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The Supplementary material provides the details of analytical calculations of the
inverse of the Green’s function of the U-shaped demultiplexer which enables us to derive
the transmission and reflection coefficients through the system ( Section S1). This device
presents different possibilities of demultiplexing such as Fano resonances on both outputs
(Fano-Fano), EIT resonances on both outputs (EIT-EIT) as well as Fano resonance on
one output and EIT resonances on the other output (Fano-EIT). These two latter cases are
discussed in Section S2 and Section S3 respectively. In Section 54, we present the analytical
calculation of the interface Green’s function of the finite photonic circuit in presence of
a defect cavity. In Section S5, we give preliminary results about the transposition of the
results presented in this paper for demultiplexers operating in radiofrequency domain to
plasmonic demultiplexer based on metal-insulator-metal (MIM) nanometric waveguides
operating in terahertz domain.

S1. Transmission and reflection coefficients through the U-shaped demultiplexer

nen

We consider a homogeneous isotropic infinite dielectric medium "i" characterized by
an impedance Z; and a dielectric permittivity ¢;. The Green’s function between two points
x and x’ of the material is given by:

, e jk|x—x'|
Gl‘(x,x ) = *]ZT, (Sl)
where k is the wavevector given by the relation
ko OVEL (52)

c

w is the pulsation, c the speed of light in vacuum and j = /—1.

In order to calculate the transmission and reflection coefficients through the U-shaped
demultiplexer (Fig. 1), we need the inverse of the Green'’s function of the whole structure
[1]. This latter can be obtained by the knowledge of the inverse Green’s function of the
elementary constituents, namely, the Green’s functions of finite segments and stubs of
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length d;, (i = 0,0/,1,2,3,4,5,6), and a semi-infinite guide. The boundary conditions at
the ends of all waveguides are H = 0 (perfect magnetic conductor). The segment of length
d; (i =0,0,5,6) is delimited by two surfaces located at x = 0 and x = d; (Fig. 1). These
surface elements can be written in the form of a (2 x 2) matrix g;(MM), within the interface
space M = {0, +d;}. The inverse of this matrix takes the following form [1,2]:

_(UC,‘ w
gi1<MM>:< e _sz5;,> (83)
Z;5; Z;5;

The inverse of the Green’s surface function of the resonators grafted at sites {2}, {3},
{4} and {5} are given respectively by ¢; 1(2,2) = ¢;'(3,3) = g; '(4,4) = g, '(5,5) =
—wS;/ Z;C;, where C; = cos(kd;), S; = sin(kd;) (i =1,2,3,4) and k = w@ is the wavevec-
tor. The inverse of the surface Green'’s functions of the three semi-infinite waveguides which
surround the whole structure are given by ¢;1(1,1) = ¢:1(3,3) = ¢;1(5,5) = jw/Zs,
where Z; is the characteristic impedance of the semi-infinite cable labeled ’s’. In the follow-
ing, we assume that all the wires are standard coaxial cables with the same characteristic
impedance and permittivity (i.e., Zo = Z1 = Zy = Z3 = Zy = Z5 = Z¢ = Zs = Z = 50Q)
and ey =€) =&y = €3 = €4 = €5 = €6 = & = € = 2.3). The expression giving the inverse
of Green’s function of the whole system given in Fig. 1 can be obtained from a linear
superposition of the inverse Green’s functions of the above constituents in the interface
space M = {1,2,3,4,5}, namely

C C, . 1 1
st s 0 —3 0
1 1
" —% Sf;’-i-sfgl-i-cfi . —;0 0 0
g (MM) = — 0 —% T E] 0 0
1 0 0 C6+C/0+S3 1
TS Se TS "G c _5?’0
_1 Co 4 21 _
0 0 0 Sy '0+C4
(S.4)

Let us take an incident wave U (x) = e /** launched in the left semi-infinite guide of
the demultiplexer (Fig. 1). The amplitude of transmitted waves in the first and second
output waveguides f; and t; as well as the reflection coefficient 7 in the input waveguide
are given by t; = (2jw/Z)g(1,3), t» = (2jw/Z)g(1,5), and r = —1 — (2jw/Z)g(1,1)
respectively. By inverting analytically the matrix in Eq. (5.4) and truncating the elements
¢(1,3), ¢(1,5) and g(1,1), one can obtain the expressions of t;, t, and r.

