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Abstract: We investigate the optical amplification of the output field and fast-slow light effect in a
three-mode cavity optomechanical system without rotating wave approximation and discuss two
ways of realizing the optical amplification effect. Resorting to the Coulomb coupling between the
nanomechanical resonators, the asymmetric double optomechanically induced amplification effect
can be achieved by utilizing the counterrotating term. Moreover, we find a remarkable optical
amplification effect and observe the prominent fast-slow light effect at the singular point since the
introduction of mechanical gain. Meanwhile, the transmission rate of the output field is increased
by four orders of magnitude and the group delay time can reach in the order of 105 µs. Our work
is of great significance for the potential applications of optomechanically induced amplification in
quantum information processing and quantum precision measurement.

Keywords: optomechanically induced amplification; fast-slow light effect; counterrotating term;
mechanical gain

PACS: 42.50.Wk; 03.65.Ta; 42.50.Gy; 42.50.Nn

1. Introduction

Quantum optomechanics is an example of an emerging topic to redesign a quantum
system, which has its roots in the study of the mechanical action of light [1]. An engineered
quantum system enables the designed macroscopic system to exhibit new quantum be-
havior in collective degrees of freedom by utilizing modern fabrication techniques, such
as feedback control [2,3], single-photon optomechanics [4], nonlinear optomechanics [5],
optomechanical tests of gravitational wave decoherence [6], and quantum limits on mea-
surement precision [7,8]. As an important part of quantum optomechanics, the cavity
optomechanical system, which explores the radiation–pressure interaction between light
fields and macroscopic mechanical resonators, is a rapidly developing research area in re-
cent years and has attracted much attention due to the widespread applications in quantum
information processing [9–11]. Due to the nonlinear optomechanical couplings, the cavity
optomechanical system provides many alternative platforms for carrying out various inter-
esting nonlinear phenomena, such as the generation of a squeezed state [12–15], cooling
of mechanical resonator [10,16–19], phonon (photon) blockade [20–22], quantum entan-
glement [23–26], normal mode splitting [27,28], nonreciprocal optical transmission [29,30],
optomechanically induced transparency (OMIT) [31–38], and amplification (OMIA) [39–42],
etc.

OMIT and OMIA, which are important optical phenomena, have been investigated
theoretically and experimentally in the various cavity optomechanical systems [43–47]. Sim-
ilar to the well-known electromagnetically induced transparency (EIT) [48–50] in atomic
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physics, these phenomena are striking examples of light-control light via mechanical
motion. OMIT is the result of destructive interference between two different transition
pathways, leading to the inhibition of absorption of the system to the probe field. The per-
formances of OMIT and OMIA processes are mainly described by the optical delay and
transmission, which directly determine the storage time of information and the trans-
fer efficiency of information, respectively. In recent years, the follow-up developments
of OMIT and OMIA have been demonstrated in many schemes, such as multicavity
OMIT [37,51–54], hybrid OMIT [55,56], the two-phonon OMIT [57,58], OMIA in quadrati-
cally coupled optomechanical system [39], OMIA of atom-assisted cavity optomechanical
system [40], optical amplification phenomenon in the system with mechanical gain [59],
etc. Furthermore, the miscellaneous applications of OMIT has attracted a lot of attention,
for instance, the fast-slow light [37,60–62], the storage of light [61,63], the ultrasensitive
measurements [64,65], etc. However, these previous works ignore the influence of the
rotating wave approximation (RWA) method on the system. As is well-known, the counter-
rotating term is an important term in the dynamic analysis of system, which has a great
influence on the system [66–68]. For example, the quantum entanglement caused by the
counterrotating term has been found for an ultrastrongly coupled oscillator system in
Ref. [66]. The ideal OMIT effect has been achieved using the counterrotating term for the
cononical optomechanical model in Ref. [67].

In this paper, we investigate the optical amplification and fast-slow light effects
in a three-mode cavity optomechanical system without RWA. The system is consisted
of an optical cavity and two charged nanomechanical resonators (NRs), in which two
transparency dips appear in the probe output field due to the radiation pressure coupling
and the Coulomb interaction. We find that the counterrotating term results in the double
OMIA effect and the asymmetry of the two transparency dips and affects the fast phase
dispersion of the probe field inside the two transparency dips. Furthermore, we apply
the counterrotating term to a three-mode system with mechanical gain, and observe the
significant optical amplification effect and the prominent optical group delay of the probe
output field at the singular point. Meanwhile, by choosing the system parameters properly,
the transmission rate of the output field is increased by four orders of magnitude, and
the group delay time can reach in the order of and 105 µs. Our scheme has significant
implication for the realization of the optical response in quantum information processing
and quantum precision measurements.

The paper is organized as follows: In Section 2, we introduce the model and give the
corresponding analytical expressions of the probe output field. In Section 3, we analyze the
properties of double OMIA and the fast-slow light effect based on experimentally feasible
parameters. In Section 4, we exhibit the remarkable optical amplification and fast-slow
light effects caused by mechanical gain at the singular point. Finally, a conclusion is given
in Section 5.

