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Abstract: The photonic nanojet is a non-resonance focusing phenomenon with high intensity and
narrow spot that can serve as a powerful biosensor for in vivo detection of red blood cells, micro-
organisms, and tumor cells in blood. In this study, we first demonstrated photonic nanojet modulation
by utilizing a spider-silk-based metal–dielectric dome microlens. A cellar spider was employed
in extracting the silk fiber, which possesses a liquid-collecting ability to form a dielectric dome
microlens. The metal casing on the surface of the dielectric dome was coated by using a glancing
angle deposition technique. Due to the nature of surface plasmon polaritons, the characteristics of
photonic nanojets are strongly modulated by different metal casings. Numerical and experimental
results showed that the intensity of the photonic nanojet was increased by a factor of three for the
gold-coated dome microlens due to surface plasmon resonance. The spider-silk-based metal-dielectric
dome microlens could be used to scan a biological target for large-area imaging with a conventional
optical microscope.

Keywords: photonic nanojet; spider silk; dome lens

1. Introduction

Currently, the design of mesoscale photonic devices with high spatial resolution and
operation speed opens up prospects for the evolution of novel microscopic and manufac-
turing technologies [1,2]. According to the principle of optics, the spatial resolution of
traditional optical elements is defined by diffraction, and the minimum dimension of the
focal spot is more than half the wavelength of the incident light wave. This description sig-
nifies that traditional optical elements in the circuit are positioned at an extensive distance
from each other compared to the wavelength. Therefore, multitudinous investigations have
verified the materialization of a high-intensity optical field restrained in a region when
the light wave was focused by a mesoscale dielectric particle [3–14]. This phenomenon is
referred to in several academic papers as the photonic nanojet effect. For generating a pho-
tonic nanojet, the Mie size parameter (q = 2πr/λ) of a dielectric particle should correspond
to q~(2 . . . 40)π, where r is the particle radius and λ is the operating wavelength [15,16]. In
contrast to the case of focusing radiation with a traditional optical lens, a photonic nanojet
is formed in the near-scattering area, where the intensity field is a complex spatial structure
determined by a superposition of outgoing and decaying evanescent waves. The intensity
distribution and localization of a photonic nanojet depends on the shapes and physical
properties of the mesoscale dielectric particles and surrounding media. As a rule, the as-
semblies of mesoscale particles are embedded in a polymer film, which makes it possible to
arrange particles in diverse spatial configurations [17–20]. Such a composite polymer film
will lead to a multiple increase in the intensity field of a photonic nanojet. However, one of
the problems with photonic nanojets in near-field focusing is the short spatial length of
the focal region that emerges near the convex surface of classical particle geometry. Hence,
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the searches for mesoscale particles of other geometric shapes are stimulated to extend the
length of the photonic nanojet as far as possible from the particle surface [21,22]. It is also
noted that the characteristics (length, width, and peak intensity) of photonic nanojets can
be varied by changing the geometric parameters of mesoscale particles such as spheroids,
hemispheres, core-shell spheres, toroids, axicons, pyramids, and cuboids [23–31]. However,
the fabrication of composite inhomogeneous particles is a problem of great complexity.
A natural method is required for assembling mesoscale particular particles in the next
step. In natural materials, spider silk possesses several valuable features, including large
tensile strength, great toughness, and high elasticity [32–34]. In general, spider silk is
enclosed by meshes with nanosized strings and cavities. The appearance of a lyotropic
liquid crystalline phase determines the mechanical properties of spider silk. Among spider
silks, dragline silk possesses large tensile strength and is used as the skeleton of a web.
Natural silk fiber can be utilized for optical guiding, imaging, and sensing applications due
to its biocompatibility, bioresorbability, and excellent mechanical properties [35–40]. An
optical microlens based on natural silk fiber could therefore be very practical, and needs
further demonstration.

In this study, we first theoretically and experimentally demonstrate efficient photonic
nanojet modulation of a mesoscale metal–dielectric dome microlens based on natural silk
fiber. The silk fibers were directly collected from a daddy long-legs spider for fabricating
the dome microlens due to their better homogeneity and mechanical properties. The
glancing angle deposition technique was used to coat different metal layers on the dome
surface. The inspections of the photonic nanojet modulations were performed by numerical
simulations and a laser scanning digital microscope. The critical parameters of the focusing
spot for the dome microlens with different metal coatings were studied systematically.

