP) are usually employed as the vortex
generator, and the HOP beams could be generated by practical interference of the two
eigenstates in Mach-Zehnder [18–20], Sagnac[21], or other interferometers [22–24].

As a typical VBs, HOP beams have cylindrical polarization states distribution and
could be represented by a HOP sphere [25,26]. It is a sphere defined by Stokes parameters
with unit radius Sl

0 from the origin, where |l| is the order of polarization. In the Cartesian
coordinate system, the coordinate of points on the HOP sphere is defined by (Sl

1, Sl
2, Sl

3). The
relationship between the Cartesian coordinate system and spherical angular coordinates is
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Sl
1 = cos(2χ) cos(2ψ)

Sl
2 = cos(2χ) sin(2ψ)

Sl
3 = sin(2χ)

(1)

in which (2χ, 2ψ) is spherical angular coordinates with −π/4 ≤ χ ≤ π/4 and 0 ≤ ψ ≤ π.
2χ and 2ψ correspond to ellipticity and azimuth of generated HOP beams, respectively.
In HOP beams generation methods based on interferometer, ellipticity, and azimuth of
generated beams are controlled by changing the relative intensity and phase difference
of two eigenstates. Conventionally, this is achieved by rotating a half-wave plane and a
polarization beam splitter (PBS). While the moving of the optical element and the vibration
from the motor would influent the stability of the light field when changing the polarization
state. Besides, the polarization state-changing must be bit by bit, instead of switching to
arbitrary targeted polarization state directly.

In this paper, we proposed a method to modulate the polarization state (include
ellipticity and azimuth) of generated HOP beams, and design the system based on Mach-
Zehnder interferometers. In our method, two electro-optic (EO) crystal was employed as
EO modulator, and the polarization state of generated HOP beams would be controlled
by the applied voltage on the two crystals. There is no moving of optical element and
vibration when polarization states change. Besides, polarization states could be switched
to any targeted polarization state directly and immediately, and no need to go through
another polarization state.

2. Method and Experimental Setup

Generally, the generation of VBs based on interferometers could be considered as
a superposition of two eigenstates, such as the orthonormal circular polarization basis
{eL, eR}, which could be expressed by Jones matrix [1,±i]T/

√
2, where the superscript T

represents the transpose of the matrix. In the proposed system, cylindrical VBs at arbitrary
points on the surface of the HOP sphere were generated, which is achieved by modulating
the relative intensity and phase difference of these two eigenstates using two EO crystals.
The schematic of the proposed HOP beams EO modulation system is shown in Figure 1. In
simulation and experiments, two 98% KD2PO4 (DKDP) crystals (10× 10× 20 mm, θ = 90◦,
ϕ = 45◦) were employed as EO modulator [27,28]. The EO coefficient of DKDP crystal used
in experiments is γ63 = 25.8 pm/V [29]. Those optical surfaces were polished and coated
antireflection films at a wavelength of 633 nm. To realize EO modulation, two surfaces
perpendicular to the crystal light axis were plated with an electrode. These crystals were
packaged with insulating materials. A high-voltage generator with adjustment ranges
from 0 to 10 kV and a precision of 0.2 kV was employed to adjust the applied electric field
across the crystals. The relationship between directions of the light incident, the light-axis
of crystal (c), and the applied voltage are shown in the dotted box of Figure 1.

In experiment, the laser source is a collimated expanded laser beam from He-Ne laser
with wavelength λ = 632.8 nm and horizontal polarization. By means of Jones matrix, it
could be expressed as [1, 0]T . A reflective phase-only LCSLM (Holoeye, GAEA, nominal
resolution 4000× 2464 pixels, pixel pitch 3.74 µm) was used as vortex generator, a helical
phase exp(ilφ)was displayed on it, where l is the topological charge of vortex phase. After
being reflected by LCSLM, monochromatic planar light beam was converted into vortex
beam with corresponding topological charge, [exp(ilφ), 0]T . The first EO crystal (C1) was
used to modulate ellipticity of output field, and its light-axis was rotated along 45◦. The
Jones matrix of C1 could be expressed by

JC1 = exp(−i2πneL/λ)R(−θ)

[
1 0
0 exp[−i2πΓ(E1)L/λ]

