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Abstract: Recent studies on image restoration (IR) methods under unrolled optimization frameworks
have shown that deep convolutional neural networks (DCNNs) can be implicitly used as priors to
solve inverse problems. Due to the ill-conditioned nature of the inverse problem, the selection of
prior knowledge is crucial for the process of IR. However, the existing methods use a fixed DCNN
in each iteration, and so they cannot fully adapt to the image characteristics at each iteration stage.
In this paper, we combine deep learning with traditional optimization and propose an end-to-end
unrolled network based on deep priors. The entire network contains several iterations, and each
iteration is composed of analytic solution updates and a small multiscale deep denoiser network. In
particular, we use different denoiser networks at different stages to improve adaptability. Compared
with a fixed DCNN, it greatly reduces the number of computations when the total parameters are
equal and the number of iterations is the same, but the gains from a practical runtime are not as
significant as indicated in the FLOP count. The experimental results of our method of three IR
tasks, including denoising, deblurring, and lensless imaging, demonstrate that our proposed method
achieves state-of-the-art performances in terms of both visual effects and quantitative evaluations.

Keywords: image restoration; deep convolutional neural networks; analytic solution; unrolled optimization

1. Introduction

Image restoration (IR) is a classical topic in the field of low-level image processing.
Digital images are always degraded during the acquisition process, with issues such as
electronic noise caused by the thermal vibration of atoms and blur caused by camera
shake [1,2]. Therefore, image restoration is of great significance and is widely used in a
variety of applications, e.g., smartphone imaging, medical imaging, and remote sensing.
The purpose of image restoration is to recover an unknown latent image from a corrupted
observation. In general, IR is an ill-posed inverse problem. The mathematical degradation
model can be written as y = Ax + n, where y and x are the degraded measurement and the
clean image, respectively. n denotes the additive noise, which is generally assumed to be
additive white Gaussian noise (AWGN), and A denotes the system degradation matrix.
Although IR problems have been extensively studied, they are still full of challenges due to
the large amount of natural image contents [3] and the diversity of degradations.

Over the past few decades, many methods have been proposed to tackle IR problems,
including denoising [4–10], deblurring [11–15], image super-resolution [16–20], and lensless
imaging [21–24]. Recently, the rapid development of deep learning technology has injected
new vitality into IR research. Many works based on deep convolutional neural networks
(DCNNs) have achieved excellent results [10,23,25]. From the point of view of linear
algebra, the reason leads to ill condition of IR is that the null space of A is nonzero. Because
of this, the prior knowledge of the image is crucial, and we need to select a good estimation
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of the latent image from the solution space according to this prior knowledge. A common
approach is to establish a cost function by maximizing the posterior probability P(x|y):

^
x = arg max

x
log P(y|x) + log P(x) (1)

where log P(x) represents the prior information of the latent image, and log P(y|x) denotes
the log-likelihood of the measurement. log P(y|x) is derived from statistical model of
noise, such as `2 − norm to Gaussian noise and l1 − norm to Laplacian noise. Under the
AWGN model, the cost function can be reformulated as:

^
x = arg min

x

1
2

||y−Ax||2
2 + λ·φ(x) (2)

where φ(x) = −log P(x) is a regularization term. There are two paths for obtaining
the solution of Equation (2). One involves model-based methods [26–28], and the other
involves learning-based methods [29–32]. The former methods reduce the value of the cost
function gradually through the optimization principles, whereas the latter methods mainly
rely on DCNNs and datasets. These two types of methods are described in more detail in
the following four paragraphs.

Among model-based methods, a large number of models based on various priors
have been proposed, including the frequently used total variation (TV) prior [33]; sparse
representation prior [34] and dictionary learning [7,35,36]; nonlocal means prior [37] and
nonlocal self-similarity (NLSS) [6,38]; the low rank approximation prior [39,40]; and the
Markov random field (MRF) [41,42]. The characteristics of various priors are as follows.

The well-known TV prior works well with images with simple textures, but it can
lead to distinct blurring in complex areas with rich details. The sparse prior model can
represent local image patches as a few atoms in some domains, such as the DCT basis
and the discrete wavelet transform basis [43]. Compared with the analytical dictionaries,
learned dictionaries have a stronger adaptive ability to represent image patches, and they
can deal with various tasks more flexibly [3]. In the past two decades, sparse models
have made outstanding contributions to IR, and a large number of IR algorithms based on
them have been proposed [4,6,7,16,26,34]. Using the redundant information in an image,
the nonlocal means can eliminate Gaussian noise well [44]. A more efficient and robust
solution is to apply the NLSS to the sparse prior model [26]. Another powerful prior is the
low-rank approximation because a matrix with many nonlocal similar patches is essentially
of low rank [39]. The soft threshold function can be used to solve this problem easily and
quickly [45]. WNNM [40] improves the flexibility of nuclear norm and achieves good
results in terms of both visual effects and quantitative evaluations. Combined with the
MRF model, the Bayesian optimization framework is applied to low-level vision [41,46,47].
Although the MRF can learn a generic prior that can represent the statistics of natural
scenes, its complexity is high. It is also difficult to carry out a physical interpretation. In
summary, model-based methods can deal with all kinds of visual problems flexibly, but
they usually incur high time and computational costs, and their effects are not as good as
those of the popular DCNNs.

