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Abstract: Distributed Raman amplifier (DRA) has been widely studied in recent decades because of
its low noise figure and flexible gain. In this paper, we present a novel scheme of DRA with broadband
amplified spontaneous emission(ASE) source as pump instead of discrete pump lasers. The broad-
band pump is optimized by machine learning based inverse design and shaped by programmable
waveshaper, so as to realize the ultrafine, dynamic and arbitrary gain spectrum shaping of Raman
amplification. For the target of flat gain spectrum, the maximum gain flatness of 0.1086 dB is realized
based on the simulation results. For the target of arbitrary gain spectrum, we demonstrate four gain
profiles with maximum root mean square error (RMSE) of 0.074 dB. To further measure the perfor-
mance of arbitrary gain spectrum optimization, the probability density functions (PDF) of RMSE and
Errormax are presented. Meanwhile, the numeral relationship between the bands of broadband pump
and signal is also explored. Furthermore, this work has great application potential to compensate the
gain distortion or dynamic change caused by other devices in communication systems.

Keywords: optical fiber communication; Raman amplifier; machine learning; inverse design

1. Introduction

Distributed Raman amplifier (DRA) is an important amplification scheme for optical
communication systems due to its low noise figure (NF) and wideband flexible gain [1,2].
In order to enhance the performance of DRAs, many methods have been applied in DRAs
for achieving lower noise by improving Raman pumping scheme. The most common
used is backward pumping, which shows reduced penalty on relative intensity noise (RIN)
compared to forward pumping [3]. High order pumping can also enhance RIN performance [4,5].
RIN is transferred from pump lasers to DRAs and for high order pumping scheme, RIN
can be effectively reduced because of multiple transfers from high order pump to sig-
nals [6]. Another practical scheme is random fiber laser structure, which utilizes high order
pumps to generate first order random fiber laser with the fiber Rayleigh backscattering
and fiber Bragg grating as reflectors [7,8]. However, random fiber laser structure is es-
sentially bi-directional pumping, consequently offering relatively high RIN [9]. But the
experiment demonstrated that this scheme can provide better balance between amplified
spontaneous emission (ASE) noise and nonlinear effects, which results in better transmis-
sion performance [10–12]. In addition to them, it is shown in recent studies that DRAs
using broadband optical pump exhibit superior RIN performance over conventional DRAs
including backward pumping and random fiber laser [13]. The broadband optical pump
is generated by ASE of second order pump in the fiber with high Raman gain coefficient,
and then the broadband optical pump is launched into transmission fiber to amplify the
signal. It is demonstrated that although the broadband pump has the similar RIN to
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the semiconductor laser, the RIN of amplified signal with broadband pump is mitigated
compared to low RIN laser pumping and pumping schemes mentioned above [14].

On the other hand, flat gain of amplifiers is usually demanded to achieve great
transmission performance. For broader applications, arbitrary gain spectrum would be
of great significance since different transmission spectrum will be needed varied with
different systems and different circumstances. For example, Erbium-doped fiber amplifiers
(EDFAs) are always utilized together with other amplifiers to build up a hybrid amplifier
with large gain and low noise [15,16]. Then, the gain spectrum of that amplifier needs
to be shaped to compensate the gain fluctuation of EDFA so as to achieve flat gain for
the hybrid amplifier [17]. Arbitrary gain spectrum shaping with high precision and even
dynamic operation is thus highly desired. Stimulated Raman scattering is only related
to the power and frequency difference between two lights, so DRAs are able to realize
flexible gain spectrum including bandwidth and profile by combining multiple pump
lasers working in different wavelengths and powers [18]. Previous studies have focused
on flat gain and tilted gain with 2 to 8 pumps or more [19]. Only 4 or more pumps can
provide acceptable results which well fit the target of design, and the precision is highly
limited by the number of pumps. Moreover, many specially customized pump lasers will
also make it difficult in experiments and transmission systems. With the broadband pump
arbitrarily shaped by waveshaper with frequency resolution up to 1GHz, it can be regarded
as multiple pumps (depending on bandwidth and resolution) to achieve an ultrafine and
arbitrary gain spectrum.

