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Abstract: The statistics of the optical phase of the light emitted by a semiconductor laser diode when
subject to periodic modulation of the applied bias current are theoretically analyzed. Numerical
simulations of the stochastic rate equations describing the previous system are performed to describe
the temporal dependence of the phase statistics. These simulations are performed by considering
two cases corresponding to random and deterministic initial conditions. In contrast to the Gaussian
character of the phase that has been assumed in previous works, we show that the phase is not
distributed as a Gaussian during the initial stages of evolution. We characterize the time it takes
the phase to become Gaussian by calculating the dynamical evolution of the kurtosis coefficient of
the phase. We show that, under the typical gain-switching with square-wave modulation used for
quantum random number generation, quantity is in the ns time scale; that corresponds to the time
it takes the system to lose the memory of the distribution of the initial conditions. We compare the
standard deviation of the phase obtained with random and deterministic initial conditions to show
that their differences become more important as the modulation speed is increased.

Keywords: semiconductor laser; optical phase; gain-switching; spontaneous emission noise;
quantum random number generation

1. Introduction

Experimental and theoretical understanding of the fluctuations of laser light began
shortly after the invention of the laser [1–5]. Special attention has been devoted to fluc-
tuations of the light emitted by semiconductor lasers [6–10] due to their vast variety of
applications. The best available theoretical description of these fluctuations is based on the
Fokker–Planck equation, or alternativelly on Langevin’s stochastic rate equations [3,6–8,11].
The phase of the laser electrical field is a random quantity, mainly due to the effect of the
spontaneous emission noise. The random character of this phase is precisely the basis of
some of the available methods for quantum random number generation (QRNG).

Random numbers are a vital resource for numerous applications including cryptogra-
phy, statistical analysis, stochastic simulations, decission making in engineering processes,
quantitative finance, gambling, massive data processing, etc. [12,13]. Random number gen-
erators (RNG) use software algorithms (pseudorandom number generators) or hardware
physical devices. Typical physical processes used to generate random numbers are radioac-
tive decay, Johnson or Zener’s noise, chaos noise [13,14] and quantum phenomena [12,13].
QRNGs are a particular case of physical RNGs that can generate truly random numbers
from the fundamentally probabilistic nature of quantum events [13]. The advantage of
using QRNGs relies on its unpredictibility, which can be proven to be based on quantum
physics laws. Typical QRNGs are based on quantum optics [13]. These generators can
be divided in (i) generators that use single-photon sources, and (ii) generators that use
multi-photon sources, typically semiconductor lasers or LEDs. QRNGs based on single-
photon detection methods include: Branching path generators [15], generators measuring
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the time of arrival of photons [16], photon counting generators [17], and attenuated pulse
generators [18]. These methods have been experimentally compared in [19]. Multi-photon
QRNGs include: Generators based on quantum vacuum fluctuations [20], on amplified
spontaneous emission (ASE) signals [21,22], and on phase noise in continuous wave [23–25]
and in pulsed laser diodes [26–31].

Spontaneous emission is a useful mechanism to generate quantum fluctuations,
as it can be ascribed to the vacuum fluctuations of the optical field [26]. Randomness
due to spontaneous emission is the basis of QRNGs based on pulsed single-mode laser
diodes [26–28,30,31]. These generators have several advantages. They are made of com-
mercially available components: For instance, standard photodetectors can be used due
to the high signal levels. They are simple, low-cost, robust, and fast: Generation rates up
to 43 Gbps quantum random bit generation have been experimentally demonstrated [27].
In these QRNGs the laser diode is periodically modulated from below to above threshold
in such a way that gain-switching operation is obtained, typically at Gbps rates. While
the laser is below threshold the optical phase becomes random due to the spontaneous
emission noise. Gain-switching operation produces a periodic train of laser pulses with
random phases. Phase fluctuations are then converted into amplitude fluctuations by
using interferometric setups [27,31]. Detection and filtering of the amplitude fluctuations
provides the generation of random values with an almost uniform distribution.