With the rapid development of deep learning, DCNNs have blossomed in the field of
low-level vision. Many learning-based methods [8–10,29,30,48,49] have been applied to
denoising tasks. Burger et al. [29] proposed using a plain multilayer perceptron for denois-
ing. This work showed the great potential of neural networks because a simple perceptron
was shown to be able to achieve the effect of a traditional well-known BM3D denoiser [4].
With batch normalization, the DnCNN [30] was established to provide an end-to-end
residual learning network for predicting residuals to indirectly eliminate noise. CBD-
Net [8] separated noise estimation from nonblind denoising and used two sub-networks to
complete these two functions separately. RIDNet [9] exploited channel dependencies by
using feature attention and built a blind real image denoising network under a modular
architecture. SADNet [10] introduced the deformable convolution to implement spatial
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adaptive denoising, which can achieve reconstruction with a high signal-to-noise ratio
while effectively maintaining spatial texture and edges of the image. Zhang et al. [49]
provides a novel and efficient RDN that achieves superiority over comparative methods
for several image restoration tasks.

In addition to noise removal, DCNNs are also widely used in the fields of super-
resolution and lensless imaging. The SRCNN [18] mapped low-resolution patches to high-
resolution patches by three layers of convolutions. After that, many deep networks were pro-
posed for super-resolution, such as the ESPCN [19], DRRN [20], VDSR [32], and SRGAN [25].
DCNNs have also performed well in the field of lensless imaging. Nguyen et al. [22] used
a DCNN to restore lensless images and protected privacy. Khan et al. [23] first carried out
model fitting and then used a DCNN to improve image quality.

Although learning-based DCNNs can quickly complete high-quality image recon-
struction on GPUs after training, they usually lose the flexibility inherent in model-based
methods. Additionally, the improvement in reconstruction quality is only due to the strong
fitting ability of pure DCNN. Therefore, hybrid IR methods under unrolled framework
were proposed [50,51]. Section 2.2 describes more details about IR methods under unrolled
framework. These kinds of methods combine traditional methods with DCNNs, and the
advantages of both can be exploited. When solving the inverse problem, they can incorpo-
rate the physical models of systems into the networks. First, this structure can make full
use of the prior knowledge of the systems, such as the observation matrix in compressed
sensing and the point spread function in deconvolution. In addition, the main function
of the network is to learn a prior, rather than the whole inverse operation. Thus, unrolled
structure has lower requirements on the network. Additionally, the functions are easier to
achieve. Furthermore, they can improve the reconstruction quality compared with pure
DCNNs. In spite of their wide applications in low-level vision tasks, there is still room
for improvement in terms of optimization and the networks. For example, the existing
methods usually use a fixed DCNN in each iteration, and so they cannot fully adapt to
the image characteristics at each iteration stage. The gradient descent is slower for the
convex problem.

In this paper, we propose a deep denoiser-based unrolled network that combines
DCNNs with optimization to exploit the advantages of both. The entire end-to-end network
can be unfolded into several analytic solution blocks and the subsequent small deep
denoiser networks. All the parameters are learned through training. On the one hand, we
solve the convex problem in the form of an analytic solution that is faster than gradient
descent which usually requires multiple iterations because the solution is not accurate.
On the other hand, each small deep denoiser network adopts a structure with an encoder
and a decoder to capture multiscale information from the image. The small deep denoiser
networks are also different at different stages so that they can better adapt to the image
characteristics at each stage. Compared with a fixed DCNN, it greatly reduces the number
of computations when the total parameters are the same and the number of iterations is the
same. The experimental results of several IR tasks, including denoising, deblurring, and
lensless imaging, demonstrate that our approach is effective and computationally efficient.
The visual effects and the objective evaluations indicate that our network achieves excellent
performances in high-quality image reconstruction.

The remainder of this paper is organized as follows. Section 2 reviews related works.
Section 3 introduces our proposed method. Section 4 shows the numerical results of several
IR tasks, and Section 5 concludes this paper.

2. Related Work

The unrolled network we proposed is mainly derived from two aspects: deep learning
and denoiser-based IR methods under unrolled optimization. In this section, we briefly
review these two aspects.
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2.1. Deep Learning

With the rapid development of computing power, deep learning technology has led
to many breakthroughs in the field of vision, including low-level denoising [10,30,48], de-
blurring [15,31], super-resolution [32,52] and high-level recognition [53], segmentation [54].
The image textures are richer under the generative adversarial networks (GANs) [55]. The
perceptual loss takes advantage of high-level abstract features that enhance the details of
super-resolution images [56]. Additionally, the training method for networks has been
developed, such as batch normalization [57], gradient clipping [58], and Xavier initializa-
tion [59].