Optimizing shapes of pump spectrum that can realize desired gain spectrum is an-
other challenging problem, which revolves multiple parameters. The most conventional
optimization algorithm is genetic algorithm (GA). However, GA needs many iterations for
complex crossover, mutation and selection to converge to the optimal solution in parameter
space, and it consumes long time. If the target is changed, all optimization processes
must be repeated from the beginning again. Moreover, with the number of parameters
increasing, the complexity of GA increases rapidly and the optimal solution might be
difficult to converge [20]. Recent research shows neural networks (NN) based inverse
design is a considerable scheme for DRAs [21–23]. The NN can be trained as a regression
of parameters K and results G, whose input is results G and parameters K. In another
way, well-trained NN can be regarded as an inverse mapping y = f−1(G). The advantage
of this inverse structure is that the parameters corresponding to target can be directly
calculated by inputting target into trained NN. If data set used for training is collected
properly and extensively, the trained NN can be universal, which means when the target
changed, desired parameters can also be directly calculated without retraining. Compared
to GA, another advantage of NN is the tolerance to the number of parameters. NN has the
capacity of handling the optimization of more parameters and solving a mapping with
more complexity by deepening networks.

Recent publication proposed a scheme of inverse NN, in which they utilized regression
NN to predict flat and titled gain profile of DRAs. However, the performance of this NN
might not meet an acceptable expection, therefore a fine-tuning phase is applied to further
optimization [23]. This fine-tuning phase requires a trained NN as the direct mapping
G = f (K), and the output of the inverse NN will be further optimized with this direct NN
by gradient-descent algorithm. The optimization results show promising improvement on
backward pumping DRAs over C and C+L band, achieving maximum error below 0.5 dB
for C band and 1 dB for C+L band. However, this scheme requires training for two NNs
and iterations of gradient-descent algorithm, which would be quite time-consuming.

In this paper, a new approach by machine learning for inverse design of DRA with
broadband pump is proposed for achieving ultrafine, dynamic and arbitrary gain spec-
trum. The ASE source can be considered as multiple discrete pumps with power levels
dynamically tunable which is typically achieved by passing the ASE source through a
waveshaper filter. We promote the performance of NN by employing classification NN in-
stead of regression NN. Finally, we realize maximum gain flatness of 0.1086 dB for flat gain
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spectrum. The probability density functions (PDF) of root mean square error (RMSE) and
Errormax are presented for arbitrary gain spectrum, realizing mean of 0.0910 dB, 0.1956 dB
and standard deviation of 0.0269 dB, 0.0817 dB for RMSE and Errormax, respectively. We
also find the best match between the bands of pump and signal. Owing to programmability
of waveshaper, dynamic Raman gain spectrum can be realized and has the potential to
compensate the gain distortion caused by other devices in real time.

2. Broadband Pump Based DRA and Inverse Design

Figure 1 shows the procedure of inverse design for ultrafine and arbitrary waveshap-
ing of gain spectrum. Data set is obtained by numerical simulation of the configuration,
and then employed to train our inverse NN, whose input is gain spectrum G and output is
pump spectrum P. Once the NN has been well trained, it can be recognized as the mapping
between gain spectrum and pump spectrum. Different target profiles of gain spectra are
input to the trained NN for attaining corresponding pump spectrum. Nevertheless, trained
NN only guarantees the reliability within training set. In order to validate the universal
reliability of this inverse design, the targets of gain spectra out of training set are input
into NN and the attained pump spectra need go through the numerical simulation of
configuration to calculate actual gain spectrum, which will be compared with target gain
spectrum to measure the accuracy of NN.

Figure 1. The procedure of inverse design.