The applications of QRNGs, for instance in cryptography [31,32], require that the
physical processes underlying their operation must be properly understood and described.
For QRNGs based on pulsed semiconductor lasers, it is essential an accurate description
of the phase diffusion process, that is, laser phase fluctuations must be qualitatively
and quantitatively characterized. Modelling of these fluctuations has been performed
by numerical integration of the laser stochastic rate equations [27,30,31,33–36]. Good
quantitative agreement between experiments and theory is achieved when the complete set
of parameters of the rate equations is known for the specific laser diode. Good agreement
between experimental and theoretical phase fluctuations has been recently reported for a
discrete mode laser (DML) [36] for which a complete extraction of the intrinsic parameters
was performed [35,37]. This permits a quantitative description of the dependence of phase
diffusion on the laser and modulation parameters. On the qualitative side, statistics of
optical phase has been described as Gaussian in numerical simulations [27,33,34] since
spontaneous emission noise has also Gaussian distribution. However, in these generators
the bias current is periodically modulated in such a way that the evolution is mainly in
a transient regime, specially when operating at fast bit rates. It is then expected that the
choice of initial conditions in the simulations must have impact on the statistics of the
optical phase and on the time it takes the phase to be distributed as a Gaussian. This is
in fact the main objective of this work: The investigation of the conditions for which the
phase becomes distributed as a Gaussian.

In this paper we report a theoretical study of the phase diffusion in gain-switched
semiconductor lasers. This is done by performing numerical simulations of the stochastic
rate equations for the complex electrical field and carrier number. In our modelling we
use the set of parameters recently extracted for a DML device. With these parameters
we first analyze the impact of the carrier noise on the phase statistics. In the rest of the
paper we focus on the calculation of the temporal dependence of the statistical moments
and distribution of the phase. We first consider random initial conditions that contrast
to previous analysis in which deterministic fixed initial conditions were chosen [34]. We
compare the phase statistics obtained for both types of initial conditions. For both cases
we show that the phase is not distributed as a Gaussian because of the non-Gaussianity of
the initial conditions. This contrasts to the Gaussian character of the phase that has been
assumed in previous works [27,33,34]. We characterize the time it takes the phase becomes
approximately Gaussian by calculating the temporal evolution of the kurtosis coefficient
of the phase. Our calculations indicate that under the typical gain-switching with square-
wave modulation used for QRNG, the time it takes to the phase to become Gaussian is in
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the ns scale. These are the typical times for which the memory of the distribution of the
initial conditions is lost. The comparison between the variance of the phase obtained with
random and fixed initial conditions show that their differences become more important as
the modulation speed is increased.

Our paper is organized as follows. In Section 2, we present our theoretical model.
Section 3 is devoted to analyze the dynamical evolution of the relevant variables. In Section 4,
we study the temporal evolution of the phase statistics. Finally, in Section 5 we discuss and
summarize our results.

2. Theoretical Model

Gain-switched single-mode semiconductor laser dynamics can be modelled by using
a set of stochastic rate-equations that read (in Ito’s sense) [6,37,38]

dP
dt

=

[
GN(N − Nt)

1 + εP
− 1

τp

]
P + Rsp(N) +

√
2Rsp(N)PFp(t) (1)

dφ

dt
=

α

2

[
GN(N − Nt)−

1
τp

]
+

√
Rsp(N)

2P
Fφ(t) (2)

dN
dt

=
I(t)

e
− (AN + BN2 + CN3)− GN(N − Nt)P

1 + εP
(3)

where P(t) is the number of photons inside the laser, φ(t) is the optical phase, and N(t) is
the number of carriers in the active region. The parameters appearing in these equations
are the following: GN is the differential gain, Nt is the number of carriers at transparency, ε
is the non-linear gain coefficient, τp is the photon lifetime, α is the linewidth enhancement
factor, e is the electron charge, and A, B and C are the non-radiative, spontaneous, and
Auger recombination coefficients, respectively. In these equations we consider a temporal
dependence of the injected current, I(t), and a rate of the spontaneous emission given by
Rsp(N) = βBN2 where β is the fraction of spontaneous emission coupled into the lasing
mode. The Langevin terms FP(t) and Fφ(t) in Equations (1) and (2), represent fluctuations
due to spontaneous emission, with the following correlation properties, < Fi(t)Fj(t′) >=
δijδ(t− t′), where δ(t) is the Dirac delta function and δij the Kronecker delta function with
the subindexes i and j referring to the variables P and φ.