2.2. IR Methods under Unrolled Optimization

By decoupling the deconvolution and denoising, the original complex regularization
term can be transferred. Many denoiser based IR methods have been proposed [11,50,60–62]
that can integrate the strengths of model-based methods and DCNNs. Under the framework
of half-quadratic splitting (HQS), a new auxiliary variable z is introduced to Equation (2).
Therefore, the IR problem can be written in the following form:

ϕµ(x,z) =
1
2
||y−Ax|| 22 +

µ

2
||z− x|| 22 + λ·φ(z) (3)

where µ is the penalty parameter. The above equation can be solved alternatively by:

^
x = arg min

x
||y−Ax|| 22 + µ ||x− ẑ ||22

ẑ = arg min
z

µ
2 ||

^
x− z|| 22 + λ·φ(z)

(4)

As we can see, the former equation is a convex equation while the latter is a proxi-
mal operator with special regularization parameters. In practice, we usually treat it as a
denoising problem that can avoid the explicit expression of priors and there are many suc-
cessful solutions at present. The decoupling can also be achieved through the ADMM [63];
the principle is similar and will not be repeated here. IR methods under unrolled opti-
mization frameworks can be divided into two categories: deep unfolding networks and
plug-and-play. The former type is an overall end-to-end network, while the latter is not.

Plug-and-play methods can be flexibly applied to various tasks [64,65] by using one
well-trained denoiser. In [11], the well-known BM3D denoiser was used for deblurring based
on the generalized Nash equilibrium. The CBM3D denoiser was used for single image super-
resolution (SISR) [17]. In [66], Brifman et al. realized SISR by using the NCSR denoiser [26]
which combines the traditional sparse prior with the NLSS. Additionally, the results were
better than those of original NCSR. The TV prior and BM3D prior were used for Fourier
ptychographic microscopy [67]. In [68], the denoising-based IR method with the ADMM
was used for electron microscope imaging. Additionally, the state-of-the-art DCNN denoiser
prior was used in IR tasks [69]. Zhang et al. [61] trained 25 CNN denoisers at different noise
levels. There are some theoretical analyses on this topic. Sreehari et al. [68] analyzed the
convergence of the plug-and-play approach when the denoiser is a symmetric smoothing filter.
Chan’s algorithm with a bounded denoiser [70] was proven to be convergent. Ryu’s work
theoretically established the convergence of the PnP-ADMM algorithm when the denoiser
has a certain Lipschitz condition [71]. Although the plug-and-play technique has achieved
start-of-the-art results, it usually requires multiple iterations. The proposed SISR solver in [66]
iterates 35 times, and the IRCNN [61] takes 30 iterations to deblur.

In response to this problem, the end-to-end deep unfolding network consisting of only
a few iterations was proposed for IR [51,62]. Zhang et al. [72] proposed a deep network
for compressed sensing reconstruction. Dong et al. [51] proposed an end-to-end approach
named as the DPDNN. In [51], the whole iterative process was carried out six times, where
the same denoising network was called each time. Despite the small number of iterations,
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its effect was still outstanding. Jeon et al. [73] achieved high-spectral reconstruction through
a deep unfolding network.

3. Proposed Algorithm for Image Restoration

In this section, we introduce the principle and process of our method in detail. The
general form of the analytic solution is given. Additionally, its application and variation to
the three IR tasks are discussed in detail.

3.1. Our End-to-End Unrolled Network

Generally, the goal of the IR task is to obtain an output with a lower cost. In our
method, the cost function is described in Equation (3). The HQS method converts our
cost function into two sub-problems, as described in Equation (4). In this way, the two
sub-problems are easy to solve. The first convex equation in Equation (4) can be solved by
gradient descent or in the form of an analytic solution. The gradient descent algorithm is a
simple and generalized method. The first-order method is often used in various inverse
problems because it can obtain a good result after many iterations, and the second-order
method is too computationally expensive. As we stated before, the gradient descent
algorithm usually requires multiple iterations because the solution is not accurate. This
leads to high time costs in traditional methods. The number of iterations is limited by time
and space costs in DCNN-based IR methods. In this paper, we solve the first equation in
(4) in the form of an analytic solution. By deriving x and setting the derivative equal to
zero, the following formula can be obtained:(

ATA + µI
)^

x = ATy + µẑ (5)

It is evident that matrix inversion is a stumbling block on the road to an analytic
solution because of its computational complexity. We use the singular value decomposition
of A to reduce the computational complexity of matrix inversion [74] because the cost of
the inversion a diagonal matrix is small. Through SVD on degenerate matrix A, the analytic
solution can be written in the following form:

^
x = VA

(
SA

TSA + µI
)−1

VA
T
(

VASA
TUA

Ty + µẑ
)

(6)

where A = UASAVA
T. As we can see, the updates of the analytic solution can be calculated

quickly and efficiently. The overall framework of our proposed approach is shown in
Figure 1a. Since the first equation in Equation (4) is convex, we can obtain the optimal
solution for each iteration. This lays the foundation for our end-to-end network consisting
of only a few iterations to achieve excellent results. The solution of the latter equation in
Equation (4) is a proximal operator, which is as follows:

proxτφ

(
^
x
)
= arg min

z

1
2

proxτφ||
^
x− z|| 22 + τ·φ(z) (7)

where τ = λ/µ. In this step, the prior information is important. The research on IR
methods under unrolled optimization shows that the DCNNs can express image priors
implicitly. Combined with the DCNN’s strong fitting ability, we use the deep denoiser
network to solve the latter problem in Equation (4). We use different deep prior networks
at different stages to better adapt to the image characteristics of each stage. The proposed
end-to-end deep analytic network based on deep priors is summarized in Algorithm 1. In
our method, the number of iterations is set to six. Our deep denoiser networks at each
stage are small. Benefiting from the above settings, our overall model is not too large,
which allows it to avoid overfitting.
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Algorithm 1. DCNNs based end-to-end unrolled network for IR

