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Abstract: In this paper, a three-layer GaAs photoconductive semiconductor switch (GaAs PCSS) is
designed to withstand high voltage from 20 to 35 kV. The maximum avalanche gain and minimum
on-state resistance of GaAs PCSS are 1385 and 0.58 Ω, respectively, which are the highest values
reported to date. Finally, the influence of the bias voltage on the avalanche stability is analyzed. The
stability of the GaAs PCSS is evaluated and calculated. The results show that the jitter values at the
bias voltages of 30 kV and 35 kV are 164.3 ps and 106.9 ps, respectively. This work provides guidance
for the design of semiconductor switches with high voltage and high gain.

Keywords: avalanche mode; low-energy triggering; photoconductive semiconductor switch

1. Introduction

High-power nanosecond ultrafast switching devices have been widely used in high-
power microwave systems, mostly as trigger generators in the Z-pinch pulsed-power
systems. They have also been used in the biomedical industry [1–10]. A photoconductive
semiconductor switch (PCSS) can operate at high voltage, has a low inductance, and
can provide a high-speed response to laser pulses. These properties make the PCSS a
suitable solution for both ultra-high-speed electronic applications and high-power pulse
generation [11–16].

Silicon carbide (SiC) material is a single energy valley structure; there is no electron
transfer effect, therefore the SiC switch can work only in linear mode [17–22]. Unlike
silicon carbide (SiC) PCSS, the gallium arsenide (GaAs) PCSS can also operate in the
high multiplier mode. Therefore, it has been suitable for usage in accelerators, which
require PCSS operation at the bias voltage level of above 30 kV. However, under such a
high bias voltage, surface flashover can occur at the PCSS surface, which can damage the
switch. This phenomenon is caused by a high bias voltage, and it reduces the lifetime of
a GaAs PCSS and restricts its usage in high-voltage applications [23,24]. In recent years,
the advances concerning the voltage endurance level have remained limited, making it
an interesting research area. In this paper, a high avalanche gain GaAs PCSS is designed
and manufactured to obtain high avalanche gain at a high bias voltage by optimizing the
electrode and insulating the switch surface.

2. Materials and Methods

The structure diagram of the designed GaAs PCSS is shown in Figure 1. The switch
chip is made of semi-insulating GaAs, which has a dark state resistivity of 5 × 107 Ω·cm
and electron mobility of 5000 cm2/(V·s). The chip has a thickness of 0.6 mm and a size of
16 mm × 10 mm. The electrode is made of Au/Ge/Ni, as it forms a good ohmic contact
with the GaAs PCSS. Each electrode has a size of 6.0 mm × 3.0 mm, while the gap between
the two electrodes is 10 mm. They feature two optimizations: the corners are rounded with
a 1.1 mm radius (as shown in Figure 2a), and an optimal etch angle of 135◦ was used (as
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shown in Figure 2b). This structure allows reduction in the electric field intensity at the
electrode edge, improving the withstand voltage strength of the GaAs PCSS.
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Figure 2. Schematic diagram of the SI-GaAs PCSS electrodes: (a) Top view of electrodes; (b) Side
profile of electrodes.

In order to prevent flashover on the GaAs PCSS surface, we use a three-layer insulation
package for the switch. The first layer, a 900 nm Si3N4 film is used to coat the GaAs PCSS
surface to ensure sufficient insulation. The second layer, the GaAs PCSS chip, is packaged
using transparent insulation glue, as shown in Figure 3. Finally, the GaAs PCSS was placed
in insulating oils. After three layers of insulation package, the withstand voltage strength
of the GaAs PCSS can be up to 40 kV.
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3. Results

The device used to test the high-voltage GaAs PCSS is shown in Figure 4. The GaAs
PCSS was triggered by a 1064 nm laser pulse generated by an Nd:YAG laser. The laser
pulse width was 8 ns, and the laser was split into two equal energy portions by a 50/50
beam splitter. One beam was used to illuminate the GaAs PCSS gap between the GaAs
PCSS electrodes, and another was measured using an optical energy meter.
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Figure 4. GaAs PCSS testing circuit.

The GaAs PCSS was placed in insulating oils, and a 30-pF capacitor was used. A
current limiting resistor of 890 Ω was used in the capacitor discharge circuit to control the
current. The discharge circuit current was measured using a current meter, Pearson Model
6027 (Pearson Electronics, CA, US ), and an oscilloscope with a 1-GHz bandwidth.

The 10-mm gap GaAs PCSS was charged by the capacitors and illuminated by a
laser pulse at various bias voltages. The laser trigger parameters were as follows: the
wavelength was 1064 nm, the beam energy was 137 µJ, and the spot size diameter was
4 mm. In addition, its position was fixed.

The output current waveforms at the bias voltage, ranging from 10 kV to 35 kV, are
shown in Figure 5. In the experiment, linear and avalanche modes were distinguished
based on the GaAs PCSS output waveform. The output current waveforms at the bias
voltages of 10 kV, 15 kV, and 20 kV were similar to those of the laser pulse and had the
same full pulse duration.
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Figure 5. Output current waveforms under various bias voltages.