QRNG systems based on gain-switching of single-mode laser diodes are such that a
large signal modulation of the bias current is applied to the device. We consider an injected
current following a square-wave modulation of period T with I(t) = Ion during T/2, and
I(t) = Io f f during the rest of the period. This modulation is such that Io f f < Ith, where
Ith is the threshold current of the laser, for obtaining a random evolution of the optical
phase induced by the spontaneous emission noise. Numerical integration of the previous
stochastic rate equations by usual Euler–Maruyama [3,39] or Heun’s predictor-corrector
algorithms [37] present instabilities when the photon number is very small, a situation
always present in this type of QRNGs: some spontaneous noise events cause negative
values of P that lead to numerical instabilities due to the square root factor multipliying
the noise term in Equations (1) and (2). Very recently a set of rate equations for the complex
electrical field, E(t), instead of equations for P and φ has been proposed to solve this
problem [35]. These equations are the following:

dE
dt

=

[(
1

1 + ε | E |2 + iα
)

GN(N − Nt)−
1 + iα

τp

]
E
2
+
√

βBNξ(t) (4)

dN
dt

=
I(t)

e
− (AN + BN2 + CN3)− GN(N − Nt) | E |2

1 + ε | E |2 (5)

where E(t) = E1(t) + iE2(t) is the complex electrical field and ξ(t) = ξ1(t) + iξ2(t)
is the complex Gaussian white noise with zero average and correlation given by <
ξ(t)ξ∗(t′) >= δ(t − t′) that represents the spontaneous emission noise, and where we
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have considered that Rsp(N) = βBN2. These equations exactly correspond to our ini-
tial model because the application of the rules for the change of variables in the Ito’s
calculus [11] to P =| E |2= E2

1 + E2
2 and φ = arctan (E2/E1) in Equations (4) and (5) gives

Equations (1)–(3). Instabilities do not appear because P is not inside the square root factor
that multiplies the noise term.

Up to now we have considered an equation for N that has not any noise term. Carrier
noise can also be important for describing statistics in semiconductor laser dynamics [6].
These fluctuations can be taken into account if we substitute Equation (5) by

dN
dt

=
I(t)

e
− (AN + BN2 + CN3)− GN(N − Nt) | E |2

1 + ε | E |2

+

√
2
(

AN + BN2 + CN3 +
I(t)

e

)
ξN − 2

√
βBN

(
E1ξ1 + E2ξ2

)
(6)

where ξN is a real Gaussian white noise of zero average and correlation given by <
ξN(t)ξN(t′) >= δ(t− t′) and statistically independent of ξ(t) [6,10,37,40].

In this work we will numerically solve Equations (4) and (6) by using the Euler–
Maruyama algorithm [3,39] with an integration time step of 0.001 ps. We will use the
numerical values of the parameters that have been extracted for a discrete mode laser
(DML) [35,37]. This device is a single longitudinal mode semiconductor laser emitting
close to 1550 nm wavelength and Ith = 14.14 mA at a temperature of 25 ◦C. The values of
the parameters are GN = 1.48× 104 s−1, Nt = 1.93× 107, ε = 7.73× 10−8, τp = 2.17 ps,
α = 3, β = 5.3× 10−6, A = 2.8× 108 s−1, B = 9.8 s−1, and C = 3.84× 10−7 s−1 [35,37].
Simulation and experimental results have shown not only qualitative but also a remarkable
quantitative agreement for a very wide range of gain-switching conditions [35,37,41].

