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Abstract: Traditional microscopy provides only for a small set of magnifications using a finite set
of microscope objectives. Here, a novel architecture is proposed for quantitative phase microscopy
that requires only a simple adaptation of the traditional off-axis digital holographic microscope. The
architecture has the key advantage of continuously variable magnification, resolution, and Field-of-
View, by simply moving the sample. The method is based on combining the principles of traditional
off-axis digital holographic microscopy and Gabor microscopy, which uses a diverging spherical
wavefield for magnification. We present a proof-of-concept implementation and ray-tracing is used
to model the magnification, Numerical Aperture, and Field-of-View as a function of sample position.
Experimental results are presented using a micro-lens array and shortcomings of the method are
highlighted for future work; in particular, the problem of aberration is highlighted, which results
from imaging far from the focal plane of the infinity corrected microscope objective.

Keywords: digital holographic microscopy; digital inline holographic microscopy; variable magnifi-
cation; off-axis holography

1. Introduction

Holography [1,2] is an imaging methodology that involves separate processes for
recording and replay in order to recover the image. For several decades, photographic
films were required to record the holograms and the reconstruction process was also imple-
mented optically; however, in the past two decades this approach has been superseded
by the application of a digital area sensor to record the holograms, and the reconstruction
process is performed using a set of computer algorithms that simulate optical replay [3,4].
Several architectures exist for optically recording a digital hologram. The off-axis technique,
initially developed for the case of photographic film [2], enables separation of the noisy
DC and twin terms that are inherent in holography. This approach was first used with
digital sensors by Cuche et al. [5] whereby image reconstruction is numerical in nature
and spatial filtering is achieved in the discrete Fourier transform domain to isolate the real
image. Refocusing can also be achieved using numerical propagation algorithms [5–8].

Digital holographic microscopy [5,6] (DHM) is an extension of digital holography,
whereby a coherently illuminated object wavefield is first magnified using a microscope
objective before recording using digital holography. DHM enables the quantitative phase
image of a microscopic sample to be recorded and has been shown to be a powerful
technique for the analysis of biological cells [9,10]. Building on the work of Leith and
Upatieks [2] in the area of material holography, arguably the most common architecture for
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implementing DHM is to use an off-axis reference beam [5], which results in the separation
of the twin images in the discrete Fourier domain of the recorded digital image.

Digital in-line holographic microscopy [7,11–15] (DIHM) is a related technique us-
ing a much simpler architecture and is based on Gabor’s original setup [1]. In DIHM,
a pinhole generates a diverging spherical wave, which is incident on a sample some small
distance away. The resultant diffraction pattern is captured by a digital sensor and an
image can be reconstructed numerically using a variety of different algorithms [7,11,16].
This approach has the advantage of continuously variable magnification/Field-of-View by
moving the sample between the pinhole and the sensor, with low magnifications (when
the sample is placed atop the sensor) still providing high resolution [17–19]. However, the
reconstructed image is marred by the presence of the DC term and the twin image, which
complicates retrieval of the phase image; furthermore, the method is applicable only to
weakly scattering objects [15,20]. These problems can be overcome using a multi height
approach [17,18,21,22] or more recently using deep learning in neural networks [19] to re-
cover the phase image. However, such approaches are not easily applicable to dynamically
changing scenes.

The objective of this letter is to present a proof-of-concept combination of the standard
off-axis DHM and DIHM architectures. The proposed setup, described in Section 2, has
the key advantage of DIHM relating to continuously variable magnification/Field-of-View
by simply moving the sample, but overcomes the disadvantages listed above. It is shown
that this can be achieved by a simple adaptation of a typical off-axis DHM system, which
involves only the addition of a Fourier transforming lens before the sensor, as well as
the adjustment of the condenser lens to provide diverging illumination; this latter idea
is borrowed directly from the DIHM modality. In the sections that follow, the concepts
of the ABCD ray-transfer matrix and ray-tracing are used to design a reconstruction
algorithm and to estimate the Numerical Aperture and Field-of-View of the system for
each object position.

2. Optical System
2.1. Experimental Setup

In Figure 1 the proposed optical setup is illustrated, which is based on a small adapta-
tion of a traditional off-axis DHM setup that was previously described in ref. [23]. A laser
diode source (CNI Laser MGL-III-532) operating at a power of 10 mW and with wavelength
532 nm is coupled into a single mode optical fiber (Thorlabs; FC532-50B-FC) that splits
into two output fibers with a 50/50 power ratio. The first fiber output is collimated by a
plano convex lens with focal length 5 cm and passed through a linear polariser (Thorlabs;
LPVISE100-A) and a condenser lens (Olympus; UMplanFl 50× /0.8) to illuminate the sam-
ple. The fiber output and collimating lens are both fixed within a single lens tube, which is
mounted on a translation stage (Thorlabs; CT1) and facilitates path length matching.