2. System and Hamiltonian

The system we consider includes a cavity and two NRs, in which the NR1 (NR2)
with frequency ω1 (ω2) is charged by the bias gate voltage V1 (−V2). The optomechanical
cavity with frequency ωa (length L) is driven by a strong driving field with frequency
ωd (amplitude εd) and a weak probe field with frequency ωp (amplitude εp), as depicted
in Figure 1. The NR1 not only couples with the cavity mode by the radiation pressure
but also couples to the NR2 by the tunable Coulomb interaction. The tunability of the
Coulomb interaction between two charged NRs can be controlled by the bias voltages.
The cavity annihilation (creation) operator is denoted by a (a†) with the commutation
relation

[
a, a†] = 1. q1 (q2) and p1 (p2) are the position and momentum operators of the

charged NR1 (NR2) with damping rate γ1 (γ2) and mass m1 (m2), respectively. The driving
(probe) field amplitude can be described as εd =

√
2κP/h̄ωd (εp =

√
2κPp/h̄ωp), where

P (Pp) is the power of the driving (probe) field, and κ is the total decay rate of the cavity.
Thus, the total Hamiltonian of the system can be written as
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Figure 1. A schematic illustration of the system. It consists of a high-quality Fabry-Pérot cavity
and two NRs, which are charged by the bias gate voltages V1 and −V2. q1 (q2) represents the small
displacement of NR1 (NR2) from the equilibrium position, in which r0 is the equilibrium distance
between two NRs. The optomechanical cavity is driven by a strong driving field εd and a weak probe
field εp, and the output field is denoted by εout.

H =H1 + H2 + h̄ωaa†a− h̄ga†aq1 + h̄λq1q2

+ ih̄εd

(
a†e−iωdt − aeiωdt

)
+ ih̄

(
a†εpe−iωpt − aε∗peiωpt

)
,

(1)

where

H1 =
p2

1
2m1

+
1
2

m1ω2
1q2

1,

H2 =
p2

2
2m2

+
1
2

m2ω2
2q2

2.

(2)

The first three terms represent the free Hamiltonian of the mechanical modes and cavity
mode, respectively. The fourth term shows the radiation pressure interaction between the
cavity mode and NR1 with the coupling strength g = ωa/L. The fifth term describes the
Coulomb interaction between the NR1 and NR2 with the Coulomb coupling constant λ =
C1V1C2V2/(2πh̄ε0r3

0) [51], in which V1 (−V2) and C1 (C2) are the voltage and capacitance
of the bias gate, respectively, and r0 is the equilibrium distance between the two NRs.
The sixth (last) term presents the interaction Hamiltonian between the cavity mode and
the strong driving (weak probe) field. Here, we investigate the optical response of the
optomechanical system to the probe output field in the presence of the driving field. In the
rotating frame at the frequency of the driving field ωd, the total Hamiltonian is described as

H =H1 + H2 + h̄∆aa†a− h̄ga†aq1 + h̄λq1q2

+ ih̄εd

(
a† − a

)
+ ih̄

(
a†εpe−iδt − aε∗peiδt

)
,

(3)

where ∆a = ωa−ωd (δ = ωp−ωd) is the detuning between the driving field and the cavity
mode (probe field). By utilizing the factorization assumption 〈qc〉 = 〈q〉〈c〉 and ignoring
the quantum Brownian noise term with a zero mean value in the dynamical analysis,
the nonlinear quantum Langevin equations for the mean value based on Equation (3) can
be written as

〈q̇1〉 =
〈p1〉
m1

, 〈q̇2〉 =
〈p2〉
m2

,

〈 ṗ1〉 = −m1ω2
1〈q1〉 − h̄λ〈q2〉+ h̄g〈a†〉〈a〉 − γ1〈p1〉,

〈 ṗ2〉 = −m2ω2
2〈q2〉 − h̄λ〈q1〉 − γ2〈p2〉,

〈ȧ〉 = −[κ + i(∆a − g〈q1〉)]〈a〉+ εd + εpe−iδt,

(4)
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where κ = κin + κext with κin (κext) are the intrinsic photon (external coupling) loss [69,70].
To obtain the amplitudes of the first-order sidebands, we solve Equation (4) using the
perturbation method by writing the solution in the form 〈Ô〉 = Os + εpÔ+e−iδt + ε∗pÔ−eiδt,
where O = a, qi, pi (i = 1, 2). Then, the first-order terms can be only taken since the
driving field is much stronger than the probe field. The steady-state solutions are given by

p1s = p2s = 0, q1s =
h̄g|as|2

m1ω2
1 −

h̄2λ2

m2ω2
2

, q2s = −
h̄λq1s

m2ω2
2

, as =
εd

i∆ + κ
, (5)

where ∆ = ∆a − gq1s. Then, we can obtain

m1(ω
2
1 − iδγ1 − δ2)q1+ + h̄λq2+ = h̄g(a∗s a+ + a∗−as),

m1(ω
2
1 + iδγ1 − δ2)q1− + h̄λq2− = h̄g(a∗s a− + a∗+as),

m2(ω
2
2 − iδγ2 − δ2)q2+ = −h̄λq1+,

m2(ω
2
2 + iδγ2 − δ2)q2− = −h̄λq1−,

(κ + i∆− iδ)a+ = igq1+as + 1,

(κ + i∆ + iδ)a− = igq1−as.