3. Analysis of the Dynamics

We first analyze the dynamical evolution of relevant variables when the laser is
modulated with Ion = 30 mA, Io f f = 7 mA, and T = 1 ns. The laser is switched-off with a
current close to Ith/2, for obtaining a significant effect of the spontaneous emission noise
on the randomness of the phase. Figure 1a–c show the photon number, carrier number, and
optical phase, respectively, as a function of time. We integrate the equations for consecutive
bias current pulses in such a way that the initial conditions for one period correspond to the
final values of the variables at the end of the previous period. Figure 1a shows P for three
consecutive pulses. The laser is switched-on with Ion at t = 1 ns. After this time P begins
to build-up from very small random values determined by the spontaneous emission noise
events. After the emission of the pulse with the corresponding relaxation oscillations, P
begins to decrease at t = 1.5 ns (when Io f f is applied), reaching the small random values at
which spontaneous emission noise dominates the device dynamics. N begins at t = 1 ns
from a value well below the threshold carrier number, Nth = Nt + 1/(GNτp) = 5.045× 107,
as it can be seen in Figure 1b. The characteristics relaxation oscillations of N associated to
the pulse emission are followed by a monotonous decrease from t = 1.5 ns to 2 ns due to
the value below threshold of Io f f .

The optical phase is calculated at each integration step from E1 and E2 in such a
way that it is a continuous function of t. The dynamical evolution of φ is shown in
Figure 1c. When P is large (small) the noise term in Equation (2) is much smaller (larger)
than the other term in that equation and φ mainly evolves in a deterministic (random) way.
The deterministic decrease of φ is due to the value below threshold of the current when
switching-off the laser: GN(N − Nt)− 1

τp
< 0 because N < Nth, and therefore φ decreases

(see Equation (2)).
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Figure 1. (a) Photon number, (b) carrier number, and (c) optical phase as a function of time for three
consecutive pulses when T = 1 ns.

Visualization of different random trajectories and calculation of statistical moments
of the phase, specially its standard deviation, σφ(t), have been usually done by over-
laying them in a temporal window with a duration of a few periods [33–35]. For in-
stance just one period is considered in references [34,35] to calculate the value of σφ(t) =√
< φ2 > (t)− < φ >2 (t) with 0 ≤ t ≤ T. To obtain well defined averages, < φ > (t)

and < φ2 > (t), it is necessary to make a choice of the initial conditions at the beginning
of each period because φ is an unbounded quantity, as shown in Figure 1. One choice is
to take P(0) =< P(0) >, N(0) =< N(0) >, and φ(0) =< φ(0) > [34], that is fixed initial
conditions. A second choice is to take random initial conditions [35]. Photon and carrier
numbers at t = 0 are those obtained at the end of the previous period, like in Figure 1. The
change with respect to Figure 1 is related to the phase and it is based on the cyclic nature of
angles: We consider that φ at the beginning of the period, φ(0), is that corresponding to
φ at the end of the previous period, φ(T), but converted into the [0, 2π) range, that is we
consider that φ(0) is given by φ(T)− int

( φ(T)
2π

)
2π.

Figure 2 shows the temporal evolution of P, N and φ, plotted in a window of duration
T, corresponding to the three consecutive pulses of Figure 1 and using the previous choice
of random initial conditions. Figure 2a,c show that laser pulses that have a larger switch-on
time, defined as the time at which P crosses a fixed level, have also a larger value of
the maximum of N and P [9]. Figure 2b shows that φ takes values in a range of several
multiples of 2π during one period. Figure 2b also shows, in a more clear way than in
Figure 1, that the phase fluctuations are more important at the beginning and at the end of
the pulse. Comparison between Figure 2a,b shows that pulses with a similar evolution of
P can have a very different phase evolution (see black and red realizations). In the next
section we will focus on the description of the temporal evolution of the phase statistics.
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Figure 2. (a) Photon number, (b) phase, and (c) carrier number dynamical evolution for three
different realizations are shown with black, red, and green lines in a temporal window of duration T.
(d) Variance of the phase as a function of t. In this figure T = 1 ns and the three realizations are
extracted from the time traces of Figure 1.