The condenser focuses a collimated beam to a diffraction limited spot at the focal
plane of the MO, (Leitz; 32× /0.6) which has a Numerical Aperture of 0.6 and a working
distance of 3.5 mm. Both the condenser and the MO are infinity corrected objectives,
and are spatially separated by the sum of their working distances. The focused spot is,
therefore, located in the focal plane of both objectives. The sample is positioned at some
plane a distance d from this focused spot and is, therefore, illuminated by a diverging
wavefield, similar to the case of DIHM. The sample is mounted on an electronic translation
stage (ASI; MS-2000, LS-50, LX-4000). The wavefield that is scattered by the object passes
through the MO, followed by a tube lens with focal length 200 mm (Thorlabs; TTL200) and
a convex lens also with 200 mm focal length (Thorlabs; LB1945-A), which is positioned
200 mm from the (traditional) image plane at the back of the tube lens and 200 mm from
the sensor plane; this latter lens performs an optical Fourier transformation between the
image plane of the microscope and the sensor. A polarising cube beam splitter (Thorlabs;
PBS252) combines the object wavefield with a reference wavefield, which is produced from
the output of the second fiber, which is collimated by a lens and directed at the camera at
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a small angle. A second linear polariser (Thorlabs; LPVISE100-A) is positioned before the
CMOS sensor (Basler; acA200-340 km), which has 2048× 1088 pixels of size 5.5µm. The
coherence length of the laser is 0.1 mm, which ensures that noise from back reflections
is reduced; however, this requires that the path lengths are suitably matched, which is
achieved using different fiber lengths for both paths. The final linear polariser ensures
high hologram diffraction efficiency. All optical elements were obtained from Thorlabs
with anti-reflection coating for the visible region. The angle of reference with respect to the
camera normal, is selected to ensure separation of the twin images from the other terms
in the spatial frequency domain [20]; this enables isolation of the real image by filtering
using the discrete Fourier transform (DFT) [5]. This is possible if the support of the object
wavefield in the spatial frequency domain is sufficiently limited and the frequency shift
imparted by the angle of the reference is sufficiently large; for more details see Chapters
6 and 9 of Goodman [20]. In Section 3, image formation for this system is investigated
based on diffraction theory, and it shown that the mapping between the object plane and
the camera plane can be modeled by a simple Fresnel transform as well as a variable
magnification that is equivalent to that provided by DIHM.

Figure 1. Optical setup of variable magnification off-axis DHM. L: Plano-convex lens; FC: Fiber
Coupler; FS: Fiber Splitter; P: Polarizer; C: condenser; S: Sample plane; MO: Microscope Object; TL:
Tube Lens; PBS: Beam Splitter; FL: Fourier transforming convex lens. The dashed lines represent the
typical object plane at the focal plane of the (infinity corrected) MO and the corresponding image
plane; also for typical DHM the illumination would be a plane wave whereas for this setup the
illumination is a diverging spherical wave originating from a point-source at the focal plane, which is
produced via beam-focusing using the condenser lens. The object can be placed anywhere between
the focal plane of the MO and the surface of the MO to achieve variable magnification. Another
feature of the setup is that instead of recording the complex wavefield at the image plane of the
microscope, the optical Fourier transform of this image is recorded by inserting a lens after the
image plane.
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2.2. Comparison with Setup for Traditional Off-Axis Digital Holographic Microscopy

The optical system described above is based on an adaptation of the traditional off-axis
DHM architecture, which is commercially employed by LynceeTec and others. The key
features of this adaptation are as follows:

• The distance between the condenser lens and the MO is altered to ensure that they are
physically separated by a distance equal to the sum of their working distances. Since
both objectives are infinity corrected objectives, this ensures that the focal planes of
both objectives are coplanar. Furthermore, it ensures that a collimated laser beam that
enters the back aperture of the condenser will result in a collimated laser beam exiting
the back aperture of the MO.

• The sample is no longer limited to a single position at the focal plane of the MO as
for the case of traditional off-axis DHM. Instead, the sample can occupy any plane
between the focal plane of the MO and the surface of the MO. The location of the
sample in this range will determine the magnification of the imaging system with
a maximum value of infinity, when the sample is located at the focal plane, and a
minimum value that must be less than unity, when the sample is located at the surface
of the MO. The relationship between sample location and magnification is explored in
more detail in Section 5.

• The camera is not positioned in the traditional image plane of the microscope (i.e.,
at the focal plane of the tube lens). Instead, a Fourier transforming lens is inserted
between the image plane and the camera plane. Thus, a collimated laser beam entering
the condenser aperture, and exiting the back aperture of the MO, will be imaged onto
the camera. This step guarantees that the full Field-of-View that is afforded by any
given (variable) magnification can be captured by the system. This step also ensures
that there will be a simple relationship between the object plane and camera plane for
any arbitrary object location and resultant magnification, which is described in more
detail in Section 4.