2. Experimental Methods
2.1. Metal–Dielectric Dome Microlens

The cellar spider (Pholcus phalangioides), commonly known as the “daddy long-legs”,
can be found throughout the world, especially in undisturbed low-light locations. People
often associate this spider with living in the corners of a rooms near the floor and ceiling.
Figure 1a shows a daddy long-legs spider that usually spins its webs large, loose, and flat. A
daddy long-legs spider was employed to output a single strand of silk fiber from the major
ampullate gland for the experiments. Figure 1b shows the electric reeling system for silk
fiber collection under controlled conditions of reeling speed, humidity, and temperature.
A silk fiber with a smooth surface, circular cross-section, and uniform material quality
was extracted with the reeling process. This silk fiber was a transparent medium, and
the refractive index was about 1.55 in visible light region [35]. Due to the high refractive
index contrast between silk fiber and the surrounding air, optical multimode guidance
can be excited in the silk fiber [37]. After the reeling collection, a silk fiber with a 7 cm
length and a 2 µm diameter was fixed at both ends of a specialized holder. A paraffin
wax was placed below the bare silk fiber, and the photocurable resin (Everwide FP098)
was dropped onto the silk’s surface. The refractive indices of the photocurable resin were
1.519, 1.503, and 1.495 for 405 nm, 532 nm, and 671 nm wavelengths, respectively. Due
to the obstruction of the paraffin wax, the photocurable resin was concentrated only in
one direction and formed a dome shape on the silk fiber. In the initial phase, slight resin
drops condensed on the transparent puffs. As resin condensation continued, the puffs
enlarged into bumps and finally became periodic dome shapes. The standing time of the
photocurable resin determined the dome dimension because the silk fiber had the excellent
ability of directional liquid collection. This structural wet-rebuilding ability of silk fiber
has been reported in previous scientific literature [33]. Finally, the solidified dielectric
dome microlens was obtained by using an ultraviolet oven (OPAS TX-500ST, Ganbow
Technology Co., New Taipei City, Taiwan) and curing statically for 12 s. Furthermore, the
glancing angle deposition technique was performed to coat different metal nanolayers on
the dome surface [41]. Figure 1c shows the sputtering manufacturing process for coating
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the spider-silk-based metal-dielectric dome microlens. The metal nanolayer could be
uniformly deposited on the dome surface because the silk fiber was inclined with respect to
the metal target during the sputtering process. A scanning electron microscope (SEM) was
employed to obtain the actual images of the dome microlens on the silk fiber. Figure 1d
exhibits an SEM image of the spider-silk-based metal-dielectric dome microlens. It was
observed that the diameter of the silk fiber was about 2 µm, and the uniformity of dome
shape was excellent. In order to verify the metal layer’s thickness, the metal–dielectric
dome microlens was cleaved by a commercial focused ion beam system (Helios NanoLab
600i, FEI, Hillscoro, OR, USA). It was clarified that the thickness of the metal nano-layer
was about 5 nm. The silk-based metal–dielectric dome microlens could be utilized as a
plasmonic device.
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Figure 1. (a) A photo of a daddy long-legs spider. (b) The electric reeling system for the spider silk.
(c) The sputtering manufacturing process for coating the spider-silk-based metal–dielectric dome
microlens. (d) An SEM image of the dome microlens. (e) The laser scanning digital microscope
system for measuring the dome microlens. (f) A schematic diagram of the dome microlens for
photonic nanojet modulation.

2.2. Measurement Setup

In the experiments, a commercial laser scanning digital microscope system (LEXT
OLS4100, Olympus, Tokyo, Japan) was employed for measuring the optical field intensity
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of different metal–dielectric dome microlenses [42]. Figure 1e shows the experimental
configuration of the measurement system. A diode-pumped solid-state laser with wave-
lengths of 405 nm, 532 nm, and 671 nm was used for illuminating the dome microlens. The
metal-dielectric dome microlens was clamped on a specialized holder and fastened on a
three-axis motorized stage for aligning the laser beam. The auto-focus processing, based on
Olympus software, was used to obtain accurate cross-section images with a 10 nm height
resolution and 120 nm lateral resolution. The experimental images of the field intensity
distributions generated by the dome microlens were acquired by using an objective lens
(MPLAPON100XLEXT, Olympus, Tokyo, Japan) with a working distance of 0.35 mm, a
numerical aperture of 0.95, and a photomultiplier. The technical details of the commercial
laser scanning digital microscope can be found on the official website for Olympus. Figure
1f shows the schematic diagram of the metal-dielectric dome microlens for photonic nanojet
modulation. The convex side of the metal-dielectric dome microlens was illuminated by
the laser beam along the x axis. The photonic nanojet is shown on the right side of the dome
microlens. The focal length f is the axial distance from the flat side of the dome microlens
to the maximum peak amplitude (Imax) along the x axis. The decay length is the axial
distance from the Imax at which the intensity distribution drops to Imax/e along the x axis.
The full width at half-maximum (FWHM) is the transverse width between the Imax and
half-maximum point along the z axis. The finite-difference time-domain (FDTD) method
was utilized to build the simulation model of the metal-dielectric dome microlens [43]. The
mesh grid in the metal layer region was 1 nm for high accuracy, but the mesh grid in the
dielectric and surrounding media was 20 nm for high calculation speed. Perfectly matched
boundary layers were implemented along the boundaries of the simulation area. The gold-,
silver-, and copper-coating layers had a refractive index of 0.54 + 2.23i, 0.05 + 3.43i, and
1.12 + 2.59i, respectively, at a wavelength of 532 nm [44]. The surrounding medium was air
with a refractive index of 1.