4. Analysis of the Phase Statistics

The dynamical evolution of the variance of the phase, σ2
φ, is shown in Figure 2d for

the case of random initial conditions and a temporal window of duration T = 1 ns. σ2
φ(t)

has been calculated by averaging over 2 × 104 temporal windows. σ2
φ(0) > 0 because of

our choice of random initial conditions. Large increases of σ2
φ(t) occur while P is small

and dominated by the spontaneous emission noise, that is at the beginning and at the end
of the period. While the evolutions of P and φ are deterministic and I > Ith (0.15 ns < t
< 0.5 ns) σ2

φ(t) oscillates with the frequency of the relaxation oscillations around a value
that increases linearly with time, similarly to what was observed by Henry [8]. These
oscillations and the linear increase are barely seen in Figure 2d because of the vertical scale
determined by the large values of the variance when the laser is switched-off. From 0.5 ns
< t < 0.65 ns, while φ still has a deterministic evolution, there is a slight decrease of σ2

φ(t).
After that time, both φ and P become determined by the spontaneous emission noise. In
this way the linear increase of σ2

φ(t) with t, characteristic of phase diffusion, is observed
until the end of the period, as it is seen in Figure 2d.

We now analyze the effect of carrier noise on the statistics of the phase. Figure 3 shows
the probability density function (pdf) of φ at three different times when the carrier noise is
considered (that is, integrating Equation (6)) and when it is neglected (considering instead
Equation (5)). This figure has been obtained using the same conditions of Figure 2.

Figure 3 shows that the effect of carrier noise on the statistics of φ is very small. In fact,
it has been shown that the consideration of noise in the carrier equation is not important
during transient regimes [9,33], being only essential in the stationary regime for calculating
quantities like the relative intensity noise [6]. Figure 3 also shows the Gaussian distributions
of average and standard deviation given by the simulation with carrier noise. It is clear
that the Gaussian distribution does not describe well the phase satististics, specially for
short times (t = 0.1 and t = 0.5 ns). The Gaussian approximation becomes better at longer
times (t = 0.9 ns).
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Figure 3. Probability density function of the phase at three different times in (a) linear, and
(b) logarithmic vertical scale. Pdfs obtained with and without noise in the carrier number equa-
tion are plotted with red and black solid lines. Gaussian approximations are plotted with blue
dashed lines.

A way of quantifying if the Gaussian distribution is suitable for describing the phase
statistics is by calculating moments of φ of order higher than 2. Asymmetry and kurtosis
coefficient of the simulated data are shown in Figure 4 as a function of time. Both coefficients
must vanish if the distribution is Gaussian. Figure 4a shows with black lines the asymmetry,
γr, and kurtosis, κr, coefficients obtained under the same conditions of Figure 2, that is
with random initial conditions. While the phase distribution is symmetric (γr ∼ 0), κr is
significantly larger than zero. κr decreases fast until it develops a small peak close to the
time at which the first relaxation oscillation appears. After that peak it reaches a plateau
that finishes when P reaches the spontaneous emission noise level (around t = 0.7 ns).
From that time φ diffuses and κr monotonously decreases reaching values that are closer
to zero at the end of the period (κr = 0.65 at t = 0.9 ns). Figure 4b shows γr and κr when
T = 2 ns. In this case φ has more time to diffuse when the laser is switched-off and then
the Gaussian approximation is better at the end of the period (κr = 0.14 at t = 2 ns).
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Figure 4. Asymmetry and kurtosis coefficients of the phase as a function of time for (a) T = 1 ns, and
(b) T = 2 ns. Asymmetry and kurtosis coefficients are plotted with solid and dashed lines, respectively.
Results for random and fixed initial conditions are plotted with black and red lines, respectively.
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The reason why φ is not Gaussian can be understood by plotting the pdf of φ at t = 0.
Figure 5 shows that distribution for the case of T = 1 ns. The distribution corresponds to a
uniform random variable in [0, 2π). This is because of the way random initial conditions
are chosen: Doing the operation φ(0) = φ(T)− int

( φ(T)
2π

)
2π from a broad nearly Gaussian

distribution for φ(T) makes φ(0) a uniform random variable, U(0, 2π). The kurtosis of
U(0, 2π) is 354/5 ∼ 70.8. Diffusion of φ at the beginning of the period (see Figure 2) makes
κr to decrease quickly, but not enough for becoming strictly Gaussian, even at the end of
the period.