3. Extending the Principles of DIHM to Off-Axis DHM with a Microscope Objective

In this section, a model is presented that relates the object’s transmission function to
the complex wavefield that is captured by the camera in Figure 1. This model facilitates
the design of a numerical reconstruction algorithm in Section 4 as well as the derivation of
the Magnification, Numerical Aperture, and Field-of-View of the microscope in Section 5,
all of which vary continuously as a function of object position. Central to this model
are the concepts of ray optics and diffraction theory, which are reviewed in Appendix A.
The model presented here builds directly on the established model for DIHM, which is
reviewed in detail in Appendix B.

An abstraction of the physical system described in the previous section is illustrated
in Figure 2; a comparison of this figure with the equivalent figure for DIHM in Figure A1
reveals several features that are common to both. For both setups, a spherical beam emerges
from a pinhole with a wavelength λ; practically, this is generated using a beam focused
by an MO as illustrated in Figure 1. Following propagation of a distance d, this diverging
spherical field is incident upon an object, with transmittance t(x), which is identical to the
DIHM case shown in Figure A1. For the system proposed here, however, we do not need
to make any assumption about the weakly scattering object as defined in Equation (A6),
since we do not need to rely upon the unscattered wavefield r f (x) to generate an in-line
interference pattern.

In the case of DIHM, an intensity pattern is recorded by a camera a further distance z
away from the object plane, and this intensity pattern is assumed to contain an interference
pattern between the wavefield scattered by the weak object and the unscattered field. For
the system proposed here, a microscope objective (MO) replaces the camera, which we
model as a thin lens in the same plane as the camera. In this way, we will demonstrate in
the proceeding sections that it is an identical form of variable magnification can be obtained
for the off-axis system as for the case of DIHM.
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Figure 2. A simplified schematic that corresponds to the optical system proposed in Section 2.1,
which can be compared directly to the traditional DIHM set up illustrated in Figure A1. In this
case, an MO (positioned a focal length away from the point-source) captures the wavefield in lieu
of the camera and effectively collimates the wavefield into an off-axis interferometer. There is no
requirement on the object to be weakly scattering and hence the propagated field is denoted a function
of t(x) and not o(x) as for DIHM. Note the surface of the MO will be closer than the effective lens
plane, and this working distance (WD) places a greater constraint on the range of sample placement
relative to the case of DIHM. In both cases the magnification (M) of the imaging system is the same.

By positioning the MO (with focal length f ) such that f = d + z, its effect can be
approximated as a chirp function that is the conjugate of the unscattered wavefield in the
interference pattern in DIHM, i.e., the field immediately after the thin-lens approximation
can be described as t(x)r∗f (x), which is identical to the real image term in the DIHM
hologram. The lens effectively collimates the diverging wavefield that has been scattered by
the object, approximately limiting it to a light-tube [24] no matter the position of the object
in the range of possible values of d. An off-axis interferometer is used to record this term in
isolation, which can provide for a reconstruction of the quantitative phase image of t(x/M)
as demonstrated in the following sections, in which the numerical reconstruction algorithm
is derived and it shown that the overall opto-numerical system has a magnification M that
is identical to the magnification term in DIHM.

4. Numerical Reconstruction

The overall system that maps in the object plane to the sensor plane is illustrated in
Figure 3. Contrary to convention, light is illustrated to propagate from the input (sample)
plane on the right of the figure, towards the output (camera) plane on the left of the
figure. The reason for this is to facilitate the correct ordering of the ABCD matrices that
are associated with each of the different optical elements that make up the system, which
are reviewed in Appendix A. The overall matrix product, which models the entire system,
is shown immediately beneath the diagram of the system and arrows are used to relate
each element to its corresponding matrix. Notably, only two types of matrix need to be
considered here: the matrix for a thin lens and the matrix for Fresnel propagation.

The values of d, z, and f that appear in Figure 3 are equivalent to the d, z, and f
parameters that appear in Figure 2. In Figure 3, plane wave illumination is assumed
and, in this way, it is possible to describe the effect of the diverging illumination as being
equivalent to the effect of a convex lens of positive focal length d. The focal length of the
MO and the tube lens are represented by f and fTL, respectively, and the focal length of
the third lens (performing an optical transform of the traditional image plane) is denoted
fFT . D1, D2, and D3 denote sections of free space between the MO and tube lens, between
the tube lens and Fourier transforming lens, and between this latter lens and the camera
plane, respectively. Matrices for each of the optical elements are shown directly below and
are denoted as M1 to M8 from right to left as indicted in the figure. These matrices are
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also used in the next section, which deals with estimating the Numerical Aperture of the
microscope for any given sample position by applying geometrical ray tracing. We define
the following relationships between the various parameters:

f = z + d (1)

D2 = fTL + fFT (2)

D3 = fFT (3)

fTL = fFT (4)

Figure 3. Illustration of the optical system that maps the input sample plane to the output camera
plane; S, Sample; C, Complex lens; MO, Microscope objective; TL, Tube lens; L, Fourier transforming
convex lens. Here, the divergent spherical illumination is represented as a convex lens of focal length
d in the plane immediately after the sample plane and coherent plane wave illumination is assumed.