When the trigger energy was fixed, the output current was linearly related to the
carrier drift velocity. The carrier drift velocity (vd) as a function of the bias field is shown
in Figure 6 [25]. From Figure 6, the drift velocity reaches the saturation around 4 kV/cm.
When the electric field is greater than 4 kV/cm, the carrier drift velocity decreases with
the electric field. The carrier drift velocity reached 1.1 × 107 cm/s above 15 kV/cm. The
degree of change in carrier drift velocity is becoming smaller and smaller, so the output
current increases more and more slowly in linear mode.
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Figure 6. Carrier drift velocity as a function of the bias field.

The GaAs PCSS transitioned from the linear to avalanche mode when the bias voltage
was higher than 25 kV. As shown in Figure 5, the peak current was 17.5 A, which was much
higher than the linear current pulse at 20 kV. The rising edge was only 2.1 ns under the bias
voltage of 25 kV, which was shorter than the laser pulse width. The results demonstrated
that when the GaAs PCSS worked in the avalanche mode, the output current increased with
the bias voltage. In the same operating mode, the electron-hole pairs excited by photons
were ionized by the strong electric field, causing the avalanche multiplication effect.

The number of photo-excited carriers in the switch is hard to calculate accurately.
To determine the avalanche ionization degree, it is necessary to define the avalanche
multiplication rate (M), which can be used to describe the avalanche intensity.

The avalanche multiplication rate is expressed as:

M = NA/NL (1)

where NA is the number of photo-excited carriers in the avalanche mode, and NL is the
number of photo-excited carriers under high electrical field (>15 kV/cm) in the linear mode.
The values of NA and NL can be, respectively calculated by:

NA =
∫

I
A

dt (2)

NL =
∫

I
L
dt (3)

According to Equation (1), the avalanche gains at the bias voltages of 30 kV and 35 kV
are M30 = 1194 and M35 = 1385, respectively.

The equivalent circuit of the GaAs PCSS triggered by a laser is shown in Figure 7,
where Rmin represents the minimum ON-state resistance of the GaAs PCSS, which can
be calculated using the measured output peak current (Ipeak) and bias voltage (U) by the
following expression:

Rmin =
U

Ipeak
− R (4)

where R is the current-limiting resistor value and, in this work, its value is 890 Ω.
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The semiconductor resistance converged quickly in the proposed configuration, as
shown in Figure 8. When the GaAs PCSS operated in the high avalanche mode, the ON-
state minimum resistance could reach the sub-Ohm level, achieving the value of 0.58 Ω
under the bias voltage of 35 kV, which was lower than the value of 2.14 Ω reported in [26].
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Figure 8. GaAs PCSS resistance versus the bias voltage.

The 10-mm GaAs PCSS charged by a 30-pF capacitor was tested for stability at the
bias voltages of 30 kV and 35 kV. The 10 repetitive output current waveforms are presented
in Figures 9 and 10. The results show that the proposed PCSS design has high stability.
The jitter value can be used to quantitatively describe the avalanche stability [27–30]. The
single PCSS jitter can be calculated by:

T =

√
1
n

n

∑
i=1

(
ti − t

)2 (5)

where ti denotes the delay time between the laser pulse and the output current waveform
of trigger i, n is the number of triggers, and t is the average value of delay times of multiple
triggers. The jitter values of the avalanche GaAs PCSS values calculated by Equation (5)
were as follows: 164.3 ps at the bias voltage of 30 kV, and 106.9 ps at the bias voltage of
35 kV. Both results are shorter than the previously best-reported value of 560 ps [6].
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Based on the experimental results, it can be concluded that the bias voltage has the
dominant effect on the PCSS jitter. The higher the bias voltage is, the smaller the jitter will
be. Reducing the jitter, in turn, improves the avalanche stability. In addition, the avalanche
gain and ionization coefficient increase with the increase in the voltage, and the rising edge
of the current waveform is shorter at higher avalanche gains.

In the air, the PCSS was prone to flashover along the surface at the bias voltage of above
30 kV. According to the secondary electron emission avalanche (SEEA) model [31], initial
electrons are required for the formation of surface flashover. In the GaAs photoconductive
switch, initial electrons required for surface flashover can be obtained in one of two ways.
The first is according to the planar structure diagram of the GaAs PCSS; at the triple junction
of the cathode, air, and chip surface, microscopic burrs can be found on both the electrode
and chip’s surfaces. In the case of a high voltage, when the distortion and bias electric
fields are superimposed and exceed the field intensity required to emit electrons, electrons
are emitted from the three cathode junctions, insulating layer, and chip surface, as shown in
Figure 11a. The second is ensuring the GaAs photoconductive switch works in a nonlinear
mode. According to the filament current streamer model [32], in the early stage of streamer
formation, photo-excited charge domains are formed due to the GaAs material’s rapid field
characteristics. The charge domains can develop into the primary streamer, and a large
number of electrons can be gathered in the streamer head, causing distortion in the electric
field, which meets the requirements for the electric field electron emission. The streamer
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head emits electrons to the switch surface, providing initial electrons for flashover along
the surface, as shown in Figure 11b.
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switch encapsulation significantly reduced the flashover phenomenon on the surface.

4. Conclusions

In this paper, a GaAs PCSS design is proposed to obtain high avalanche gain at
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analyzed. The stability calculation method is presented and used to calculate the jitter
value of the proposed design. The results show that the jitter values at the bias voltages
of 30 kV and 35 kV are 164.3 ps and 106.9 ps, respectively. This work can be used as a
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design of high-voltage GaAs PCSS photoconductance switches.
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