0 1 2 3 4 5 6
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

p.d
.f.

φ ( 0 )  ( r a d )

Figure 5. Probability density function of the initial value of the phase for T = 1 ns.

Of course these results depend on the way initial conditions are chosen. Another
way of choosing these values is by considering fixed initial values for E(0), and N(0).
Figure 4 shows, with red lines, asymmetry and kurtosis coefficients, γ f and κ f , when
fixed initial conditions are used. We choose these values in the following way. We first
integrate Equations (4) and (6) from arbitrary initial conditions corresponding to below
threshold operation in order to find the averaged < P(t) >,< N(t) >, and < φ(t) > for
0 ≤ t ≤ T. Then we choose N(0) =< N(T) >, and E(0) =

√
< P(T) >(cos < φ(T) >

+i sin < φ(T) >). This election is similar to that considered in [34]. Figure 4 shows that
the evolution of γ f and κ f is very similar to that of γr and κr, respectively. κ f > κr because
the initial delta-like distribution of φ(0) produce larger values of the kurtosis. These
differences decrease with t, specially when spontaneous emission dominates the phase
evolution: In Figure 4a,b when t > 0.7 ns (t > 1.2 ns).

The choice of initial conditions also impacts on the values of the standard deviation as
a function of t. In Figure 6a the dynamical evolution of σφ for both, random and fixed initial
conditions, is shown when T = 1 ns. Again both standard deviations have similar trends
but the value for random initial conditions is larger than that obtained for the fixed ones.
This is due to the non-zero value of σφ(0) obtained with the uniform distribution of φ(0) in
contrast to the zero value obtained for fixed initial conditions. Relative differences between
both quantities enhance if the speed of QRNG increases as it can be seen in Figure 6b where
results obtained for T = 0.4 ns have been plotted. For instance, σφ at 0.2 ns is around 20 %
smaller for the case of fixed initial conditions.
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5
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1 5
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0

2

4

6

8

σ φ (r
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( a )

T  =  0 . 4  n s

( b )
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Figure 6. Standard deviation of the phase as a function of time for (a) T =1 ns, and (b) T =0.4 ns.
Results for random and fixed initial conditions are plotted with black and red lines, respectively.
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The dependence of the phase statistics on the way initial conditions are chosen sug-
gests that averages must be done in a different way in order to lose the memory of those
initial conditions. We have been considering averages performed in a temporal window
with the same duration than the period of the current, T. From now on we will con-
sider longer temporal windows for calculating statistical averages. Figure 7 illustrates the
situation found when averages are calculated over a window of duration 2T. Random
initial conditions are considered such that φ(0) = φ(2T)− int

( φ(2T)
2π

)
2π. Averages have

been done over 2 × 104 2T-windows, where T = 1 ns, in order to compare with situations
illustrated in previous figures. Figure 7a shows the averaged phase vs t. The drift towards
decreasing values of the phase is similar to that shown in Figure 1c. Standard deviation
and variance of the phase are shown in Figure 7b,c, respectively. < φ(t) >, σφ(t) and
σ2

φ(t) during the second half of the 2T-window are basically replicas of what was found
in the first half. The continuity of φ along the 2T-window makes that σφ(t) and σ2

φ(t)
monotonously increase. However the situation is different when considering the kurtosis
coefficient as Figure 7d shows. In this case, during the second half of the window κr keeps
on decreasing towards the zero value. This means that the distribution of the phase keeps
on approaching to the Gaussian shape. In fact κr = 0.22 when t = 2 ns.
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Figure 7. (a) Average, (b) standard deviation, (c) variance, and (d) kurtosis coefficient of the phase as
a function of time for a two-period window with T = 1 ns.