The first of these relationships in Equation (1) is discussed in Appendix B in the
context of DIHM. This relationship ensures that the first part of the optical system relates
closely to the DIHM system (including the multiplication with the unscattered reference
wavefront). The second and third relationships defined in in Equation (1) ensure that the
lens fFT performs an optical Fourier transform between the traditional image plane and the
camera plane and it becomes clear that the point source illumination will be transformed
into a plane wave in the camera plane. If these three relationships are satisfied, it is straight-
forward to show that the matrix product, which represents the optical transformation
between the sample plane and the camera plane, reduces to a simplified form as follows:

M8M7M6M5M4M3M2M1 =

[
M q

M
0 1

M

]
=

[
1 q
0 1

][
M 0
0 1

M

] (5)

where

q = fTL − zM + D1 (6a)

and M = −d + z
d

=
f
d

(6b)

The definition for the magnification, M, in Equation (6) is identical to the definition of
magnification for the case of DIHM, except for the negative value, which simply implies
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image inversion. It is also interesting to note that this simplification is entirely independent
of the value of D1, which is the distance between the microscope objective and the tube lens.
This freedom is also found with any imaging system that uses infinity corrected microscope
objectives such as the one used in this study. Based on Equation (5) and following from
the discussion in Appendix A we may conclude that the relationship between the sample
plane and the camera plane is simply a magnification of the object’s complex transmission
function t(x) followed by a Fresnel transform with distance parameter q. It is possible to
define a simple reconstruction algorithm by inverting the right hand side of Equation (5)
as follows [25]: [ 1

M 0
0 M

][
1 −q
0 1

]
(7)

Following the capture of a raw hologram and the spatial filtering step in the DFT
domain [5], reconstruction, therefore, simply consists of simulating the Fresnel transform
which consists of two DFT operations, which can be implemented in real time using the
fast Fourier transform algorithm [25,26]. If the value of q is not known exactly, perhaps
because the value of d or D1 is not known precisely, then an autofocus algorithm can be
applied [23,27,28].

5. Numerical Aperture, Field-of-View, Magnification

The magnification of the system is determined by the position of the sample relative to
the focused spot, and is given in Equation (6). A simple inspection of this equation reveals
that the largest magnification that is achievable is infinity, Mmax = ∞, which occurs when
the sample is placed in the same plane as the point source, i.e., when d = 0. The smallest
magnification that is achievable occurs when the sample is placed as close as possible to
the MO, i.e., at the largest possible value of d. The working distance, WD, of the MO will in
general be shorter than the focal length of the MO, f . Therefore, the smallest magnification
is given by:

Mmin =
f

f −WD
(8)

which will always be greater than one. The ratio of the working distance to focal length
varies significantly across microscope objectives. For the long working distance used in
this study, the value of Mmin ≈ 2. Using the value of M, it is also possible to calculate the
Field-of-View, FoV, of the resultant image by simply dividing the sensor dimensions, wx
and wy, by the magnification to provide (assuming the wavefield overfills the sensor area):

FoV = (wx × wy)/M2 (9)

For the MO used in this study, the value for FoV will vary from 0, for the case of Mmax
to (wx × wy)/4 for the case of Mmin, i.e., it should be possible to record a Field-of-View
approximately equal to one quarter of the area of the recording sensor. In Figure 4a the
magnification and Field-of-View are both shown as a function of the sample position d.
The MO used in this study has a Numerical Aperture of 0.6, a focal length of f = 6.25 mm
and a working distance of 3.5 mm. The range of values of d over which the parameters M
and FoV are calculated is from 0 mm up to 4 mm. It can be seen that M decreases rapidly
from infinity at d = 0 to a value of M = 7 over the first 1 mm from the point source, while
FoV increases rapidly over this range.