(6)

The coefficient of the first-order upper sideband is given by

a+ =
1

κ + i(∆− δ)− ig2|as|2h̄

m1(ω
2
1 − iδγ1 − δ2)− h̄2λ2

m2(ω
2
2 − iδγ2 − δ2)

+
ig2|as|2h̄

κ − i(∆ + δ)

. (7)

According to the input–output relation for the cavity field [71], the optical components with
frequency ωp in the output field can be defined as εT = 2ηκa+ [72], in which η = κext/(κin +
κext) can be continuously changed in the experiment [70] and affect the optical phenomena
of the system. Under the condition of a near-resonant frequency, i.e., ∆ ≈ δ ≈ ω1, εT can
be rewritten as (see Appendix A for specific derivation)

εT =
2ηκ

κ − i(δ−ω1) +
β

−i(δ−ω1) +
γ1

2
+

iG
2ω1

+ N

, (8)

here
N =

−β

κ − 2iω1
,

β =
χ2

0ε2
d

2m1ω1h̄(κ2 + ω2
1)

,

G =
h̄2λ2

2ω2m1m2[(δ−ω2) + iγ2/2]
,

(9)

where χ0 = h̄g. The real and imaginary parts of εT , respectively, indicate in-phase and
out-of-phase output field quadratures at the probe frequency ωp, i.e., the absorption and
dispersion properties of the optomechanical system. As the vital term, the counterrotat-
ing term N in Equation (9) will not exist in the sub-fraction of Equation (8) if we solve
Equation (4) by using the usual RWA method. Specifically, we first use the second quanti-
zation method presented by Holstein and Primakoff to simplify the Hamiltonian of the
system, then we can calculate the nonlinear quantum Langevin equations for the mean
value of the system. Furthermore, the RWA method is used in the dynamic analysis
of the system; that is, we can take the rotation transformation of frequencies ω1 and ∆
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and omit the high-frequency oscillations terms. Finally, we can obtain the probe output
field εT , which does not include N terms. Thus, we think that the N term comes from
the high-frequency oscillations terms, i.e., the counterrotating term [73]. In contrast to
Ref. [51], which mainly studied the double OMIT effect caused by the Coulomb interaction
between the NR1 and NR2, we find that the counterrotating term gives rise to the double
OMIA effect.

3. Influence of the Counterrotating Term

In the above section, we calculate the optical response of the present system to the
probe output field and obtain the analytical solution of the output field components at the
probe frequency. Now, we first investigate the influence of the counterrotating term on the
optomechanical system.

3.1. Asymmetry of Double Optomechanically Induced Amplification

The parameters selected in our work satisfy the stability condition of the Routh–Hurwitz
criterion (please see Appendix B). In Figure 2, the absorption property Re[εT] and the dis-
persion property Im[εT] of the probe output field are plotted as functions of the normalized
frequency δω/ω1 with the detuning δω = δ−ω1. There are two transparency dips because
of the Coulomb coupling between the two NRs, as shown in Figure 2a. The line shapes of
the two transparency dips are symmetric about the resonance δω/ω1 = 0 when the counter-
rotating term is ignored in the dynamical analysis of the system, i.e., N = 0. Furthermore,
the ideal double OMIT effect appears because the minimum values of the two transparency
dips equal to zero. However, the line shapes of the two transparency dips are asymmetric
about the resonance when the counterrotating term is considered in the dynamical analysis
of the system, i.e., N 6= 0. The minimum values of the two transparency dips are less than
zero, which results in the emergence of the asymmetric double OMIA effect. Compared
with N = 0, the positions of the two transparency dips slightly shift to left and the width
of the left transparency dip is larger than the right one. Thus, utilizing the counterrotating
term, (i) the double OMIA effect can be found, and (ii) the asymmetry of two transparency
dips can also be obtained. As illustrated in Figure 2b, when N = 0, the two steepest
dispersion curves with the same negative slopes correspond to the two transparency dips
in Figure 2a, so the probe field has the same fast phase dispersion changes in the two
transparency dips. When N 6= 0, there are two steeper dispersion curves with different
negative slopes corresponding to the two transparency dips in Figure 2a. The steepest
dispersion curve on the right is steeper than that on the left, indicating that the probe field
experiences a faster phase dispersion change in the right transparency dip. Compared to
N = 0, the steepest curves slightly shift to the left and the negative slopes of the steepest
curves become larger, which means that the existence of the counterrotating term makes the
probe field undergo different fast phase dispersion changes in the two transparency dips.