That approach can be illustrated by plotting the phase pdf at two different times.
Figure 8 shows those distributions at times t = 0 and t = 1.1 ns. The phase at t = 0 is a
U(0, 2π) random variable, similarly to Figure 5. The phase at t = 1.1 ns is approximately
Gaussian as it can be seen when comparing with the Gaussian of average and standard
deviation obtained from simulations. The kurtosis coefficient in Figure 8b is 0.4. Figure 8b
can also be compared with the pdf obtained at t = 0.1 ns in Figure 3b because both
distributions correspond to 0.1 ns after switching-on the bias current. The pdf in Figure 3b
is not Gaussian while the pdf in Figure 8c is approximately Gaussian. This indicates that in
order to have a phase distributed as a Gaussian it is necessary to calculate and average the
phase in windows with durations of several modulation periods. In this way the memory
of the initial conditions and their distribution is lost.
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Figure 8. Probability density function of the phase at (a) t = 0 ns, and (b) t = 1.1 ns for a two-period
window with T = 1 ns. The Gaussian approximation is plotted with a blue dashed line.

5. Discussion and Summary

In our study we have considered two types of initial conditions, corresponding to
deterministic and random values of the variables. Fixed initial conditions have been
considered because they have been used in previous studies of QRNG. They are not the
best choice for simulation of these systems because the spontaneous emission noise, that
is always present in the system, causes fluctuations in the variables of the system at all
times. These include the times at which each period begins, and so initial conditions must
be also random, as it is also expected in an experimental realization of the system. We have
chosen these random initial values by calculating the phase angle in the [0, 2π) range that
corresponds to the final value in the previous averaging window. Note that the conversion
to the [0, 2π) range is necessary if a calculation of well defined statistical moments of
the phase is required. If no conversion is done, not even < φ(t) > could be calculated
because φ decreases in each averaging window in a magnitude of more than several 2π,
as illustrated for instance in Figure 1c.

Deterministic initial conditions and phase averages over windows of T-duration have
been recently used for describing the phase statistics [34]. While these conditions can give an
approximation to the phase distribution and their statistical moments, our results show that
it is necessary to consider averages over windows of several T-duration and random initial
conditions for obtaining Gaussian statistics for the phase at the end of the averaging period.

We now briefly discuss the effect of two laser parameters, the non-linear gain and
the Auger coefficients, on the standard deviation of the phase. The number of relaxation
oscillation peaks increases when the non-linear gain coefficient decreases. The standard
deviation of the phase at the end of the modulation period oscillates when changing
Ion [35]. The number of these oscillations is directly related to the number of relaxation
oscillation peaks that are excited. In this way, the main effect of having a small nonlinear
gain coefficient is to observe more oscillations of the standard deviation of the phase
as a function of Ion. The effect of the Auger coefficient is also important for describing
the standard deviation of the phase. In fact we have shown that the Auger term must
be considered in the carrier recombination term for achieving good agreement between
experiments and theory [36].

Summarizing, we have theoretically analyzed the phase diffusion in gain-switched
semiconductor lasers by performing numerical simulations of the corresponding stochastic
rate equations. We have focused on the calculation of the temporal dependence of the
statistical moments and distribution of the phase. We have considered several types of initial
conditions for the phase. By using the temporal dependence of the kurtosis coefficient we
have shown that the phase pdf becomes Gaussian only after the memory of the statistical
distribution of the initial conditions is lost. We show that under the typical gain-switching
with square-wave modulation used in QRNGs, the time it takes for the phase to become
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Gaussian is in the ns scale. We finally compared the variance of the phase obtained with
random and fixed initial conditions to show that their differences are more important as the
modulation speed is increased. This is precisely the situation in which faster generation bit
rates are achieved when using QRNGs based on gain-switched laser diodes.
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