Although it is straightforward to define the magnification and Field-of-View as a func-
tion of sample positions, it is not immediately obvious how to define the Numerical
Aperture of the imaging system. It can be expected that the NA will vary depending on
the position of the sample plane relative to the MO, since this will change the angle that
subtends the center of the object on the optical axis, to the edge of the MO. However, the
rays that propagate at the most extreme angles into the MO, might not be captured by
the apertures of one or more of the remaining optical elements. Therefore, in order to
determine the NA for a given sample position, d, it is necessary to perform ray-tracing
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using the matrices for each of the optical elements in the system and to take into account the
aperture of each optical element. This can be done systematically, such that for the center
point on the sample, the maximum ray angle can be determined that will pass through
each individual element and reach the detector. As an example, consider the tube lens TL
in the setup. The position, x′ and angle θ′ of a ray that originates at the center of the sample
(position x = 0) propagating at an angle θ can be calculated as follows [20]:[

x′

cos−1 θ′

]
= M2M1

[
0

cos−1 θ

]
(10)

Figure 4. The relationships between magnification, Field-of-View and Numerical Aperture for the
setup shown in Figure 1; (a) shows the variation in M, FoV, and NA as a function of sample position
d in the setup; (b) M and FoV are both plotted as a function of NA; and (c) the relationship between
M and NA is shown for a range of different sensor areas, w = wx × wy.

Therefore, the position of the ray in the plane of the tube lens is given by:

x′ = B cos−1 θ (11)

where B is the parameter from the ABCD ray-transfer matrix that is given by M2M1.
The maximum value of x′ is given by the radius of the tube lens and in this way, the
maximum ray angle from the sample center that can pass through the tube lens can be
calculated. The same procedure can be applied for the third lens in the system fFT and
for the sensor; the position of the ray in these two planes is also given by Equation (10)
where the B parameters is taken from the two matrix products, M6M5M4M3M2M1 and
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M8M7M6M5M4M3M2M1 respectively. In practice, for the components used in this study, it
was found that, in addition to the aperture of the MO, the limiting aperture was in general
defined by the sensor aperture. The Numerical Aperture is also plotted as a function of
sample position, d, in Figure 4a, in which it is predicted that the designed NA of the MO
(0.6) can be approximately achieved for a range of different magnifications and FoVs. At a
distance of d = 0.2 mm, the magnification of the system is predicted to be M = 32, which is
marked by a horizontal line in the figure; interestingly, this is the intended magnification of
the MO, and at this position the NA is estimated to be slightly greater than the design value
of 0.6 when used in the typical microscope configuration. From a position of d = 0.5 mm,
corresponding to a magnification of M = 10, the NA begins to drop rapidly as the value
of d increases. At a value of d = f , which corresponds to a magnification of M = 1, it
can be seen that the NA has dropped to a value of 0.07. In Figure 4b M and FoV are both
plotted as a function of the Numerical Aperture. It can be seen that for a range of different
magnifications, from 10 < M < ∞ the maximum NA of approximately 0.6 is predicted by
this model. Below a value of M = 10 the NA drops in an approximately linear manner as a
function of magnification. Conversely, the FoV decreases approximately linearly for values
of 0.0 < NA < 0.6. It was found that the sensor aperture played an important role in
defining the relationship between the NA and the value of M; this relationship is illustrated
in Figure 4c for a range of different square sensor area w mm2, where all other parameters
are the same as those already defined. For the smallest sensor area investigated, w = 1.5
mm2 it can be seen that the maximum NA of 0.6 can only be achieved for a particular
sample position corresponding to a magnification of M = 10.8 denoted by the pink line in
the figure. Deviation from this position to provide any other magnification is predicted
to result in a sharp decrease in NA. This constraint relaxes as the sensor area is increased
in the sense that the range of values of M that can provide the maximum NA widens as a
function of w.

6. Preliminary Results Using a Micro-Lens Array

The results are shown for a micro array sample (SUSS MLA 18-00028 quartz, circ.
lenses, quad. grid, pitch 110 µm, ROC 6.188 mm± 5%, size 10 mm× 10 mm± 0.05 mm,
thickness 0.9 mm). The sample was placed in a range of different positions and the results
are shown in Figure 5 for three different values of d corresponding to magnifications of
M = 32, which is the design magnification of the MO, M = 12, and M = 5.

Figure 5. Raw amplitude and wrapped phase images of micro-lens array for different magnifications.
(a–c) show the reconstructed intensity for magnifications of 32, 12, and 5, respectively. Parts (d–f)
show the corresponding phase image, and (g–i) show the same phase images following basic
aberration compensation using a conjugated reference hologram as described in the text.
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The reconstructed intensity and phase images are shown for the three cases in
Figure 5a–f following spatial filtering with the DFT to isolate the real image, followed
by simulation of Fresnel propagation of distance q using the spectral method as discussed
in the previous sections. For the phase images shown in Figure 5d–f no attempt is made to
perform aberration compensation. The sample position d is shown in the top right corner
of each intensity image, and the values of NA and FoV are also shown in each intensity
image, which have been calculated using the formula defined in Sections 4 and 5.