-0.4 -0.2 0 0.2 0.4

0

1

2

(a)

-0.4 -0.2 0 0.2 0.4

-1

0

1

(b)

Figure 2. (a) The absorption property Re[εT] and (b) dispersion property Im[εT] of the probe output
field as functions of the normalized frequency δω/ω1 of the probe field. η = 1, κ = 4κ0 (with units of
κ0 = 2π × 215× 103 Hz), λ0 = 8× 1035 Hz/m2, m1 = m2 = 145 ng, ω1 = ω2 = 2π × 947× 103 Hz,
λd = 1064 nm, L = 25 mm, Q1 = ω1/γ1 = 6700, Q2 = ω2/γ2 = 6700, and P = 10 mW [74].
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The decay rate of the optical cavity is a very important parameter in the system and
affects the phenomenon of the double OMIT. Figure 3 shows the absorption property Re[εT]
and dispersion property Im[εT] as functions of the normalized frequency δω/ω1 for the
different cavity decay rates κ. With the increase of the cavity decay rate κ, the minimal
values of the two transparency dips increase when the counterrotating term is ignored in
the dynamical analysis. However, as shown in Figure 3a, the two transparency dips become
narrow, and the minimal values of the dips decrease with the increase of the cavity decay
rate κ. It is demonstrated that the double OMIA effect of the probe output field is enhanced
when the cavity decay rate κ increases. In Figure 3b, the dispersion curves corresponding to
the positions of the two transparency dips at δω/ω1 ≈ ±0.085 of Figure 3a become sharp,
and the negative values of the dispersion curves slope increase with the increase of decay
rate κ. However, the dispersion curve changes dramatically at resonance, where the part
with a positive slope becomes smaller quickly.

-0.2 -0.1 0 0.1 0.2
-1

0

1

2(a)

-0.2 -0.1 0.0 0.1 0.2

-1

0

1

(b)

Figure 3. (a) The absorption property Re[εT] and (b) the dispersion property Im[εT] as functions of
the normalized frequency δω/ω1 for the different cavity decay rates. We set P = 2 mW, and the other
parameters are the same as given in Figure 2.

The effective radiation pressure coupling between cavity mode and NR1 plays an
important role in the system. As shown in Figure 4, we plot the absorption property Re[εT]
of the probe output field as a function of the normalized frequency δω/ω1 for different
powers P of the driving field. The two transparency dips of double OMIT symmetrically
change for the growing effective radiation pressure coupling of the system in the absence
of the counterrotating term in Figure 4a, where the positions of the two transparency dips
remain unchanged and the widths of the two transparency dips symmetrically become
wider. However, the symmetry is broken when the counterrotating term is taken into
account. As described in Figure 4b, the widths and positions of the two transparency
dips asymmetrically change in the presence of the counterrotating term. With the increase
of the driving field power P, the widths of the two transparency dips become wider
asymmetrically and the positions of the two transparency dips move to the left, in which
the width of the left transparency dip is notably larger than that of the right dip, and the
distance of the left dip from the resonance is observably greater than that of the right
one. It means that the large driving field power P enhances the asymmetry of the two
transparency dips. The physical mechanism is that the strong effective radiation pressure
coupling induces the enhancement of the counterrotating term, which leads to the increase
of the asymmetry degree of two transparency dips.

To further investigate the property of the double OMIA and the asymmetry of the
two transparency dips, we consider the influence of the Coulomb coupling strength on
the probe output field. In Figure 5a–c, we plot the absorption property Re[εT] of the
probe output field as a function of the normalized frequency δω/ω1 for different Coulomb
coupling strengths λ, which can be tuned by the bias voltages of the two NRs. Figure 5a
shows that the two transparency dips symmetrically change, and the distance between the
two transparency dips becomes larger with the increase of the Coulomb coupling strength
λ when the counterrotating term is ignored. Taking the counterrotating term into account,
in Figure 5b, we not only find the double OMIA effect but also find that two transparency



Photonics 2021, 8, 384 7 of 16

dips change symmetrically with the Coulomb coupling strength λ. In the above, we have
shown that the asymmetry of the transparency windows could be enhanced by the effective
radiation pressure coupling strength. Now, we further study the asymmetry of the two
transparency dips for P = 10 mW in Figure 5c. Compared with Figure 5b, it can be clearly
seen that the two transparency dips have obvious asymmetry in the probe output field
under the weak Coulomb coupling strength λ. In Figure 5d, we plot the positions of the
two transparency dips as functions of the Coulomb coupling strength λ. The red solid lines
represent the positions of the two transparency dips in Figure 5c when the counterrotating
term is considered, and the distance between the two transparency dips is described by
the difference value between the vertical coordinates of the lines. The black dashed lines
represent the positions of the two transparency dips when the counterrotating term is
ignored. As can be clearly seen, the red solid lines are always below the black dashed lines,
which further proves the shift of two transparency dips in Figure 2a. It is worth noting that
the red solid lines are discontinuous at λ ≈ 0.001λ0 due to the shift of the transparency
dip caused by the counterrotating term and the split of transparency dip caused by the
Coulomb coupling at resonance.