Input: A, y, µ0 > 0, k = 0

Initialization:
(1) Initial estimation : x̂0 = ATy or the least squares estimate, ẑ0 = x̂0
(2) SVD : A = UA·SA·VT

A
For iter = 1 : k do
(1) Analytic updates:

x̂k = VA
(
SA

TSA + µkI
)−1(SA

TUA
Ty + µkVT

A ˆzk−1
)

(2) Deep prior net : ẑk = Dk(x̂k)
end
Output ẑk
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3.2. Structure of the Deep Denoiser Network

The well-known U-Net [54] was proposed for medical image segmentation originally.
Additionally, it has been widely used in visual tasks due to its excellent effects. Inspired by
those works, our proposed DCNNs is a residual learning network with a U-Net structure.
The architecture of our proposed deep network is illustrated in Figure 1b. The network
is a four-scale U-Net with a soft-threshold function. The first half is a multiscale encoder
for feature extraction, and the second half is a multiscale decoder for image reconstruction
based on these features. In each scale of the encoder, we use two convolutional layers
to encode spatial features and a max-pooling layer to increase the receptive field. The
number of channels in the two convolutional layers in the first two scales of the encoder is
32. In the third scale, the number of channels is 64. After three feature extractions, there
are two 64-channel convolutional layers at the top of the DCNNs. The kernel size of each
convolutional layer is 3 × 3. In each scale of the decoder, there is a trans-convolutional
layer, a skip layer, and two convolutional layers. The number of channels in the two
convolutional layers in the first scale of the decoder is 32. In other two scales of the decoder,
the number of channels is 64. The skip layer combines feature maps of the same size to
compensate for the loss of spatial details caused by multiple extraction operations. After
the decoder, a soft-threshold function is used to shrink the multichannel image. Then, a
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convolutional layer restores the image to the original color space. Finally, we establish a
long residual connection between the input and output, because residual learning is easier
to optimize [30] and more robust [51]. Different from the original U-Net, we adopt the
leaky ReLU [75] as the activation function.

3.3. Variation in Three Applications

We have introduced the principles and process of our method and gave the general
form of analytic solutions. In this section, we discuss its specific form and variations in
three visual problems (denoising, deblurring, and lensless imaging). In the denoising
problem, the system degradation matrix A is the identity matrix. In this case, the analytic
solution degenerates into the following form:

^
x =

1
1 + µ

(y + µz) (8)

As we can see, the update of the analytic solution is a basic matrix operation, which
can be completed quickly and efficiently. For deblurring with a uniform kernel, the former
equation in Equation (4) is usually written in a convolutional form:

^
x = arg min

x
||y− psf ∗ x|| 22 + µ||x− ẑ ||22 (9)

where ∗ denotes a two-dimensional convolution operation. In this situation, the system
degradation matrix is a large sparse blurring matrix A. It is not wise to solve the equation
in matrix form. Hence, we obtain an analytic solution in the frequency domain based on
energy equality, as shown below:

^
x = F−1

{
µkF (ẑ) +F (psf)F (y)
F (psf)F (psf) + µ

}
(10)

where F and F−1 represent the fast Fourier transform (FFT) and the inverse FFT, respec-
tively. M represents the complex conjugate of matrix M. We use Equation (10) instead of
analytic updates in Algorithm 1 for deblurring. The third scenario is a lensless imaging
problem named FlatCam [21]. In FlatCam, the system model is:

y = ΦLxΦT
R + n (11)

where ΦL, ΦR are system transfer matrixes. n denotes noise. Therefore, the former equation
in (4) becomes the following:

^
x = arg min

x
||y−ΦLxΦT

R||22 + µ||x− ẑ ||22 (12)

The corresponding analytic solution is as follows:

^
x = VL

[
UT

LyUR
⊙(

σLσT
R
)
+ µVT

L ẑVR

σL2σT
R

2 + µ·||ones ||

]
VT

R (13)

where
[
UL, SL, VT

L
]
= SVD(ΦL),

[
UR, SR, VT

R
]
= SVD(ΦR), and the vectors σL, σR are the

diagonal entries of SL, SR. ||ones || denotes a matrix in which all elements are ones.
⊙

is
the Hadamard product. SVD is carried out in advance, and then the above formula can be
calculated efficiently. In the lensless image restoration experiment, Equation (13) is used
instead of the analytic update in Algorithm 1.

As shown in [76], the analytic updates of the lensless model y = ΦLxΦT
R also do not

introduce singularity and gradient explosion. This lays a theoretical foundation for our
network to successfully complete the training process. In the actual training process, we
record the PSNR values of the test image for different epochs, as shown in Figure 2. It can
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be seen that the losses converge gently to a straight line, which confirms the above analysis
from the side.
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4. Experiments

In this section, we perform experiments on three IR tasks: image denoising, image
deblurring, and lensless imaging. We fix and train a model for each specific problem.
All models are implemented in TensorFlow [77] and trained on a Linux server with an
Intel E5-2678 CPU at 2.5 GHz with 64 GB of memory and four graphic cards (NVIDIA
GTX1080Ti) with 11 GB of memory. We train our models through the ADAM optimizer [78]
by setting β1 = 0.9, β2 = 0.999, and ε = 10−8. `2 − loss is used as the loss function in all
experiments, which means that loss = z6 − G T ||22.