3. Results and Discussions

In order to achieve the function of photonic nanojet beam steering, it is important to
be able to arbitrarily modulate the focusing property from different metal–dielectric dome
microlenses. The numerical and experimental results of the photonic nanojet modulation
were verified as indicated below. Figure 2a–d display the numerical results of normalized
power flow patterns for the dielectric, gold-coated, silver-coated, and copper-coated dome
microlenses. From the amplitude distributions, one can observe that the photonic nanojet
was formed close to the surface of the microlens for the dielectric dome microlens, while
it moved away from the microlens surface for the metal-coated dome microlenses. In the
case of a general sphere, the photonic nanojet only has a short focal length due to the rapid
convergence and divergence near the focusing point [11]. The photonic nanojet can be
modified by changing the design of the engineered spheres, which leads to a sharp spot
size [12]. This concept demonstrated that the dome microlens acted like a ball lens, and
the focusing spot was deformed along the propagation direction by the different metal
nanolayer coatings. It was also observed that the effect of the metal nanolayers on the
photonic nanojet beam shaping was clarified by the power flow patterns. The maximum
intensity of the photonic nanojet changed as the metal nanolayers of dome microlenses
changed. As seen from the power flow patterns, the intensity of the photonic nanojet was
effectively amplified by coating a gold nanolayer on the dome surface, due to the surface
plasmon polaritons [45].
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Figure 2. Numerical results of normalized power flow patterns for the (a) dielectric, (b) gold-coated,
(c) silver-coated, and (d) copper-coated dome microlenses; and raw experimental images of the
(e) dielectric, (f) gold-coated, (g) silver-coated, and (h) copper-coated dome microlenses. The incident
wavelength was 532 nm for all the dome microlenses. The inset is a microphotograph of the spider-
silk-based dome microlens.

Figure 2e–h display the direct experimental images of the intensity distribution for
different metal-dielectric dome microlenses at a 532 nm wavelength for verification. Com-
pared with the simulation results, the focusing effect of the photonic nanojet is exhibited
clearly in the raw images. Apparently, the field intensity distributions of the experiments
were largely in agreement with the simulation results. As shown in Figure 2a,e, the di-
electric dome microlens generated the photonic nanojet, the shape of which behaved in
a manner similar to a stiletto knife. The field intensity distributions around the focusing
point were nearly parallel, and therefore formed a narrow strip. It can be seen in Figure 2f
that the focusing intensity of the gold-coated dome microlens was enhanced significantly
due to the surface plasmon resonance. The photonic nanojet’s focus with the surface plas-
mon resonance was almost three times the field intensity of the dielectric dome microlens.
Controllable photonic nanojet formation excited by plasmonic effects can be described by
the dispersion relation of the surface plasmon polaritons [45,46]. The experimental image
in Figure 2g demonstrates that the surface plasmon absorption excited on the silver layer
caused the intensity reduction of the photonic nanojet for the silver-coated dome microlens.
In Figure 2h, the dispersion effect on the surface of the copper-coated dome microlens
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can be observed due to the surface plasmon scattering. The surface-dependent reflectance
arose from the copper layer, and the optical beam was dispersed from the layer surface.