S2. Demultiplexer based on EIT-EIT resonances

In addition to Fano-Fano resonances presented in section II of the manuscript, the
U-shaped resonator is capable to present also EIT-EIT resonances on both outputs. For
this purpose, we have to take the lengths of the two stubs di and d; in the first output
different and slightly shifted from dz—o (ie., d1 = %0 — % and d, = ‘%0 + %). Also, in the
second output the lengths of the two stubs d3 and dy should be taken slightly different
from % (ie., d3 = % — g and d, = % + %).

To perform a complete transmission in the first output (T; = 1), we have to cancel both
the transmission in the second output and the reflection (i.e., T, = R = 0). By following
the same analytical demonstrations discussed in section II, vanishing both T, and R at
the same frequency, requires that C3 = 0 (or C4 = 0) and Cs = 0. The position of the
EIT resonance in the first output is fixed by sin(kdy) = 0. Likewise, to realize T, =1 (i.e.,
T1 = R = 0), we should satisfy C; = 0 (or C; = 0) and C¢ = 0. Also, the position of the
EIT resonance in the second output is fixed by sin(kd,) = 0. Therefore, in order to reach an
efficient demultiplexing in both outputs, the eight lengths d, dé, dy, dy, ds, dy, ds and dg
must respect the following conditions:
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d 1)
d 1)
do
d3 = oX (8.7)
dy = % +6, (S.8)
d 0
do
ds = =, (S.10)
dhy =dy+ 9, (S.11)

where 6 = dy — dj represents the detuning between the two stubs of lengths d; and d5. In
what follows, we fixe the length of the segment dy = d; + d, = 1 m which fixes the position
of the EIT resonance along the first output.

In order to illustrate the above analytical results, we present in Fig. S1 the variation
of the transmissions T; and T, along the two outputs and the reflection along the input
for different values of 6. Figure S1 shows that when the transmission in the first output
(blue line) reaches unity (T; = 1), the transmission in the second output (red line) and the
reflection (black line) vanish (i.e., T, = R = 0). In the same way, when the transmission
in the second output reaches unity (T, = 1), the transmission in the first output and the
reflection cancel together (i.e., T = R = 0). The two filtered resonances have an EIT-like
shape, i.e., a resonance squeezed between two transmission zeros induced by the two
resonators. As mentioned before, the resonance in the first output always falls at the same
dimensionless frequency () = 7) for all values of §, its width increases by increasing §
and vanishes for § = 0 (Fig. S1). In addition, the shape and width of the EIT resonances
are slightly affected when é becomes negative (i.e., when permuting both stubs 1 and 2).
The frequency and width of the resonance in the second output strongly depends on &
in comparison with the resonance in the first output. Indeed, as the first EIT resonance
has two transmission zeros around () = 7z, the position of the second EIT resonance falls
below () = 7 for § > 0 on the left-hand side of the EIT resonance in output 1, it crosses
the first EIT resonance as 6 decreases (Fig. S1 (b)) and then reappears above () =  for
6 < 0 on the right-hand side of the first EIT resonance (Figs. S1 (d), (e)). For § = 0, the two
EIT resonances fall at the same dimensionless frequency giving rise to a BIC state which is
characterized by a zero-width (i.e., infinite quality factor) as shown in Fig. S1 (c).
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Figure S1. Variation of the intensity of the transmitted signal in output 1 (blue lines), output 2
(red lines) and the reflected signal in the input of the demultiplexer (black lines) as function of the
dimensionless frequency Q/ 7 (QQ = wdg./g;/c). The lengths of the resonators are given as function
of  where § = dy — dj and dy = 1 m is the length of the segment that separates the segments d;
and d;. The other lengths are chosen to satisfy Eqgs. (S.5)-(5.11). Red and blue triangles in Fig. (b)
correspond to the fitted results obtained by the EIT formula in Eq. (5.12). The inset in Fig. (c) shows
the variation of the frequencies of the two EIT resonances as a function of ¢.