-0.4 -0.2 0 0.2 0.4

0

1

2(a)

-0.4 -0.2 0 0.2 0.4

0

1

2(b)

Figure 4. The absorption property Re[εT] as a function of the normalized frequency δω/ω1 for
different powers P of the driving field in the case of (a) N = 0 and (b) N 6= 0. The other parameters
are the same as given in Figure 2.
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Figure 5. The absorption property Re[εT] as a function of the normalized frequency δω/ω1 for
different Coulomb coupling strengths, where (a) P = 2 mW, N = 0, (b) P = 2 mW, N 6= 0, and (c)
P = 10 mW, N 6= 0. (d) The positions of the two transparency dips as functions of the Coulomb
coupling strength λ. The other parameters are the same as given in Figure 2.
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3.2. Fast-Slow Light Effect

Similar to the OMIT and OMIA effects, the fast-slow light effect is an important optical
phenomenon that can be realized in the cavity optomechanical system and has been widely
studied [60–62]. As is well known, the probe field in an EIT window usually experiences a
fast phase dispersion, which leads to a dramatic reduction in the group velocity. It also
occurs for the transmission of light through the OMIT window in the cavity optomechanical
system. We now discuss the influence of the counterrotating term on the group delay of
the probe output field. According to Equation (7), the transmission rate corresponding to
the probe output field can be expressed as [75]

T =
∣∣∣t2

p

∣∣∣ = |1− 2ηκa+|2. (10)

The optical group delay of the transmitted light is defined as [62]

τ =
d φ(ωp)

d ωp
=

d arg[tp(δ)]

d δω
= Im

[
1
tp

∂tp

∂δω

]
, (11)

where φ(ωp) = arg[tp(δ)] is the phase of the probe output field. τ > 0 represents the slow
light propagations, and τ < 0 represents the fast light propagations.

In Figure 6, we plot the optical group delay time of the probe output field as a function
of the normalized frequency δω/ω1. It indicates the appearance of the slow light effect
caused by the radiation pressure coupling and Coulomb coupling. For N = 0, the group
delay curve is symmetric, and in the two transparency dips δω/ω1 ≈ ±0.085, there is the
same group delay time τ. While for N 6= 0, the group delay curve is asymmetric, and the
group delay time τ of the right transparency dip is significantly larger than the left one.
That is because the probe field experiences faster phase dispersion in the right transparency
dip, as in Figure 2b. This further proves that the counterrotating term affects the fast phase
dispersion of the probe field inside the two transparency dips.

-0.4 -0.2 0 0.2 0.4

0

2

4

6

8

10

12

Figure 6. The optical group delay time as a function of the normalized frequency δω/ω1. The other
parameters are the same as given in Figure 2.

4. Application of the Counterrotating Term to the System with Mechanical Gain

Since the coherent manipulation of phonons, such as phonon laser and phonon pump,
can introduce a considerable gain to mechanical resonators, the optomechanical system
with mechanical gain has attracted a lot of attention and has been studied extensively in
recent years, for instance, controllable optical response [59], optomechanical transistor [76],
etc. In this section, we consider the NR2 with gain to study the influence of mechanical
gain on the probe output field. According to the foregoing parameters, we set the gain rate
of NR2 as γ2 = −γ1 = −ω1/6700 and find an interesting phenomenon when the optical
cavity has a small decay rate. Different optical responses will occur for different Coulomb
coupling strengths between the two NRs. The significant optical amplification effect can be
observed and the transmission rate of the probe output field can reach about 104 orders
of magnitude.
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We first study the transmission rate of the probe output field for η = 1/2 [75]. Figure 7a
shows the transmission rate T of the output field as a function of the normalized frequency
δω/ω1 when the Coulomb coupling strength is chosen as λ = 0.01λ0. When γ2 = γ1,
there are two sideband dips and an absorption dip in the spectrum. Due to the normal-
mode splitting effect between two NRs caused by the Coulomb coupling, an absorption dip
appears in the transparency peak caused by the optomechanical interaction at the resonance,
i.e., the optical absorption effect occurs. The physical mechanism of this process is shown
in Figure 7b, whose reason is that the destructive interference between the transition
paths 1 and 2 leads to the OMIT effect. With the emergence of the Coulomb coupling,
the constructive interference between transition paths 1 and 3 enhances the absorption
capacity of the system to the photons of the probe field. As a result, an absorption dip
appears at the resonance in Figure 7a. However, the absorption dip is transformed into
an amplification peak when we consider the gain NR2, i.e., γ2 = −γ1, meaning the
appearance of the remarkable optical amplification effect. Therefore, the optical response
of the present system to the probe output field changes from the optical absorption effect
to the remarkable optical amplification effect due to the mechanical gain.
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Figure 7. (a) The transmission rate T of the output field as a function of the normalized frequency
δω/ω1, in which λ = 0.01λ0, η = 1/2, κ = 0.1κ0, and P = 2 mW. (b) A schematic illustration of
energy level of the three-mode system, where na, n1, and n2 represent the numbers of the photon
and phonons of NR1 and NR2, respectively. The other parameters are the same as given in Figure 2.