We train each model for 50 epochs. In addition, the PSNR and SSIM [79] metrics are
used for objective evaluation.

4.1. Ablation Study

Dong et al. [51] undertook some research into the deep unfolding IR method. Addi-
tionally, he performed a comparative experiment of deep unfolding net and pure DCNNs.
His results show that the performance of deep unfolding net which combining traditional
with deep learning is better than pure DCNNs. On this basis, we conducted five groups of
deblurring experiments to show the superiority of the analytical solution under the deep
unfolding framework. The datasets and training settings in each group used were the
same. More details are described in Section 4.3. The commonly used 10 images are used
for deblurring tests are shown in Figure 3. The results are summarized in Table 1.



Photonics 2021, 8, 376 9 of 18

Photonics 2021, 8, x FOR PEER REVIEW 9 of 18 
 

 

the same. More details are described in Section 4.3. The commonly used 10 images are 

used for deblurring tests are shown in Figure 3. The results are summarized in Table 1. 

     
(a) Boat (b) Camera man  (c) Flower (d) House (e) Lena 

     
(f) Man (g) Monarch (h) Parrot (i) Peppers (j) Plant 

Figure 3. The 10 commonly used images for our deblurring testing. 

Table 1. The average PSNR of 10 images in Figure 3 by three methods. 

Kernel 𝟏𝟕 × 𝟏𝟕 Kernel in [80] 𝟏𝟗 × 𝟏𝟗 Kernel in [80] 𝟐𝟓 × 𝟐𝟓 Gaussian 

Noise σ 2.55 7.65 2.55 7.65 2 

DPDNN [51] 31.97 28.65 32.53 29.01 31.01 

DPDNN-AS 32.30 28.89 32.89 29.20 31.24 

Ours 32.42 29.01 32.91 29.25 31.38 

DPDNN is a deep unfolding net that uses gradient descent in the first step and a net 

in the second step. The DPDNN-AS method replaces the gradient descent in the original 

DPDNN with the analytic solution and keeps the rest unchanged. From Table 1, the aver-

age PSNR is increased over 0.2 dB by using the analytic solution, which demonstrates the 

advantage of the analytical solution. In addition, the increased PSNR between our net-

work and the DPDNN-AS method shows the power of six small deep prior networks that 

have stronger adaptabilities at different stages. 

We also performed the ablation study results on different iteration numbers of our 

method. Two groups of deblurring experiments on the Kodak24 dataset with different 

kernel size were conducted as examples. The results are summarized in Table 2. The com-

parisons of calculation amount are shown in Table 3. Ours-1, Ours-2, Ours-4, Ours-6 

(Ours), and Ours-8 indicate the number of iterations in our method are 1, 2, 4, 6, and 8, 

respectively. Considering the effectiveness and computation cost, the number of iterations 

is set to six in our method. Compared with a fixed DCNN (DPDNN), our method greatly 

reduces the number of FLOPs when the total parameters are the same and the number of 

iterations is the same. 

Table 2. The average PSNR and SSIM values of our method with different iteration numbers on the 

Kodak24 dataset. 

Number of Iterations PSNR SSIM 

17 17  motion blur kernel of [80], 2.55n   

Ours-1 31.02 0.857 

Ours-2 31.48 0.865 

Ours-4 31.80 0.872 

Ours-6 (Ours) 31.94 0.874 

Ours-8 32.00 0.875 

19 19  motion blur kernel of [80], 2.55n   

Ours-1 31.32 0.865 

Ours-2 31.81 0.873 

Ours-4 32.18 0.880 

Ours-6 (Ours) 32.33 0.882 

Ours-8 32.41 0.884 

Figure 3. The 10 commonly used images for our deblurring testing.

Table 1. The average PSNR of 10 images in Figure 3 by three methods.

Kernel 17 × 17 Kernel in [80] 19 × 19 Kernel in [80] 25 × 25 Gaussian

Noise σ 2.55 7.65 2.55 7.65 2
DPDNN [51] 31.97 28.65 32.53 29.01 31.01
DPDNN-AS 32.30 28.89 32.89 29.20 31.24

Ours 32.42 29.01 32.91 29.25 31.38

DPDNN is a deep unfolding net that uses gradient descent in the first step and a net
in the second step. The DPDNN-AS method replaces the gradient descent in the original
DPDNN with the analytic solution and keeps the rest unchanged. From Table 1, the
average PSNR is increased over 0.2 dB by using the analytic solution, which demonstrates
the advantage of the analytical solution. In addition, the increased PSNR between our
network and the DPDNN-AS method shows the power of six small deep prior networks
that have stronger adaptabilities at different stages.