The full width at half maximum (or equivalently the quality factor) of the EIT reso-
nances strongly depends on the detuning é between the lengths of the stubs (Eqs. (5.5)— (
S.11)). We can notice that the resonances fall side by side and that their widths decrease
when ¢ decreases. Also, when J changes sign (i.e., when permuting the two stubs of lengths
dq and d), the position of the first EIT resonance remains constant at the same frequency,
whereas the second resonance appears below () = 7t as shown in the inset of Fig. S1 (c).
Both resonances cross each other at § = 0.

In order to show that the resonances in the two output lines in Fig. S1 (b) are of
EIT type which are characterized by a symmetric shape, the latter should follow the EIT
formula, namely [3]
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(W —wr +q1T)*(w — wy + goT)?
(w—wy)?+T17

T=B8B , (5.12)
where B = ’11‘7% g1 and g are the Fano parameters and I' is the width of the EIT resonance
lying at w,. We can notice a very good agreement between the exact results of the trans-
mission in the first output (blue line) and the fitted results (blue triangles) obtained from
Eq. (5.12) for 6 = 0.1 m with w, = 7, g1 = 10, g = —12 and I' = 0.0357t. Similar results
are found for the second transmission coefficient T, (red curves) with w, = 2.86, g1 = 10,
go = —12and I' = 0.0257. w, and T are given in units of dy/2;/c.

Figure S2 presents an experimental verification of the simulation results presented
in Fig. S1. In the experiment we have chosen the appropriate lengths of the waveguides
to obtain EIT resonances on both outputs in the case where § = —0.2 m, which fixes the
lengths of the different waveguides according to Eqs. (5.5)- (5.11) as follows: d; = 0.6 m,
dy=04m,dy=1m,d3 =05m,dy, =03m,ds =04 m,ds =0.5m and d6 = 0.8 m. The
experiment shows that the absorption in the cables affects the amplitude of the resonances,
which do not exceed 60%. However, we note that when the transmission is maximal in one
output line, both the transmission in the second output line and the reflection in the input
get close to zero. In Fig. S2, the crosstalk rate between the two outputs for the frequency
97.11 MHz is about —30.9 dB. This rate becomes about —34.81 dB for the frequency 122.61
MHz.

—— T1-Theo.
——— T2-Theo.

R-Theo.
o T1-Exp.
o  T2-Exp.
o R-Exp.

80 100 120 140
Frequency (MHz)

Figure S2. Theoretical (continuous lines) and experimental (open circles) transmission and reflection
coefficients as a function of the frequency along the ports 1 (blue curves) and 2 (red curves). The
reflection coefficient is sketched by the black curves for § = —0.2 m. The lengths of the different
cables are chosen according to Egs. (5.5)-(S.11).

S3. Demultiplexer based on Fano-EIT resonances

The third possibility of demultiplexing that can be presented by the U-shaped res-
onator is based on EIT resonance in one output and Fano resonance in the second output.
This case represents a mixed filtering. By using the same analytical calculations as in section
II, in order to obtain an EIT resonance in output 1 one should satisfy C3 = 0 (or C4 = 0),
sin(kdg) = 0 and Cg¢ = 0. In the same way, to obtain a Fano type resonance in the output 2,
one should verify C; = 0 (or C; = 0), sin(k(df, + §) = 0 and C5 = 0. Therefore, the lengths
of all waveguides must respect the following equations:
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dy 6

h="2-7 (5.13)
dog &

= = 1+ _ .14

dy > o (5.14)
d

dy =dy = ?O' (5.15)
dy o

ds == + 3, (S.16)
do

dg = — 17

6= 5 (5.17)

dly = dy + 26, (S.18)

where 6 = dy — d;.