Next, we investigate the influence of Coulomb coupling strength on the probe output
field. In Figure 8a, the transmission rate Tmax at resonance is plotted as a function of
the Coulomb coupling strength λ when the N term exists or not. One can see that the
transmission rate curve increases first and then decreases with the increase of λ, and finally,
it is gradually less than 1. There exists a maximum value of the order of 104 at the singular
point λsp ≈ 0.0185λ0 for N 6= 0 (red solid line), i.e., the excellent optical amplification
effect appears. In particular, there is a critical point λcp ≈ 0.0262λ0 between the optical
amplification and absorption. We can observe that the transmission rate is greater than 1
at λ < λcp, which manifests the emergence of the optical amplification effect. In addition,
the optical amplification effect can be changed into the optical absorption effect for the
strong Coulomb coupling when λ > λcp. Therefore, the conversion between the optical
amplification and the absorption effects can be easily achieved by adjusting the Coulomb
coupling strength based on mechanical gain. It is worth noting that the peak values of
the black dashed line (N = 0) and red solid line (N 6= 0) both appear at the singular
point λsp, and the maximum value of the black dashed line is greater than that of the
red solid line, which means that the optical amplification effect of the system without
the N term is better than that in the presence of the N term. The reason is that due to
the introduction of the N term, the optical amplification effect of the system is revised
to the effect that can be achieved in practice. In Figure 8b, we show the transmission
rate T as a function of the normalized frequency δω/ω1 for different Coulomb coupling
strengths. Consistent with Figure 8a, there is a significant optical amplification effect at
resonance and the maximum value of the transmission rate T approaches to the order of
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104 at the singular point λ = 0.0185λ0. However, the transmission rate T becomes less
than 1 at resonance in the transmission spectrum for λ = 0.05λ0, which indicates that the
optical amplification effect is transformed into the optical absorption effect. This further
proves that the different optical responses can be easily achieved by adjusting the Coulomb
coupling strength properly.
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Figure 8. (a) The transmission rate Tmax at resonance as a function of the Coulomb coupling strength
λ for N = 0 (black dashed line) and N 6= 0 (red solid line). (b) The transmission rate T as a function
of the normalized frequency δω/ω1 for different Coulomb coupling strengths, in which γ2 = −γ1,
κ = 0.1κ0, η = 1/2, and P = 2 mW. The other parameters are the same as given in Figure 2.

Finally, we study the fast-slow light effect of the system with mechanical gain. In Figure 9,
we show the group delay time τ of the probe output field at resonance as a function of the
Coulomb coupling strength. One can see that the group delay time can easily reach the
order of 105 µs, which leads to the prominent fast-slow light effect. The physical reason is
that the mechanical gain causes a sharp change in the phase dispersion of the probe field in
the transparency window. What is noteworthy is that the prominent group delay is always
near the singular point λsp, at which the fast light can be easily converted to the slow light.
Therefore, the prominent fast-slow light effect resorting to mechanical gain can be observed at
the singular point.
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Figure 9. The group delay time τ of probe output field at resonance δω/ω1 = 0 as a function of the
Coulomb coupling constants λ between two NRs, in which γ2 = −γ1, κ = 0.1κ0, η = 1/2, P = 2 mW.
The other parameters are the same as given in Figure 2.

5. Conclusions

In conclusion, we have investigated the optical responses of the three-mode cavity
optomechanical system without the RWA method and discussed two ways of achieving
the optical amplification effect. The asymmetric double OMIA effect can be observed with
the counterrotating term, and the optical amplification effect is enhanced with the increase
of the cavity decay rate and the optomechanical interaction. The strong effective radiation
pressure coupling induces the enhancement of the counterrotating term, leading to the
more obvious asymmetry of two transparency dips. Besides, the counterrotating term
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affects the fast phase dispersion and the group delay time of the probe field inside the
two transparency dips. Furthermore, we discover the emergency of the excellent optical
amplification effect with mechanical gain and the transmission rate of the output field can
reach the order of 104. There is a critical point λcp between the optical amplification and the
absorption effects, and different optical responses can be easily achieved by adjusting the
Coulomb coupling strength properly. It is worth noting that the prominent fast-slow light
effect based on mechanical gain can be observed at the singular point, and the prominent
group delay time can easily approach to the order of 105 µs. Our scheme may open up
new avenues of steering the potential applications in quantum information processing and
quantum precision measurement.
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Appendix A. Derivation of the Probe Output Field

Here we explain the derivation of the probe output field εT in detail. From Equation (6),
we can directly obtain

q1+ =
h̄g(a∗s a+ + a∗−as)

m1(ω
2
1 − iδγ1 − δ2)− h̄2λ2

m2(ω
2
2 − iδγ2 − δ2)

, (A1)

q1− =
h̄g(a∗s a− + a∗+as)

m1(ω
2
1 + iδγ1 − δ2)− h̄2λ2

m2(ω
2
2 + iδγ2 − δ2)

, (A2)

q2+ =
−h̄λ

m2(ω
2
2 − iδγ2 − δ2)

q1+, (A3)

q2− =
−h̄λ

m2(ω
2
2 + iδγ2 − δ2)

q1−, (A4)

a+ =
igasq1+ + 1
κ + i(∆− δ)

, (A5)

a− =
igasq1−

κ + i(∆ + δ)
, (A6)

where q1+ = q∗1− and q2+ = q∗2−. According to Equations (A1) and (A5), considering as as
a whole, it can be easily obtained

a∗−as =
A

1− A
a∗s a+, (A7)
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here

A =
−ih̄g2|as|2

[κ − i(∆ + δ)][m1(ω
2
1 − iδγ1 − δ2)− h̄2λ2

m2(ω
2
2 − iδγ2 − δ2)

]

. (A8)

Equation (A7) is the key step. By substituting Equation (A7) into Equation (A1), we get an
expression of q+ as

q+ =
h̄g[κ − i(∆ + δ)]a∗s a+

[κ − i(∆ + δ)][m1(ω
2
1 − iδγ1 − δ2)− h̄2λ2

m2(ω
2
2 − iδγ2 − δ2)