We also performed the ablation study results on different iteration numbers of our
method. Two groups of deblurring experiments on the Kodak24 dataset with different
kernel size were conducted as examples. The results are summarized in Table 2. The
comparisons of calculation amount are shown in Table 3. Ours-1, Ours-2, Ours-4, Ours-6
(Ours), and Ours-8 indicate the number of iterations in our method are 1, 2, 4, 6, and 8,
respectively. Considering the effectiveness and computation cost, the number of iterations
is set to six in our method. Compared with a fixed DCNN (DPDNN), our method greatly
reduces the number of FLOPs when the total parameters are the same and the number of
iterations is the same.

Table 2. The average PSNR and SSIM values of our method with different iteration numbers on the
Kodak24 dataset.

Number of Iterations PSNR SSIM

17 × 17 motion blur kernel of [80], σn = 2.55
Ours-1 31.02 0.857
Ours-2 31.48 0.865
Ours-4 31.80 0.872

Ours-6 (Ours) 31.94 0.874
Ours-8 32.00 0.875

19 × 19 motion blur kernel of [80], σn = 2.55
Ours-1 31.32 0.865
Ours-2 31.81 0.873
Ours-4 32.18 0.880

Ours-6 (Ours) 32.33 0.882
Ours-8 32.41 0.884
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Table 3. Parameters and FLOPs of DPDNN and our method with different iteration number in the
deblurring tasks.

Image Size 256 × 256 × 1

Method DPDNN Ours-1 Ours-2 Ours-4 Ours Ours-8
Parameters 1249K 393K 787K 1573K 2359K 3146K

FLOPs 794G 29G 59G 118G 177G 236G
Run time (Sec) 0.0712 0.0211 0.0256 0.0453 0.0575 0.0615

4.2. Image Denoising

In image denoising, the analytic updates are as in Equation (8) and x̂0 = y. To train
our network, we built a training dataset from the DIV2K dataset [81]. First, we cut out
27,594 small patches form DIV2K, each of which was 256× 256 in size. Then, we added
zero-mean Gaussian noise with the variance of σn to these small patches. Finally, we saved
the values of these patches as integers from 0 to 255. In this way, the original patch and the
patch after adding noise formed a training pair. We performed three groups of experiments
for image denoising, and σn was set as 15, 25, and 50. In these three experiments, the batch
size was 32, the initial value of µ0 was 0.9, and learning rate was 0.0005. The learning rate
was halved after every five epochs.

To illustrate the excellent effect of our network, we compare it with the existing model-
based methods—i.e., the BM3D method [4], EPLL method [5], and WNNM [40]—and
learning based methods—i.e., the TNRD [60], IRCNN [61], DnCNN-S [30], and FFDNet-
cl [48]. The BSD68 dataset and the Kodak24 dataset are used for testing. The values of noisy
inputs in the test are also clipped to integers between 0 and 255. The images of the above
three test sets are tested in grayscale. Table 4 records the average PSNR (dB) and SSIM
values of the compared methods on the BSD68 and the Kodak24 datasets. The highlighted
results show that our network is better than the compared methods. Among them, the
data of TNRD and IRCNN are derived from a published paper [61], and the data of other
methods are obtained according to public codes.

Table 4. The average PSNR values of test methods for denoising on the Bsd68 and Kodak24 datasets.

Method BM3D [4] WNNM [40] FFDNet-cl [48] TNRD [60] IRCNN [61] Ours

σn PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BSD68
15 31.02 0.873 31.23 0.876 31.65 0.890 31.42 - 31.63 - 31.70 0.891
25 28.34 0.797 28.52 0.803 29.21 0.829 28.92 - 29.15 - 29.25 0.831
50 24.86 0.669 24.81 0.664 26.28 0.725 25.97 - 26.19 - 26.28 0.726

Method BM3D [4] WNNM [40] FFDNet-cl [48] EPLL [5] DnCNN-S [30] Ours
σn PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Kodak24
15 32.23 0.877 32.46 0.880 32.81 0.892 32.10 0.881 32.72 0.890 32.85 0.893
25 29.68 0.814 29.89 0.818 30.47 0.838 29.54 0.815 30.13 0.832 30.51 0.840
50 26.22 0.707 26.23 0.705 27.61 0.748 25.94 0.696 26.40 0.717 27.53 0.750

Figure 4 shows the denoising result of the well-known image Lena. As we can see, our
result is more delicate and maintains more thin lines in the complex area than other results.
When the noise level is σn = 25, our results are also better than the compared results. As
shown in the green box in Figure 5, our method works well in the high-frequency region
and restores more details and textures than other methods.
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Figure 5. Image denoising results on kodim15 in Kodak24 with noise level σn = 25. (a) The original image. (b) The result of
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4.3. Image Deblurring