2.1. Data Set Generation

The configuration of DRA with broadband pump is presented in Figure 2. The ASE
source generates the broadband pump, which can be realized by ASE of EDFAs, so the
band is set to 1530–1580 nm. Considering the power of the ASE is generally not high
enough and the waveshaper does not support very high power, the ASE is firstly input into
waveshaper and then the shaped ASE is launched into EDFA to acquire sufficient power.
The waveshaper supports C band and its frequency setting resolution is 1 GHz. We can
write the files to control attenuation spectrum of waveshaper through software, realizing
arbitrary shaped ASE. Moreover, considering EDFA does not flatly amplify the shaped
ASE, the attenuation spectrum of waveshaper should be adjusted to compensate the error
caused by EDFA. The pump obtained from inverse design corresponds to the pump fed
into transmission fiber. In order to reduce the RIN of this DRA, the shaped broadband
pump is utilized as backward pump. The band of signals is 1655–1685 nm according the
band of pump. The selection of signals band will be illustrated in Part III. The transmission
fiber is 70 km EX2000 single-mode fiber fabricated by Corning, whose loss of pump is
0.15 dB/km and loss of signal is 0.277 dB/km. The parameters used are shown in Table 1.

Table 1. Parameters in transmission setup.

Settings Losspump (dB/km) Losssignal (dB/km) Length (km)

Sizes 0.15 0.277 70
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Figure 2. The configuration of DRA with broadband pump.

For a backward pumping single-mode DRA with Ns signals and Np pumps, signal
power evolution is described by following non-linear ordinary differential equations [24]:

dP±µ
dz

=∓ αµP±µ ± P±µ ∑
µ>ν

gµ,ν

ΓAe f f
(P+

ν + P−ν )

∓ P±µ ∑
µ<ν

ν

µ

gµ,ν

ΓAe f f
(P+

ν + P−ν )

(1)

where “+” “−” denote the direction of pumps and signals, Pµ is the optical power at
frequency µ, αµ is attenuation at frequency µ, gµ,ν is Raman gain coefficient between
frequencies µ and ν, Γ is polarization correlation coefficient and the value is usually 2, Ae f f
is effective mode field area of SMF.

Raman on-off gain is defined as:

Gi =
Pi(z = L)with pump on
Pi(z = L)with pump off

(2)

where i = 1, 2, ..., Ns.
In our DRA with broadband pump, the broadband pump and the signal are divided

into 40 discrete wavelengths, respectively (Ns = 40, Np = 40). The power of each signal
channel is 0dBm and the total power of signal is 6 dBm. The pump spectra P are randomly
generated with the power of each wavelength ranging from 0 to 8 mW. Then, gain spectra
G = {Gi|i = 1, 2, ..., Ns} are calculated by solving the Equations (1) and (2) with the
randomly generated pump spectra P = {Pi|i = Ns + 1, Ns + 2, ..., Ns + Np}. The gain
spectra G and the pump spectra P finally compose the data set utilized to train NN. The
scale of data set should be selected carefully, because too large scale will demand more
computing resources, leading to increased time consumption. Data set of too small scale
contains insufficient information, thus reducing the accuracy of the trained NN. The scale
of our data set is 5000. Finally, the data should be normalized before training.

2.2. Establishment of NN

The establishment of NN is the key procedure of our inverse design because it directly
determines the performance of mapping between gain and pump spectra. Considering
physical equation characteristics, we select deep NN with dense layers to fit the mapping
between pump and gain. The scale of NN, measured by number of layers and neurons,
should be carefully designed according to the complexity of the mapping. Too small scale
of NN has insufficient capacity of learning the complex mapping and too large scale of
NN will bring many drawbacks, such as demand of large data set, poor convergence and
more time consumption. Moreover, too large scale of NN will induce overfitting, which
leads to the excellent performance on training set but poor generalization. As illustrated
in Figure 1, based on experience, our NN contains for hidden layers with 500 neurons in
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each hidden layer. However, this scale of NN remains overfitting, so Dropout layers are
applied between every two hidden layers. Dropout can effectively alleviate the occurrence
of overfitting and achieve regularization to a certain extent, which contributes to accuracy
of prediction. The ratio selection ranges 0.05 to 0.2 according to experience. In our work,
Dropout ratio is 0.1 in all layers. Function ReLU is the most common used activation
function in neutral networks and it is also utilized in first three hidden layers in our NN.
The activation function of the last hidden layer is Sigmoid function, which maps the vectors
to (0, 1).