] + ih̄g2|as|2
. (A9)

Then, according to Equation (A5), we get an expression of a+ as

a+ =
1

κ + i(∆− δ)− ig2|as|2h̄

m1(ω
2
1 − iδγ1 − δ2)− h̄2λ2

m2(ω
2
2 − iδγ2 − δ2)

+
ig2|as|2h̄

κ − i(∆ + δ)

. (A10)

Under the condition of near-resonant frequency, i.e., ∆ ≈ δ ≈ ω1, we have δ2 − ω2
1 ≈

2ω1(δ − ω1) and δ + ∆ ≈ 2ω1. According to the input–output relation for the cavity
field [71], the optical components with frequency ωp in the output field can be defined as
εT = 2ηκa+ with η = κext/(κin + κext). εT can be rewritten as Equations (8) and (9)

εT =
2ηκ

κ − i(δ−ω1) +
β

−i(δ−ω1) +
γ1

2
+

iG
2ω1

+ N

, (A11)

here

N =
−β

κ − 2iω1
, β =

χ2
0ε2

d
2m1ω1h̄(κ2 + ω2

1)
, G =

h̄2λ2

2ω2m1m2[(δ−ω2) + iγ2/2]
. (A12)

Appendix B. Stability Analysis of the Three-Mode Cavity Optomechanical System

Here, we specifically analyze the stability of the three-mode cavity optomechanical
system. From Equation (4), by writing the solution in the form 〈S〉 = Ss + δS with
S = a, qi, pi (i = 1, 2), we can rewrite the nonlinear quantum Langevin equations for the
fluctuations as

δq̇1 =
δp1

m1
, δq̇2 =

δp2

m2
,

δ ṗ1 = −m1ω2
1δq1 − h̄λδq2 + h̄gδa†δa− γ1δp1,

δ ṗ2 = −m2ω2
2δq2 − h̄λδq1 − γ2δp2,

δȧ = −(κ + i∆)δa,

(A13)

then, we introduce the quadrature operators δX = (δa + δa†)/
√

2 and δY = i(δa −
δa†)/

√
2. We can rewrite the quantum Langevin equations for the fluctuations in a matrix

form as
U̇(t) = AU(t), (A14)
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where U(t) = [δX, δY, δq1, δp1, δq2, δp2]
T , and the drift matrix

A =



−κ −∆ 0 0 0 0
∆ −κ 0 0 0 0
0 0 0 1

m1
0 0

h̄gas 0 −m1ω2
1 −γ1 −h̄λ 0

0 0 0 0 0 1
m2

0 0 −h̄λ 0 −m2ω2
2 −γ2


(A15)

By numerical calculation, we find that the eigenvalues of all the coefficients of the matrix A
have negative real parts. According to the Routh–Hurwitz criterion, the three-mode cavity
optomechanical system we consider is stable.

In order to further analyze the bistability of the three-mode cavity optomechanical
system, the steady-state mean value of the cavity mode as is plotted with the power of the
driving field P in Figure A1. The steady-state average value of the cavity mode increases
monotonously with the driving power, so the three-mode cavity optomechanical system
is monostable.

0 20 40 60 80 100

0

1

2

3

10
4

Figure A1. The steady-state mean value of the cavity mode as is plotted with the power of the driving
field P. The other parameters are the same as given in Figure 2.
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59. Liu, Y.L.; Wu, R.B.; Zhang, J.; Özdemir, Ş.K.; Yang, L.; Nori, F.; Liu, Y.X. Controllable optical response by modifying the gain and
loss of a mechanical resonator and cavity mode in an optomechanical system. Phys. Rev. A 2017, 95, 013843. [CrossRef]

60. Safavi Naeini, A.H.; Alegre, T.P.M.; Chan, J.; Eichenfield, M.; Winger, M.; Lin, Q.; Hill, J.T.; Chang, D.E.; Painter, O. Electromag-
netically induced transparency and slow light with optomechanics. Nature 2011, 472, 69–73. [CrossRef]

61. Chang, D.E.; Naeini, A.H.S.; Hafezi, M.; Painter, O. Slowing and stopping light using an optomechanical crystal array. New J.
Phys. 2011, 13, 023003. [CrossRef]

62. Zheng, M.H.; Wang, T.; Wang, D.Y.; Bai, C.H.; Zhang, S.; An, C.S.; Wang, H.F. Manipulation of multi-transparency windows and
fast-slow light transitions in a hybrid cavity optomechanical system. Sci. China Phys. Mech. Astron. 2019, 62, 950311. [CrossRef]

63. Fiore, V.; Yang, Y.; Kuzyk, M.C.; Barbour, R.; Tian, L.; Wang, H.L. Storing Optical Information as a Mechanical Excitation in a
Silica Optomechanical Resonator. Phys. Rev. Lett. 2011, 107, 133601. [CrossRef]

64. Børkje, K.; Nunnenkamp, A.; Teufel, J.D.; Girvin, S.M. Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling
Regime. Phys. Rev. Lett. 2013, 111, 053603. [CrossRef] [PubMed]