The same set of results are shown in Figure 5g–i where in this case aberration compen-
sation is applied using the method described in ref. [28], which makes use of a reference
conjugated hologram. This form of aberration compensation is relatively simple, whereby
a reference hologram is recorded with no sample, and the resulting complex hologram
is divided into the hologram of the object prior to reconstruction. Although this attempt
to compensate for aberrations clearly improves the phase image, it only partially corrects
for overall aberration. The clear distortion in the intensity image (which should have
approximately uniform amplitude) resulting from system aberration remain in the image.
Unfortunately, it is not possible at this time to confirm the Numerical Aperture of the
system experimentally for a range of magnifications due to the presence of this distortion.

7. Discussion
7.1. Aberration

Although the simple method of using a conjugated reference hologram did improve
the phase aberration in the reconstructed image, there remained significant image distortion.
Of particular concern is the fact that the MO is being used to image a sample that is placed
far from the working distance at which the MO was designed to image, resulting in
the projection of the image onto a curved surface. Additionally, of concern is the fact
that the aberrations from two different microscope objectives are contributing to image
distortion. The condenser is expected to produce an ideal diverging spherical wavefront
(that we model as an ideal thin lens) at the sample plane, which will in practice contain
aberrations which will also contribute to aberration in the image. Our initial results indicate
that traditional methods of aberration compensation fail [28–31]. Additionally, recording
holograms of point-source pinhole objects in order to determine the aberration in the
image, which have been shown to be highly successful in aberration compensation for
other DHM systems [32], indicate that the aberration is not spatially invariant across the
sample plane; i.e., the aberration for a point in the centre of the object is different that
for a point further away. Therefore, attempting to solve the problem of aberration using
holograms of point sources becomes intractable considering that holograms would have
to be applied from pinholes at every possible three-dimensional position that could be
occupied by a sample, followed by a spatially variant convolution operation. It is likely
that the projection of the image onto a curved surface is at the source of this problem and
finding a method to fully compensate for the aberrations will be an important part of future
work in order to move this work from a proof-of-concept to a reliable and usable tool for
the life-science community.

7.2. Relationship of the Proposed System to Off-Axis DIHM

Recently the digital in-line holographic microscopy approach has been augmented
with an off-axis reference beam that can separate the twin images and accurately retrieve
the phase [33,34]. This approach uses two closely situated point sources, whereby one
point source illuminates the object and the second provides the reference. Although this
work is similar to our own in terms of providing off-axis holographic microscopy with
variable magnification by moving the sample, there are some important differences: (i) Our
proposed system is a simple adaptation of the common off-axis architecture. Lenless
point-source methods such as those in [33,34] are limited in terms of Numerical Aper-
ture/resolution by the absence of a high quality microscope objective and immersion
medium; (ii) The double point sources method places a constraint on the sample whereby
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features within the sample cannot overlap with the reference point source path. Our system
has no such limitation. For typical glass slides used in life-science, the microscopist will
commonly wish to view a densely populated sample area of several cm2.

7.3. Laser Source

The type of laser used in the proposed setup is an interesting point of discussion.
In recent years, there has been a shift away from sources with high-temporal coherence,
which produce coherent noise in the image from scattering and reflections at various points
in the optical system, towards laser sources with relatively short coherent lengths. The
source used in this study is a relatively inexpensive laser diode (EUR 1k) with a bandwidth
of approximately 1 nm and a coherence length of approximately 0.1 mm. Despite the
short coherence length, it is straight forward to match the path lengths in the Mach-Zender
architecture that is used in this study using a lens tube mounted on a cage-optics translation
stage. The use of sources with larger bandwidths has been shown to produce very low
noise phase images: a supercontinuum laser source with FWHM of 6.7 nm is used in a
Michelson DHM setup in ref. [35], a filtered Zenon lamp with a bandwidth of 5 nm is
used in the DIHM setup in ref. [36]. This latter system has also been demonstrated with
filtered LED illumination. LED or Zenon illumination would not be suitable for the system
proposed here, due to the requirement for high spatial coherence in the object and reference
wavefields. However, it is likely that a supercontinuum laser with a bandwidth >1 nm
would produce lower-noise images. The cost of such laser systems is, however, very high
and we believe that the use of inexpensive diodes provides a benefit in terms of image
quality and cost. It is likely that battery powered laser diodes costing <EUR 10 could be
used with the proposed setup.

8. Conclusions

In conclusion, this letter outlines a novel architecture for off-axis digital holographic
microscopy that has the capability to provide for continuously variable magnification over
a range of values from approximately two times up to infinity, by simply moving the
position of the sample in the setup along the optical axis. The experimental system, which
comprises a small adaptation of a traditional setup for off-axis holographic microscopy,
is described in detail and the ray-transfer matrix for the system is used to derive the
relationship between the sample plane and the sensor plane. It is shown that this mapping
reduces to a single magnification step and a Fresnel transform. The ray-transfer matrix of
each component in the setup is used to calculate the largest angle of light from the center of
the sample that could be recorded by the sensor, and in this way the Numerical Aperture
of the system for each sample position and magnification is estimated. The preliminary
experimental results clearly demonstrate a proof-of-concept implementation of the method
by imaging a micro-lens array over a range of magnifications and Field-of-View.