In order to verify the deblurring ability of our network, we performed five groups
of experiments. In these experiments, we used the clear image convolution blur kernel
to obtain the data set. Three blur kernels were selected, including a 25 × 25 Gaussian
blur kernel with a standard deviation of 1.6 and two motion blur kernels from [80], one
of which was 17 × 17, and the other was 19 × 19. For image deblurring, the analytic
update in Algorithm 1 is shown in Equation (10), and x̂0 = ATy. To train our deblurring
network, we first convoluted the images in the DIV2K dataset with a blur kernel and
added additive Gaussian noise with a standard deviation of σn. In particular, we used
zeros to fill the border of the image during the convolution. The convolution results were
saved as integers between 0 and 255. Next, we cut the edge of each blurred image at half
the length of the blur kernel and extracted 27,468 patches with size of 256 × 256 pixels
from it. We trained five models for five experiments, and the blur settings are shown in
Table 4. In these deblurring experiments, the batch size was 32, the initial value of µ0 was
0.9, and the learning rate was 0.0005. Similar to the denoising networks, our deblurring
networks also reduced the learning rate by half every five epochs. During the test phase,
we employed the 10 commonly used images seen in Figure 3 and the Kodak24 dataset as
test images. Similarly, the above convolution was used to generate the blurred inputs for
the test images. All images were operated at grayscale. With the purpose of demonstrating
the excellent performance of our network, we compare it with the classical model-based
methods (IDD-BM3D [11], EPLL [5], and NCSR [26]), the denoising-based IR method under
framework of plug and play (IRCNN [61]), and the end-to-end deep unfolding network
(DPDNN [51]). The PSNR values of the deblurring results of 10 commonly used images
(see Figure 3) are shown in Table 5. The results of the IDD-BM3D, EPLL, NCSR, and
IRCNN methods are obtained by restoring the test images with open codes. If there is a
ringing effect in the test process, we use the egdetaper function of MATLAB to perform an
edge-preserving processing on the input.
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Table 5. The PSNR values of the deblurred 10 images in Figure 3 by the test methods.

Method
Image Boat C. Man Flower House Lena256 Man Monar. Parrots Peppers Plant Ave.

Gaussian blur with standard deviation 1.6, σn = 2
IDD-BM3D [11] 29.97 26.65 28.40 32.49 29.58 30.43 28.37 29.62 29.43 32.25 29.72

EPLL [5] 30.55 26.66 28.81 32.83 30.03 30.63 29.37 29.80 30.02 32.88 30.16
NCSR [26] 31.19 27.62 29.28 33.33 30.30 30.93 29.86 30.52 30.24 33.56 30.68

IRCNN [61] 31.20 27.94 29.63 33.53 30.44 30.99 30.58 30.24 30.76 33.86 30.92
DPDNN [51] 31.10 28.08 29.66 33.27 30.71 31.13 30.76 30.81 30.66 33.89 31.01

Ours 31.44 28.53 30.01 33.73 30.95 31.28 31.06 31.13 30.96 34.69 31.38
17 × 17 motion blur kernel of [81], σn = 2.55

IDD-BM3D [11] 30.24 29.36 28.70 32.71 30.30 30.11 27.39 31.70 28.93 32.34 30.18
EPLL [5] 31.85 29.98 30.03 33.90 31.70 31.20 30.02 32.29 31.03 33.21 31.52

IRCNN [61] 31.95 30.84 30.51 33.49 31.90 31.31 29.20 33.15 29.80 34.09 31.62
DPDNN [51] 32.02 30.45 30.39 33.90 32.35 31.65 31.15 32.86 31.13 33.82 31.97

Ours 32.50 30.90 30.77 34.66 32.72 31.88 31.67 33.29 31.37 34.45 32.42
17 × 17 motion blur kernel of [81], σn = 7.65

IDD-BM3D [11] 27.22 25.78 25.61 30.20 27.59 27.20 25.25 27.85 26.86 29.20 27.28
EPLL [5] 26.96 24.87 25.07 28.93 27.33 27.24 23.73 26.14 27.04 28.65 26.60

IRCNN [61] 28.56 27.69 26.92 31.40 28.81 28.41 27.25 29.55 27.75 30.52 28.69
DPDNN [51] 28.60 27.28 26.82 31.08 28.85 28.51 27.47 29.45 28.18 30.30 28.65

Ours 29.03 27.63 27.20 31.75 29.17 28.70 27.84 29.70 28.38 30.70 29.01
19 × 19 motion blur kernel of [81], σn = 2.55

IDD-BM3D [11] 30.29 29.42 29.38 31.82 30.49 30.52 28.93 31.21 28.97 32.72 30.38
EPLL [5] 32.13 30.57 30.47 33.19 32.31 31.58 30.91 32.62 31.41 33.74 31.89

IRCNN [61] 31.59 30.57 30.93 32.00 31.74 31.30 30.52 32.48 29.88 34.19 31.52
DPDNN [51] 32.59 31.06 31.36 33.63 32.94 32.05 32.02 33.31 31.66 34.67 32.53

Ours 33.13 31.42 31.81 34.27 33.21 32.25 32.43 33.61 31.85 35.15 32.91
19 × 19 motion blur kernel of [81], σn = 7.65

IDD-BM3D [11] 27.54 26.32 25.62 30.17 27.89 27.38 25.58 28.00 27.29 29.42 27.52
EPLL [5] 27.01 25.61 24.85 29.04 27.51 27.54 24.48 26.63 27.43 28.99 26.91

IRCNN [61] 28.80 27.77 27.43 30.92 29.25 28.52 28.04 29.68 28.47 31.12 29.00
DPDNN [51] 28.84 27.61 27.23 30.78 29.27 28.72 28.20 29.76 28.64 31.02 29.01