The loss function is another factor significantly determining the accuracy of NN.
Essentially, our inverse design is a regression problem to obtain the appropriate mapping
between gain and pump. Traditional NNs for regression usually utilize mean square error
(MSE) or RMSE as loss function, which is respectively defined as :

MSE =
1

Ns
∑

i
(Gi − G̃i)

2
(3)

RMSE =
√

MSE (4)

MSE and RMSE are usually used to measure the distance of two vectors, so the error
between NN’s output vectors and label vectors can be measured by MSE and RMSE.
However, in our scheme, we employ binary cross entropy (BCE) [25] as loss function. BCE
is defined as:

BCE = ∑
i
[−GilogG̃i − (1− Gi)log(1− G̃i)] (5)

Compared with MSE, BCE is more sensitive to the fine fluctuation. We respectively
demonstrate the comparison between MSE and BCE by their performance.

2.3. Validation

Once the training of NN completed, NN can be seen as the mapping between gain
spectrum and pump. However, the training result only indicates the accuracy on training
set, so the accuracy of NN on the data out of training set must be validated additionally.
Flat gain spectra and arbitrary gain spectra not included in training set are input into NN
to obtain pumps, which are then input into equation solver to calculate the actual gain
spectrum. For flat gain spectrum, we use gain flatness to measure the accuracy of NN. Gain
flatness is defined as:

GF = max
i

Gi −min
i

Gi (6)

For arbitrary gain spectrum, we use RMSE to measure the accuracy of NN.

3. Result and Discussion

First, we present the performance comparison of MSE and BCE with the optimization
target of arbitrary gain spectra. Figure 3 shows the results of 3 gain spectra and each
RMSE as error between target and actual gain spectrum is calculated. The RMSE of BCE
loss function is 0.037, 0.047 and 0.052, respectively. The RMSE of MSE loss function is
0.103, 0.128 and 0.199, respectively. The result shows that BCE loss function is superior to
MSE loss function in our optimization. Therefore, we utilize BCE as loss function and the
following results are all obtained with BCE.

Figure 4 presents the results of gain spectra. In Figure 4a, we demonstrate 6 groups of
target and actual gain spectrum at the on-off gain level of 7.5 dB, 8.5 dB, 9.5 dB, 10.5 dB,
11 dB and 11.5 dB, respectively. It can be observed that curves of each group fit very well
with high accuracy. The gain flatness of actual gain spectra at different on-off gain are
presented in Figure 4b and the maximum of gain flatness is 0.1086 dB.
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Figure 3. The performance of MSE loss function and BCE loss function.

Figure 4. Results for flat gain (a) Flat gain spectrum in different On-off gain level (b) Gain flatness in
different gain.

Our scheme also has a strong ability to realize arbitrary gain spectrum. Figure 5
shows that we give the optimization results of four kinds of gain spectrum shapes and
they also fit the target curve very well. The RMSE of each group are calculated and they
are 0.062 dB, 0.074 dB, 0.040 dB and 0.026 dB, respectively. In order to further illustrate
the university of our scheme for arbitrary gain spectrum, we calculated the PDF of RMSE
and Errormax, respectively, which is obtained by thousands of optimization results with
random target gain spectrum. Figure 6 shows the PDF of RMSE, whose mean and standard
deviation is 0.0910 dB and 0.0269 dB, respectively. The maximum RMSE is less than 0.2 dB.
Particularly, the probability for RMSE ≤ 0.13 dB is 96.6%. Figure 7 shows the PDF of
Errormax, whose mean and standard deviation is 0.1956 dB and 0.0817 dB, respectively.
It can be observed that the maximum of Errormax is less than 0.65 dB and the probability
for Errormax ≤ 0.34 dB is 95.9%.
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Figure 5. The results of four kinds of gain spectrum profiles.