]
R(θ) (2)
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in which, Γ(E1) = no − ne − 0.5n3
oγ63E1 is the birefringence parameter of DKDP crystal in

electric field, R(θ) is the Jones matrix for a coordinate rotation [30], θ = 45◦, L is the length
of EO crystal C1, γ63 is the EO coefficient of DKDP crystal, no and ne are ordinary and
extraordinary index of DKDP crystal, respectively. E1 = U1/d is the electric field applied on
C1, where U1 and d are applied voltage and distance between electrodes, respectively. The
PBS1 splits vortex beam into transmission and reflection arms (i.e., p- and s-components).
The intensity ratio of these two components is controlled by applied voltage (or electric
field) on EO crystal C1, η(E1) = cot2 [πΓ(E1)L/λ]. The p-component pass through Dove
prism and inverse topological charge from −l to +l, to make the two components with
opposite helical phase front exp (±ilφ). The s-component pass through C2, which is the
second EO modulator. The optical axis of C2 is horizontal and its length is same as C1.
Phase shift introduced at C2 could be expressed as

∆φ(E2) = −2π(no − 0.5n3
oγ63E2)L/λ (3)

where E2 = U2/d is the applied electric field on C2, and U2 is the value of applied voltage.
The function of C2 is controlling phase difference between the two eigenstates and azimuth
of generated HOP beams by the applied voltage U2. The position of M1 was adjusted
accurately to make the phase difference of these two components is either 0 or 2nπ (where
n is integer), when the applied voltage U2 = 0. After recombined by PBS2, these two beams
pass through an aperture (A) to filter the outer stray light. The aperture could be described
by circ(r/R). The value of circ(r/R) is 1 for r < R, else circ(r/R) = 0. The light field at
aperture could be expressed as

uA =

[
cos[πΓ(E1)L/λ] exp(−ilφ)

i sin[πΓ(E1)L/λ] exp(ilφ) exp[i∆φ(E2)]

]
exp[−iπΓ(E1)L/λ]circ(r/R) (4)

Figure 1. Schematic of proposed higher-order Poincaré (HOP) beams electro-optic (EO) modulation
system. The dotted box in upper right corner shows the diagram of applying voltage to EO crystal.
LCSLM: liquid crystal spatial light modulator; BS: beam splitter; C1, C2: EO crystal; PBS1, PBS2:
polarized beam splitter; M1, M2: mirror; A: aperture; L1, L2: lens; QWP: quarter-wave plate;
P: polarizer; CCD: charge coupled device.
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Lenses L1 and L2 constitute a 4 f system to relay the field at aperture to charge
coupled device (CCD). Quarter-wave plate (QWP) oriented at 45◦ converts horizontally
and vertically polarized component into right- and left-handed circularly polarized (RCP
and LCP) beam, respectively. Using the orthonormal circular polarization basis{eL, eR},
light field at recording plane could be expressed as

uR = cos[πΓ(E1)L/λ] exp(−ilφ) exp[−i
∆φ(E2)

2
]eR + i sin[πΓ(E1)L/λ] exp(ilφ) exp[i

∆φ(E2)

2
]eL (5)

To make the expression concise, the constant phase factor is omitted here. In the
equation above, the polarization states distribution is related to the spatial position and has
a cylindrical symmetric structure.