Ours 29.17 27.77 27.53 31.24 29.39 28.86 28.43 29.91 28.77 31.44 29.25

We retrain the DPDNN method with our training set according to open codes. It can
be seen from Table 5 that our method is obviously superior to the compared methods. Our
results are 0.36 dB higher than those of the DPDNN, on average. We selected three groups
of images to visually show the effect of the deblurring, as shown in Figures 6–8. Among
them, Figure 6 shows that our result recovers the most object information in the region
close to the background. Figure 7 shows the effect of processing high-frequency areas, and
the enlarged green boxes show that we have restored more hairs and details.
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image. (b) The result of EPLL. (c) The result of IRCNN. (d) The result of DPDNN. (e) Our result.
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Figure 8. Image deblurring results on Plant in Figure 3 with 25 × 25 Gaussian kernel and σn = 2. (a) The original image. (b)
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In addition to the good performance of our method on the motion blur kernel, our
method also works well on the Gaussian kernel. As shown in Figure 8, our result has high
contrast and sharp edges. We also test our network on the Kodak24 dataset. The PSNR
and SSIM values are summarized in Table 6. Our results are superior to the other results.

Table 6. The Average PSNR Values of The Test Methods For Deblurring on The Kodak24 Dataset.

Method
Gaussian Blur with
Standard Deviation

1.6, σn = 2

17 × 17 Motion Blur
Kernel of [80],

σn = 2.55

17 × 17 Motion Blur
Kernel of [80],

σn = 7.65

19 × 19 Motion Blur
Kernel of [80],

σn = 2.55

19 × 19 Motion Blur
Kernel of [80],

σn = 7.65

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
IDD-BM3D

[11] 29.54 0.828 30.36 0.821 26.74 0.706 30.30 0.827 26.88 0.713
EPLL [5] 29.48 0.823 31.13 0.842 26.82 0.706 31.49 0.852 27.09 0.715

NCSR [26] 29.96 0.833 - - - - - - - -
IRCNN [61] 29.99 0.831 31.33 0.849 28.28 0.765 30.88 0.841 28.52 0.773
DPDNN [51] 30.15 0.842 31.57 0.860 28.38 0.765 32.00 0.871 28.72 0.780
DPDNN-AS 30.29 0.847 31.84 0.870 28.58 0.775 32.28 0.879 28.89 0.786

Ours 30.43 0.850 31.94 0.874 28.68 0.779 32.33 0.882 28.99 0.790

4.4. Lensless Imaging

In this section, we apply our network to the lensless FlatCam. The imaging model is
as in Equation (11). The corresponding analytic solution is shown in Equation (13). x̂0 is
the least squares estimation with the Tikhonov regularization term. We use the training set
from the MLS (maximum length sequence) mask in [76]. There are 10,000 pairs of data in
this training set. The degraded measurement is 2048 × 2048 in size. The ground truth is
512 × 512 in size. More experimental details are described in [76]. The test images come
from two places: ImageNet [82] and the valid set of DIV2K [81]. As with the training set,
we displayed the test images on the screen and then record the values on the CMOS. For
the restoration of FlatCam images, the batch size was 8, the initial value of µ0 was 0.001,
and the learning rate was 0.0005. Similarly, the learning rate was halved every five epochs.

After the model was trained, we compared it with the existing methods, such as
Tikhonov [21], FISTA [83], and Khan’s method FlatNet [23]. Figure 9 shows the results
on three images of ImageNet. In Figure 9, Khan’s results are derived from [23], and other
results are obtained by our programming. Since our original images are from [23], we
discarded the pixels in the lower right corner when calculating the PSNR. As shown in
Figure 9, our method outperforms the other three methods. Our results are closest to the
ground truth without color distortion. To test the image in DIV2K’s valid set, we resized
the original image to 512. Figure 10 shows the results on 0898.png of DIV2K’s valid set. As
we can see, our overall recovery rate is good, but there is still a blur in the detail area due
to the ill condition of FlatCam. The average PSNR and SSIM values for 100 valid images in
the DIV2K valid set are summarized in Table 7.
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Figure 9. FlatCam imaging results on three images of ImageNet. (a) The results of image ‘Store’. (b) The results of image
‘Insect’. (c) The results of image ‘Boy’.
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5. Conclusions

In this paper, we propose a DCNN denoiser based unrolled network for image restoration.
We unfold the tedious iterative process in the model-based method into an end-to-end network
consisting of several iterations, each of which has an analytic solution update step and a
small multiscale deep denoiser network. Every DCNN serves as a denoiser rather than as
the whole inverse process, which makes the network function easier to realize. In this way,
our method can take advantage of optimization and the DCNNs. Specifically, we solve the
convex problem in the form of an analytic solution that is faster than gradient descent under
this framework. In addition, we use different multiscale prior networks in different iterations
to better accommodate the image features. Compared with a fixed DCNN, it greatly reduces
the number of computations when the total parameters are the same and the number of
iterations is the same. Under an unrolled optimization framework, our method incorporates
the physical model into the overall network, which provides a guarantee of high-quality
image restoration. Visual effects and quantitative evaluation of the method for three IR tasks,
including denoising, deblurring, and lensless imaging, indicate that our method achieves
excellent performance in high quality image reconstruction.
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