The proposed method is compared directly with DIHM, which is a digital implemen-
tation of Gabor’s original invention. It is shown using the ray-transfer matrix that the
principle of variable magnification for the proposed system is identical to the case of DIHM.
Unlike DIHM, however, the proposed system produces quantitative phase images in a
single capture and requires no preconditions on a weakly scattering object. An important
consideration is that the proposed method will provide a large range of magnification only
if there is a large working distance, i.e., a large range of travel in front of the microscope
objective. This feature is provided by long working distance objectives such as the one
used in this study. Microscope objectives with even longer working distances are available
from other sources such as Mitutoyo and it will be interesting to see if other researchers
investigate their potential in future work.

A significant shortcoming of the method is the manifestation of aberrations in the
reconstructed image. These have been partially compensated using reference conjugate
hologram that is applied in the hologram plane. Other more complicated methods, which
are highly effective when imaging in the traditional object plane using off-axis DHM, appear
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to fail for the system proposed here; this problem appears to result from the projection
of the recorded hologram onto a curved surface owing to the short distance between
the sample and the MO. A more effective method of aberration compensation must be
developed in order to ensure the usefulness of the method for practical applications.
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Appendix A. The Ray Transfer Matrix and Its Relationship to Wave Optics

In this subsection, we briefly review the concept of the ray transfer matrix, also known
as the ABCD ray transfer matrix, which can be used to trace the direction and position
of a geometrical ray as it pass through an optical system [20]. Each optical element in
a complex optical system, including a section of free space, can be assigned an ABCD
matrix. The overall ABCD ray transfer matrix for the entire system is given by the product
of these individual matrices in the order in which they act on the input ray. The ABCD
matrix is applied in Sections 4 and 5 in order to: (i) to identify a suitable reconstruction
algorithm for a novel digital holographic microscopy optical system and (ii) to estimate
the magnification, Numerical Aperture, and Field-of-View of the system by tracing rays
through the optical components and identifying the maximum ray angle from the object
that can be captured by the recording camera. In order to illustrate the concept of the ray
transfer matrix we must first familiarise ourselves with simple examples that form the of
analysis in Appendix B as well as Section 4 and Section 5 in the main body of the paper:[

A B
C D

]
=

[
1 z
0 1

]
, (A1)

[
A B
C D

]
=

[
M 0
0 1/M

]
, (A2)

[
A B
C D

]
=

[
0 1
−1 0

]
, (A3)

and
[

A B
C D

]
=

[
1 0

1/ f 1

]
. (A4)

These four matrices represent the ABCD ray transfer matrices for (i) propagation
in free space (equivalent to a Fresnel transform acting on a complex wavefield in the
paraxial approximation), (ii) a magnification system (scaling), (iii) a Fourier transform and
(iv) a ‘thin’-lens [20], where z is the propagation distance, M is a magnification factor and
f is the focal length of the lens [20,37]. It has been shown by Collins [37] that using the
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paraxial approximation, the integral transformation that models the diffraction between
the input and output planes of the system, is given by the following equation:

FABCD{g(x′)}(x) =
1√
iλB

∫ +∞

−∞
g
(
x′
)

exp

(
iπ

Ax′2 − 2xx′ + Dx2

λB

)
dx′. (A5)

This integral relationship is known as the Linear Canonical Transform [38], where λ is
the wavelength, x′, and x represent the input and output coordinate systems. Substituting
the A,B,C, and D parameters for free space propagation into Equation (A5) produces the
Fresnel transform, which is explicitly defined in the next subsection. Using this simple
relationship between geometrical optics and wave-optics it is possible to quickly define the
integral transformation associated with any optical system by firstly calculating the overall
ABCD matrix. We refer the reader to references [25,39,40] for a graphical interpretation
of the effect of these matrices in Phase-Space. We also note that in ref. [25] a method
for designing new algorithms associated with the discrete counterparts of the integral
transformation is provided. For simplicity, we consider the one-dimensional case only.

Appendix B. Digital In-Line Holographic Microscopy and Variable Magnification

In this section, we briefly review the principles of DIHM, which form the basis for
modelling the experimental system described in Section 2.1. In a DIHM recording system,
an object is illuminated by a diverging spherical wave, usually originating from a small
pinhole. The object scatters some of the light, thereby creating the object wave. Assuming
the object is weakly scattering, the undiffracted light provides the reference wave. A typical
setup for DIHM is shown in Figure A1. A spherical wave emerges from a pinhole with
a wavelength λ. Following propagation of a distance d, this diverging spherical wavefield
is incident upon a weakly scattering object with a transmission function approximated
by [20]:

t(x) ≈ 1 + o(x). (A6)

where the amplitude and phase of o(x) represent the absorption and phase-delay imparted
by the object on the illumination. An intensity pattern is recorded from the resultant
wavefield a further distance z away from the object plane.