Based on the conditions given by Egs. (5.13)-(5.18), we plot in Fig. S3 the transmission
and reflection coefficients as a function of the dimensionless frequency in the case of a
hybrid demultiplexer based on EIT and Fano resonances. Figure S3 gives the simulation
results in the case of lossless system for several cases of J, the blue curve shows the
transmission through the first output and the red curve shows the transmission through
the second output and the black curve gives the reflection at the input of the demultiplexer.
The curves of Fig. S3 show that the filtered resonance on the output 1 is of EIT type and
the filtered resonance on the output 2 is of Fano type. The position of the EIT resonance
remains constant at the same frequency since we have fixed the length of dj, whereas the
change in J causes a change in the position of the Fano resonance and the width of the
two resonances. In particular for § = 0, the two resonances fall at the same dimensionless
frequency giving rise to a BIC state (Fig. S3 (c)).
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Figure S3. Variation of the intensity of the transmitted signal in output 1 (blue lines), output 2 (red
lines) and the reflected signal at the input of the demultiplexer (black lines) versus the dimensionless
frequency /7 (O = %)
at dyp = 1 m. The other lengths are chosen according to Eqs. (5.13)-(S.18).

. The lengths of the resonators are given as function of ¢ and dy is fixed

An experimental verification of this case is presented in Fig. S4, the lengths of the
stubs are chosen according to Egs. (5.13)- (5.18), the transmissions of the two resonances
do not reach unity due to the loss in the cables. The theoretical results are presented by
solid lines and the experimental results are given by open circles. Both results show a good
agreement. In Fig. 54, the crosstalk rate between the two outputs for the frequency 97.11
MHz is about —61.20 dB. This rate becomes about —23.65 dB for the frequency 125.04 MHz.
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Figure S4. Theoretical (continuous lines) and experimental (open circles) transmission and reflection
coefficients as a function of the frequency for 6 = —0.2 m along the ports 1 (blue curves) and 2 (red
curves). The reflection coefficient is sketched by the black curves.

S4. Interface Green'’s function of the finite photonic crystal with defect

The photonic circuit is formed of an infinite number of segments of length d; (Fig. S5
(a)). Each segment has two free surfaces. The interface domain consists of all connection
points between the segments. Each connection point (called site) is defined by an integer n.
A resonator of length d; is grafted onto each site. The position x in a cell between sites n
and n + 1 is represented by the pair (1, x) where x is a local coordinate such as 0 < x < d;
and d in this case represents the period of the structure.

(a)

— - —

(b) &

0 dl 1 d]_ j dl N

Figure S5. Schematic representation of the infinite comb structure (a) and finite comb structure
composed of N stubs of lengths d, (b). The stubs are separated by segements of length d;.

In order to calculate the Green’s function of the infinite photonic crystal (Fig. S5 (a)),
we need first the Green’s function of each constituent, namely the Green’s function of a
segment of length d; and the Green’s function of a resonator of length d;. These surface
elements are noted respectively g1(Mj, M;), which is a matrix (2 x 2) in the space of
interfaces M1 = {0,d; } and g2(0,0). The inverse of the matrix g1 (M; M) is given by [4]:

_wG W
81 1(M1M1):< oA ) (S.19)
Z5 T 75



Photonics 2021, 8, 386

90f11

while > (i,i) depends on the choice of the boundary conditions at the end of the resonators,
i.e.,, E=0 (i.e., vanishing electric field) or H = 0 (i.e., vanishing magnetic field). In this work,
we only consider the case where H = 0. In this case, the inverse of this quantity in the
interface space M = {i} is given by [2]:

1o _wis2
g (i) = 7, (S.20)
where C; and S; are defined as
C; = cos(kd;) and S; = sin(kd;) (i =1,2). (S.21)

In the interface space of the infinite comb structure, the inverse of the Green’s function
¢~ '(MM) is an infinite tridiagonal matrix formed by the superposition of the elements
gl._l (M;, M;)(i = 1,2). This matrix can be written as follows:

v
g 1 (MM) = w v , (5.22)
vow v

where peoC S

wq wor
=— - = S.23
@ 75, 7GC, (5.23)

and w

From the above matrix (Eq. (5.22)), one can derive the dispersion relation of the

periodic comb structure, namely [4]
cos(kd)) = C, — %5(1:752 (S.25)

Now, we consider a finite photonic circuit composed of N sites with a cavity (stub
defect) (Fig. S5 (b)). We present the details of the calculation of the Green’s function at both
extremities of the finite structure with defect.