3. Experimental Results

To verify the proposed method and system, cylindrical VBs with different coordinates
on the HOP sphere were generated in experiments. Intensity and Stokes parameters
distribution was simulated based on Equation (5), and compared with experimental results.
A Laguerre-Gaussian beam with topological charge l = 2 was employed to represent the
vortex field in simulations. Firstly, just insert C1 into the system to generate cylindrical VBs
at points on a line of longitude but with different latitudes, which is corresponding to HOP
beams with different ellipticity. To achieve it, voltage U1 was set as 2.2, 2.8, 3.4, 4.0 and
4.6 kV to generated cylindrical VBs on HOP sphere l = +2 with 2ψ = 0 and 2χ is −0.353π,
−0.188π, −0.045π, 0.143π and 0.309π, respectively. The experimental and simulated
results are shown in Figure 2. As shown in Figure 2c, the position of generated cylindrical
VBs on the surface of the HOP sphere are labeled and signed as A1 to A5. Figure 2a shows
the intensity pattern of generated cylindrical VBs. The polarization states are overlaid on
simulated intensity pattern as shown in the first row of Figure 2a. Corresponding Stokes
parameters distribution of generated cylindrical VBs are shown in Figure 2b. In Figure 2a,
it is clear to see that the generated field has annular intensity distributions and a dark core,
which demonstrate polarization and phase singularity. Four lobes in intensity pattern when
the polarizer P along 0◦ and 90◦ corresponds to the N lobes with N = 2|l|, where |l| is the
order of polarization. The change of Stokes parameter S3 in Figure 2b corresponds to the
VBs going from the north to the south poles of the HOP sphere. For more intuitive, the
experimental voltage modulating curve of Stokes parameter S3, when the applied voltage
U1 from 2.0 to 5.0 kV, was measured and compared with a simulated curve. These results
are shown in Figure 2d, where the solid line and scattered dots are denote simulated and
measured results, respectively.
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Figure 2. Simulated and experimental results of generated cylindrical VBs along longitude of HOP
sphere l = +2 with 2ψ = 0. (a) Intensity pattern of generated cylindrical VBs from A1 to A5, when
the applied voltage on C1 is 2.2, 2.8, 3.4, 4.0, and 4.6 kV, respectively. The first and second rows show
the simulated and experimental intensity pattern with no polarizer, respectively. Polarization states
are overlaid on simulated intensity pattern. The other two rows show the intensity pattern measured
in experiments when the polarizer is along horizontal and vertical directions, respectively, and the
corresponding simulated results are shown in insets. (b) Stokes parameters distribution of A1 to
A5, respectively. (c) HOP of l = +2. The position of generated cylindrical VBs on the HOP sphere
is labeled by A1 to A5 along longitude with 2ψ = 0. (d) Curve of Stokes parameter S3 and applied
Voltage U1, the solid line and dots denote simulated and experimental result, respectively. Scale bar
in the first experimental intensity pattern of A1 represents 0.645 mm.

To verify the ability of the proposed system to modulate azimuth of generated HOP
beams polarization state, just C2 was inserted in the system and adjusted the applied
voltage to generate cylindrical VBs at points on the equator but with different longitude
on the HOP sphere. Four cylindrical VBs on HOP sphere with coordinates (0, 0), (0, π/2),
(0, π), (0, 3π/2) were generated. Their position on the HOP sphere is signed in Figure 3a
with B1 to B4, respectively. To generate these four cylindrical VBs, a voltage applied on
C2 was set as 0, 1.8, 3.6, and 5.4 kV, respectively. The distribution of polarization state is
overlaid on simulated intensity pattern as shown in the first row of Figure 3b. The second
to fourth rows of Figure 3b show the intensity pattern measured in experiments without
and after polarizer with a different direction. Figure 3c shows the Stokes parameters
distribution of generated cylindrical VBs. Corresponding simulated results are shown in
insets. In Figure 3b, one could see the gaps between two adjacent lobes, which could be
attributed to the linear polarization state of generated VBs. It could be confirmed by the
Stokes parameter distribution shown in Figure 3c. The change of phase shift in Equation (3)
caused by applied voltage U2 would lead to rotation of polarization. Its performance
in the experimental intensity pattern is the rotation of the gaps. In order to show the
modulation effect of the applied voltage U2 on the azimuth angle more intuitively and
quantitatively, the azimuthal intensity data of generated cylindrical VBs, when the polarizer
with directions 0◦ and 90◦, was extracted and compared with the theoretical curve, which
are corresponding to the x- and y-component of the output field. Figure 3d,e show the
experimental data and the theoretical curves in the form of scattered dots and solid lines,
respectively. The maximum and minimum positions in experimental intensity data are
consistent with it in theoretical curves. The slight deviation between the experimental
and theoretical curves was caused by spatial aberrations during the transmission of the
vortex beam.
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Figure 3. Simulated and experimental results of generated cylindrical VBs on the equator of HOP
sphere l = +2 with different longitude. (a) The position of generated cylindrical VBs on the equator
of HOP sphere, which are signed by B1 to B4; (b) Intensity pattern of generated cylindrical VBs from
B1 to B4. Simulated polarization states and intensity pattern are shown in the first row. The other rows
from left to right are intensity pattern measured without polarizer and after polarizer with directions
0◦ and 90◦, respectively; (c) Stokes parameters distribution of generated cylindrical VBs measured
in experiments. The corresponding simulated results of intensity pattern and Stokes parameters
distribution are shown in insets; (d,e) the azimuthal intensity distribution of x- and y-component,
where the experimental data and the theoretical curves are shown with scattered dots and solid line,
respectively. Scale bar in the first experimental intensity pattern of B1 represents 0.645 mm.