To quantitatively estimate the quality of the photonic nanojet, we determined several
critical parameters from the field intensity distribution. Figure 3 shows the critical parame-
ters as a function of the incident wavelength for the dome microlenses with different metal
coatings. The focal lengths at a 532 nm wavelength were measured to be 2.27 µm, 2.66 µm,
2.75 µm, and 2.88 µm for the dielectric, gold-coated, silver-coated, and copper-coated dome
microlenses, respectively. The focal length increased as the incident wavelength increased.
Compared to the dielectric dome microlens, the focal length was increased by 27% for the
copper-coated dome microlens. The focal length could be adjusted by varying the metal
layer. When the dome microlens was coated with a metal layer, the focal length was large
enough to meet the working distance for microlens-aided imaging [2]. In Figure 3b, the
decay lengths at a 532 nm wavelength were measured to be 1.93 µm, 2.29 µm, 2.16 µm,
and 2.23 µm for the dielectric, gold-coated, silver-coated, and copper-coated dome mi-
crolenses, respectively. It was observed that the decay length had a maximum value at an
incident wavelength of 532 nm for all the metal-dielectric dome microlenses. In Figure 3c,
the transverse FWHMs at a 532 nm wavelength were measured to be 192 nm, 215 nm,
232 nm, and 263 nm for the dielectric, gold-coated, silver-coated, and copper-coated dome
microlenses, respectively. The transverse FWHM of the photonic nanojet decreased as
the incident wavelength decreased. As the incident wavelength decreased to 405 nm, the
corresponding FWHM became significantly less than 0.5λ via the experimental verifica-
tions. The suggested metal-dielectric dome microlenses showed great potential for far-field
super-resolution lithography and imaging applications [42].
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Figure 4a shows the normalized intensity distributions of photonic nanojets for the
different metal-dielectric dome microlenses along the propagation axis (x axis). The origin
of the longitudinal profile along the propagation axis was located at the flat surface of the
dome microlenses. All intensity profiles were normalized to the intensity profile for the
dielectric dome microlens. The photonic nanojet generated by dome microlenses emerged
in the form of a Gaussian distribution with an exponentially decaying trail. The length of
the photonic nanojet increased as the dome microlens was coated with metal layer, and
the field intensity was enhanced as well. The maximum intensity increased by 180% for
the gold coating, although the maximum intensity decreased by 10% for the silver coating.
Depending on the metal layer, we observed that not only the intensity of the photonic
nanojet was enhanced, but the effective length of the photonic nanojet also was elongated.
The engineered metal–dielectric dome microlens is expected to provide high concentration
and low divergence in the focusing point [24].
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Figure 4. (a) Normalized intensity distributions of photonic nanojets for different metal-dielectric
dome microlenses along the propagation axis (x axis). (b) FWHM as a function of the propagation
distance for photonic nanojets for the different metal-dielectric dome microlenses. The inset indicates
that the yellow arrow is the propagation direction, the red lines are the positions of serial cross-
sections for the FWHM, and the blue lines are the straight fitting lines.

Figure 4b shows the FWHM as a function of the propagation distance for the photonic
nanojets with different metal–dielectric dome microlenses. The origin of the propagation
distance corresponded to the point of maximal peak amplitude. The slope of the straight
fitting line was used to determine the divergence angle of the photonic nanojets [7]. The
divergence angles at a 532 nm wavelength were measured to be 6.3◦, 2.6◦, 3.8◦, and
7.2◦ for the dielectric, gold-coated, silver-coated, and copper-coated dome microlenses,
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respectively. The proposed metal-coated dome microlens can work with a low divergence
angle and long focal length, which is not possible for dielectric spherical microlenses. It
was apparent that the divergence angle of the designed dome microlens was sensitive to the
refractive index of the surrounding medium. When the dome microlens was coated with a
metal layer, the refractive index of the surrounding medium could be found indirectly by
measuring the divergence angle. Both the above-mentioned experimental and simulation
results confirmed that the metal-dielectric dome microlens with flexible photonic nanojet
modulation was suitable for a plasmonic sensor of the refractive index [47].

4. Conclusions

In this work, photonic nanojet modulation based on a metal-dielectric dome microlens
was first theoretically and experimentally demonstrated with an extended focal length,
narrow beam waist, long effective length, and low divergence angle. The directional liquid
collection capability of wet-rebuilt silk fiber was utilized for the formation of the dielectric
dome microlens. The dielectric dome microlens was coated with different metal layers by
using the glancing angle deposition technique. Through FDTD simulation and experimen-
tal analysis, we concluded that the improvement of the photonic nanojet was attributed to
the nature of surface plasmon polaritons, which caused a high concentration near the metal-
dielectric interface. The gold-coated dome microlens had an intensity enhancement of
about three times due to surface plasmon resonance. The focal length of the photonic nano-
jet was increased by 27% for the copper-coated dome microlens. A minimum divergence
angle of 2.6◦ was achieved by the gold-coated dome microlens. Moreover, the proposed
metal-dielectric dome microlens showed compatibility with the adjacent wavelengths and
a spot width less than half-wavelength. These kinds of plasmonic microlenses have great
potential in far-field flexible parallel lithography with a sub-wavelength line width.
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