Figure A1. Gabor DIHM setup with a spherically diverging beam, r(x), emerging from a pinhole,
illuminating a weakly scattering object with transmittance, t(x) = 1 + o(x), a distance d away.
Immediately behind this plane there is the object wavefield o(x)rd(x), where the subscript d denotes
the radius of the spherical wave in this plane. The interference pattern, between the unscattered
component, r f (x), and the propagated object wave, O(x), is captured on a CCD a further d2 away.
The captured intensity is input to a numerical reconstruction algorithm.
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The diverging spherical wavefield from the point source can be described using Phasor
notation in both the object plane, rd(x), and the camera plane, r f (x), as follows:

rd(x) = exp
(

iπx2

λd

)
r f (x) = exp

(
iπx2

λ f

) (A7)

where f = z + d. The field in the plane immediately after the object plane can, be described
as rd(x) + rd(x)o(x), i.e., the product of the illuminating spherical wavefield and the
transmittance. Following a Fresnel propagation, the field in the camera plane can be
described as O(x) + r f (x), where O(x) represents the propagated object field as follows:

O(x) = Fz
{

o(x′)rd(x′)
}
(x)

= Fz

{
o(x′) exp

(
iπx′2

λd

)}
(x)

(A8)

and where Fz denotes the operator for the Fresnel Transform, which is defined in the
equation below:

Fz{g(x′)}(x) =
1√
iλz

∫ +∞

−∞
g(x′) exp

(
iπ

[x− x′]2

λz

)
dx′ (A9)

Using the properties of the Fresnel transform [8], it is possible to rewrite Equation (A8)
as follows:

O(x) = exp
(

iπx2

λdM

)
FMz

{
o
(

x′

M

)}
(x) (A10)

where M = d/(d + z) = d/ f . This indicates that the effect of illuminating the sample
o(x) with a diverging spherical wavefield (with parameter d) followed by propagation of
distance z is equivalent to first magnifying the sample o(x) by a factor M, followed by
propagation a distance Mz, followed by multiplying the result by a chirp function with
parameter dM. This result can be confirmed using the following matrix decomposition:[

1 z
0 1

][
1 0

1/d 1

]
=

[
1 0

1/Md 1

][
1 Mz
0 1

][
M 0
0 1/M

]
(A11)

The matrices on the left of the equals sign in the above equation relate to Equation (A8),
while the matrices on the right side relate to Equation (A10) based on the principles de-
scribed in Appendix A. It is straightforward to show that the relationship in Equation (A11)
is true if M = d/(d + z).

If the complex valued O(x) can be retrieved from the recorded intensity pattern
on the camera, the magnified image o(x/M) can be numerically reconstructed by firstly
multiplying by a discrete chirp function with parameter −dM followed by computation
of the Fresnel transform a distance −zM. Several algorithms have been developed for
reconstruction that make use of this matrix decomposition [7] as well as others. However,
it is not straightforward to recover O(x) in isolation from the recorded intensity pattern,
which is given by:

Iinline(x) =
∣∣∣O(x) + r f (x)

∣∣∣2 (A12)

which can be expanded to produce an expression with four terms:

Iinline(x) = |O(x)|2 + |r f (x)|2 + O(x)r∗f (x) + r f (x)O∗(x). (A13)

The limitations of DIHM systems in terms of magnification, Numerical Aperture, and
Field-of-View have been investigated extensively by other authors [11–14]. Despite the
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attempts to remove or ignore the three unwanted terms in Equation (A12), their residual
effect is to render the phase image unusable. Numerical techniques have been developed
that have improved the quality of the phase image based on iteratively numerically prop-
agating between the camera and object plane and applying a set of constraints in both
of these planes [41]. While this technique does improve the phase image it does not, in
general, work well for all samples.

Another approach is to record the hologram for several different sample positions,
i.e., for several values of d in Figure A1, and to either use an iterative constraint based
approach or the transport of intensity equation or both in order to recover meaningful phase
images [21,22]. Yet another recent approach [42] scans the wavelength of the illumination
over a range of values; a sequence of intensity images is recorded and an accurate phase
image can be recovered.

All of these multi-capture methods, while recovering an accurate phase image, have
the obvious disadvantage of requiring several recordings and significant computation.
Another class of related methods is the double point source approach [33,34], which uses
two closely situated point sources, whereby one point source illuminates the object and
the second provides the reference. Like the method proposed in this paper, the approach
separates the twin images using an off-axis reference wavefield. The relationship between
the method proposed in this paper, and the double point-source method is further discussed
in Section 7.2.
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