Figure 6. PDF of RMSE for arbitrary gain.

Figure 7. PDF of Errormax for arbitrary gain.
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The band of signals and pump must match to obtain the excellent result. From the
optimization procedure, we find the relationship between the band of signal and pump
to be as Figure 8 shows. The peak of the Raman gain locates at the 13.1 THz frequency
shift of the pump, and the band of gain shifted from broadband pump must cover the
band of signal. We speculate that if the gain band could not cover the signal, the signal at
edge of the band could not get enough gain, therefor difficult to control. In order to prove
our conjecture, we demonstrate the configurations where the band of pump is fixed and
different bandwidth of signal centered at 1670 nm are applied. The gain flatness of each
configuration at 10 dB on-off gain is used to measure the accuracy of optimization. The
result is presented in Figure 9. For the bandwidth of signal less than 30 nm, optimization
has a high accuracy of less than 0.1 dB gain flatness. When the bandwidth of signal
increases to more than 30 nm, the gain flatness increases rapidly. The result reveals that the
gain band of broadband pump must cover the band of signal and their difference must be
greater than a certain threshold.

Figure 8. The relationship between bands of signal and pump.

Figure 9. The result of different signal bandwidth with the pump band fixed.

During the process of optimization, we also found the reason of poor result with
small probability as Figures 6 and 7 shows. The broadband pump can be regarded as the
superposition of multiple pumps with different wavelength. However, the Raman gain
spectrum of Silica fiber in reference [26] shows that a 3 THz platform of maximum gain
exists and 3 dB bandwidth is about 7 THz, which means that no matter how these pumps
with different wavelength are combined, the curve of gain spectrum is impossible to be
sharper than the Raman spectrum. So, for some spectra with extremely sharp curve, the
result does not fix very well, but Figure 7 shows the maximum Errormax less than 0.65 dB.

Above all, this method has great application potential in arbitrary and dynamic
amplification. We can realize arbitrary gain spectrum to compensate the distortion of
output signal spectrum induced by other device in communication systems. Considering
the distortion of some device is time-variant, we can take advantage of waveshaper’s
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programmability to compensate the distortion in real-time, as Figure 10 shows. Optical
spectrum analyzer (OSA) or other device is used to monitor the spectrum of output
signal. The adaptive compensation module will calculate the pump according to current
spectrum and target, and then control the pump module to update the gain of DRA. This
configuration can adaptively control the spectrum of output signal, avoiding dynamic
change induced by other devices. For instance, we can regard this system as an integral
module. When the signal fluctuates or changes occur during signal transmission, we can
use this system to compensate it. When it happens, the compensation waveform is obtained
through calculation, and then the system works to keep the signal stable or make the signal
reach the target waveform.

Figure 10. The realization of dynamic compensation with Raman arbitrary gain spectrum utilizing
DRA based on broadband pump.

4. Conclusions

We demonstrate a novel distribute Raman amplifier with broadband pump to realize
the ultrafine and arbitrary gain spectra. Waveshaper is utilized to shape the profile of
pump so as to control the final gain spectrum. The optimization to obtain pump profile is
rather difficult because of multiple parameters involved, so inverse design based on neural
networks is applied. Trained NN is implemented as the mapping between gain spectra
and pump profile. We can calculate the pump profile according to the target gain spectrum
through trained NN. For the optimization of flat gain spectrum, maximum gain flatness
of 0.1086 dB is realized. For arbitrary gain spectrum, we demonstrate four profiles and
present the probability density functions of RMSE and Errormax. The PDF of RMSE has the
mean of 0.0910 dB with standard deviation of 0.0269 dB, meanwhile the PDF of Errormax
has the mean of 0.1956 dB with standard deviation of 0.0817 dB. Finally, we explore the
relationship between the band of signal and pump. The band of pump is fixed and the
best bandwidth of signal is given. Moreover, this method has great application potential to
avoid dynamic change caused by other devices in communication systems.
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