Let us use a cleavage operator which consists of removing the segment located between
the sites n = —1 and n = 0 on one side and n = N and n = N + 1 on the other side in
order to create a finite system (Fig. S5(b)). Then, we remove the stub of length d, on the site
n = 0 and replace the stub of length d, on the site j by a stub of length d.. Consequently,
the disturbed interface space is composed of Ms; = {—1,0,j, N, N +1}.

In this case, the perturbation operator V(MsMs) is given by:

& 2 0 0 0
= ¢+ 0 0 0
V(MsM;) = % 0 0 &-% 0o o0 (5.26)
0 0 0 $ -
0 0 0 = 8

The knowledge of the elements of the response function in the space of the interfaces
of the infinite comb structure (Eq. (S.22)) and those of the perturbation operator V (M;sMs)
(Eqg- (5.26)), allows us to deduce the elements of the response function of the finite structure
necessary for the calculation of the transmission and reflection coefficients. The operator
A(M;sMs) is given by [1]
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A(MsMs) = I(MsMs) + V(MsMs)g(MsMs) (8.27)
where )
1 t t N (N+1
5 t 1 g=1  ¢N-1 tN
g(MsM;) = Fizi vyl 1 NS N (5.28)
15 -1 (N N-1 N 1 ¢
tN+l tN tN+17]' t 1

After calculating the operator A(M;sMs), we write this operator in the interface space
My = {0,1,j, N}. The response function of the finite comb structure in the interface space
My is given by the following equation:

d(MoMy) = g(MoMo)A™H(MoMy). (5.29)

From Eq. (5.29), we deduce the truncated matrix dtr(M{)M{)) in the interface space
M|, = {0, N} which represents the two extremities of the finite structure. The inverse of
this matrix can be written as follows

A" B
—1

This latter matrix associated to the finite photonic circuit (Fig. S5(b)) serves as a
starting point (see Eq. (14)) to establish the Green’s function of the Y-shaped demultiplexer
based on two photonic circuits (Eq. (15)). It is sufficient to connect these systems to semi-

infinite waveguides and then to deduce the transmission and reflection coefficients (Egs.
(16)-(18)).

S5. Transposition to plasmonic demultiplexer based on metal-insulator-metal
waveguides

As mentioned before, the results presented in this paper can be transported to plas-
monic demultiplexers based on metal-insulator-metal (MIM) nano-waveguides and op-
erating in the telecommunication domain around 1.55 ym [5]. In this section, we give a
preliminary result of a plasmonic demultiplexer based on periodic circuits with different
cavities on each output as shown in Fig. S6 (a). All MIM waveguides have the same width
d = 50 nm (Fig. S6 (a)). The waveguides are filled with air, while the surrounding metal
is made of silver. Figures S6 (b) and (c) represent the transmission spectra through two
output waveguides of the plasmonic demultiplexer without and with cavities respectively.
Each MIM waveguide is formed of a finite plasmonic circuit composed of three resonators
of lengths dy = 260 nm separated by a waveguide of length d; = 520nm. In Fig S6 (b), we
give the transmission spectrum along the two outputs where the two plasmonic outputs
are chosen without defects (i.e., d. = d» = d» = 260 nm). One can see clearly the existence
of a large gap around 120-280 THz. Thus, by detuning appropriately the length of the two
cavities, we can filter two closed frequencies inside the gaps. However, in order to select
two plasmonic modes along each output, the two cavity defects should be taken slightly
different from each other such as d.; = 520 nm and d., = 380 nm. Figure S6 (c) gives the
transmission along the first (blue curves) and the second (red curves) outputs. One can see
two filtered resonances inside the gap along each output. These results are similar to those
found in Fig. 9 of the main manuscript in the radio-frequency domain. The simulation
results are obtained by using comsol Multiphysics software.
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Figure S6. (a) Schematic representation of the plasmonic demultiplexer with one input and two
outputs. Each output consists of a finite plasmonic structure composed of (N=3) resonators with
specific resonator defect. The resonators are of lengths dy, the segments that connect the resonators
are of lengths d; and the defects are of lengths d.; on the output 1 and d on the output 2. (b)
Transmission coefficient through the two outputs of the demultiplexer: (b) d;; = dop = dp = 260nm
(without defect) and d; = 520nm, (c) d,y = 520nm (blue curve) and d., = 380nm (red curve), while

d; = 520nm.
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