65. Buters, F.M.; Luna, F.; Weaver, M.J.; Eerkens, H.J.; Heeck, K.; de Man, S.; Bouwmeester, D. Straightforward method to measure
optomechanically induced transparency. Opt. Express 2017, 25, 12935–12943. [CrossRef] [PubMed]

66. Zhou, J.Y.; Zhou, Y.H.; Yin, X.L.; Huang, J.F.; Liao, J.Q. Quantum entanglement maintained by virtual excitations in an
ultrastrongly-coupled-oscillator system. Sci. Rep. 2020, 10. [CrossRef]

67. Yan, X.B. Optomechanically induced transparency and gain. Phys. Rev. A 2020, 101, 043820. [CrossRef]
68. Wang, Y.Z.; He, S.; Duan, L.W.; Chen, Q.H. Quantum phase transitions in the spin-boson model without the counterrotating

terms. Phys. Rev. B 2019, 100. [CrossRef]
69. Liu, J.H.; Yu, Y.F.; Zhang, Z.M. Nonreciprocal transmission and fast-slow light effects in a cavity optomechanical system. Opt.

Express 2019, 27, 15382–15390. [CrossRef] [PubMed]
70. Zhang, X.Y.; Guo, Y.Q.; Pei, P.; Yi, X.X. Optomechanically induced absorption in parity-time-symmetric optomechanical systems.

Phys. Rev. A 2017, 95, 063825. [CrossRef]
71. Gardiner, C.; Zoller, P. Quantum Noise; Springer Science & Business Media: Berlin, Germany, 2004.
72. Agarwal, G.S.; Huang, S.M. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 2010, 81, 041803.

[CrossRef]
73. Yan, X.B. Optomechanically induced optical responses with non-rotating wave approximation. J. Phys. B At. Mol. Opt. Phys.

2021, 54, 035401. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.111.133601
http://dx.doi.org/10.1103/PhysRevA.92.033829
http://dx.doi.org/10.1038/nature09898
http://www.ncbi.nlm.nih.gov/pubmed/21390127
http://dx.doi.org/10.1103/PhysRevApplied.10.014006
http://dx.doi.org/10.1103/PhysRevLett.66.2593
http://dx.doi.org/10.1103/PhysRevA.71.053806
http://dx.doi.org/10.1103/PhysRevLett.77.5357
http://dx.doi.org/10.1103/PhysRevA.90.043825
http://dx.doi.org/10.1088/1674-1056/28/7/074204
http://dx.doi.org/10.1364/OE.23.011508
http://dx.doi.org/10.1103/PhysRevA.90.023817
http://dx.doi.org/10.1103/PhysRevA.98.053822
http://dx.doi.org/10.1007/s11128-020-02940-x
http://dx.doi.org/10.1103/PhysRevA.88.013804
http://dx.doi.org/10.1103/PhysRevA.83.023823
http://dx.doi.org/10.1103/PhysRevA.95.013843
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1088/1367-2630/13/2/023003
http://dx.doi.org/10.1007/s11433-018-9341-3
http://dx.doi.org/10.1103/PhysRevLett.107.133601
http://dx.doi.org/10.1103/PhysRevLett.111.053603
http://www.ncbi.nlm.nih.gov/pubmed/23952399
http://dx.doi.org/10.1364/OE.25.012935
http://www.ncbi.nlm.nih.gov/pubmed/28786645
http://dx.doi.org/10.1038/s41598-020-68309-3
http://dx.doi.org/10.1103/PhysRevA.101.043820
http://dx.doi.org/10.1103/PhysRevB.100.115106
http://dx.doi.org/10.1364/OE.27.015382
http://www.ncbi.nlm.nih.gov/pubmed/31163735
http://dx.doi.org/10.1103/PhysRevA.95.063825
http://dx.doi.org/10.1103/PhysRevA.81.041803
http://dx.doi.org/10.1088/1361-6455/abd645


Photonics 2021, 8, 384 16 of 16

74. Hill, J.T.; Safavi Naeini, A.H.; Chan, J.; Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nat.
Commun. 2012, 3, 1196. [CrossRef] [PubMed]

75. Lai, D.G.; Wang, X.; Qin, W.; Hou, B.P.; Nori, F.; Liao, J.Q. Tunable optomechanically induced transparency by controlling the
dark-mode effect. Phys. Rev. A 2020, 102, 023707. [CrossRef]

76. Zhang, X.Z.; Tian, L.; Li, Y. Optomechanical transistor with mechanical gain. Phys. Rev. A 2018, 97, 043818. [CrossRef]

http://dx.doi.org/10.1038/ncomms2201
http://www.ncbi.nlm.nih.gov/pubmed/23149741
http://dx.doi.org/10.1103/PhysRevA.102.023707
http://dx.doi.org/10.1103/PhysRevA.97.043818

	Introduction
	System and Hamiltonian
	Influence of the Counterrotating Term
	Asymmetry of Double Optomechanically Induced Amplification
	Fast-Slow Light Effect

	Application of the Counterrotating Term to the System with Mechanical Gain
	Conclusions
	Derivation of the Probe Output Field
	Stability Analysis of the Three-Mode Cavity Optomechanical System
	References