To further verify the proposed method, both C1 and C2 were inserted into the system
and the applied voltage was controlled independently. This makes the system could modu-
late ellipticity and azimuth of generated cylindrical VBs’ polarization state simultaneously.
We generated cylindrical VBs at the surface of the HOP sphere l = +2, the position of
generated cylindrical VBs on the HOP sphere is shown in Figure 4a and signed as D1 to
D4. In experiments, U1 was set as 2.8 kV, and U2 was set as 1.8 and 3.6 kV to generate
cylindrical VBs at D1 (−0.188π, π/2) and D2 (−0.188π, π), respectively. The polarization
state distribution, intensity pattern without and after polarizer with different directions
are shown in Figure 4b, while corresponding Stokes parameter distributions are shown in
Figure 4c. To generate cylindrical VBs at D3 (0.143π, π/2) and D4 (0.143π, π), the voltage
of U1 was set as 4.0 kV, while U2 was set as 1.8 and 3.6 kV, respectively. The experimental
and simulated results of generated cylindrical VBs at D3 and D4 are shown in Figure 4d,e.
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Figure 4. Simulated and experimental results of generated cylindrical VBs when both C1 and
C2 were inserted in the system. (a) The position of generated cylindrical VBs on HOP sphere,
which are signed by D1 to D4 with coordinate (−0.188π, π/2), (−0.188π, π), (0.143π, π/2) and
(0.143π, π), respectively; (b,d) are intensity pattern of generated cylindrical VBs at point D1 to D4;
(c,e) are corresponding Stokes parameters distribution. The first row of (b,d) shows the simulated
polarization states and intensity pattern of generated cylindrical VBs, while the other rows from left
to right are intensity pattern measured without polarizer and after polarizer with directions 0◦ and
90◦, respectively. The corresponding simulated results of intensity pattern and Stokes parameters
distribution are shown in insets. Scale bar in the first experimental intensity pattern of D1 represents
0.645 mm.

4. Discussion

Simulated and experimental results shown in Figure 2 to Figure 4 verify the feasibility
of the proposed method and system. The first EO modulator C1 is used to change the
relative intensity of the two eigenstates and control the ellipticity of generated HOP beams,
while the function of the second EO modulator C2 is controlling azimuth of generated HOP
beams by changing the phase difference between the two eigenstates. Using the proposed
method, cylindrical VBs at any point on the surface of the HOP sphere could be generated
by controlling the voltage applied on the two EO modulated crystals. There is no need to
move any optical element when changing output polarization state, and no mechanical
vibrations, naturally. Furthermore, due to the flexibility of the voltage signal, the changing
of polarization state could be direct and immediate, instead of bit by bit. Compared with
changing polarization state by rotating wave plate, the proposed method based on EO
modulation could make the polarization state switching more flexibly and fast. Besides,
in terms of the selection of the voltage source, the introduction of a radio frequency field
could realize high-frequency modulation of the polarization state.

In the simulations and experiments, the EO modulator is DKDP crystal with transverse
EO modulation (applied electric field is perpendicular to wave vector of an incident
beam), while in practical application, longitudinally EO modulated (applied electric field
is parallel to wave vector of an incident beam) DKDP crystals or other EO crystals (such
as lithium niobate, potassium titanyl phosphate and so on) are also an option. According
to Equations (2) and (3), the phase shift caused by EO effect is function of EO coefficient,
crystal length and electric field. So, crystals with a larger EO coefficient, longer crystal,
and small distance between the electrodes could lower the required voltage. Due to the
modulating rate depending on the switch rate of applied voltage, a lower required voltage
is more beneficial to the fast switch polarization state of generated VBs. In the proposed
method, a rotating wave plate is not needed, which means the whole system could be
completely static, and electrodes are plated on the crystal surface that takes hardly any
space. These make the whole system could be highly integrated. We hope this method
could be used in small size components such as chips, in the future.



Photonics 2022, 9, 41 8 of 9

5. Conclusions

In this paper, a method to modulate the polarization states of HOP beams was pro-
posed, and a system was designed to verify the proposed method based on Mach-Zehnder
interferometers. In the proposed method, azimuth and ellipticity of generated cylindrical
VBs were modulated by the EO effect of nonlinear optical crystal, which is achieved by
controlling the voltage signal applied on EO crystals. There would be no optical element
moving and mechanical vibrations when the output polarization state changes. Besides,
due to the flexibility of the voltage signal, the polarization state could be switched di-
rectly and immediately. Simulated and experimental results verified the validity of the
proposed method.
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